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Abstract: The purpose of this paper is to promote the application of nano-TiO2/CaCO3 in bituminous
materials and present an experimental characterization of viscoelastic behaviors of bitumen and
bituminous mixture modified by nano-TiO2/CaCO3. In this work, a series of viscoelastic behavior
characterization tests were conducted, including dynamic shear rheometer (DSR) test for bitumen,
uniaxial static compression creep test and dynamic modulus test for bituminous mixture. Moreover,
various viscoelastic models with clear physical meanings were used to evaluate the influence of
nano-TiO2/CaCO3 on the macroscopic performance of bitumen and bituminous mixture. The results
show that bitumen and its mixtures are time-temperature dependent. The Christensen-Anderson-
Marasteanu (CAM) model of frequency sweep based on DSR test indicated that adding nano-
TiO2/CaCO3 can effectively capture the sensitivity of temperature. In addition, the incorporation
of nano-TiO2/CaCO3 in bituminous mixture can significantly enhance the high-temperature anti-
rutting, and slightly improve the low-temperature anti-cracking as well. At the same time, the
modified Burgers model can accurately describe the viscoelastic behavior of bituminous mixtures
in the first two creep stages, reflecting the consolidation effect of bituminous mixture. Also, the
generalized Sigmoidal model can accurately grasp the characteristics of the relationship between
dynamic modulus and reduced frequency and achieve good prediction effects in a wider frequency
range.

Keywords: nano-TiO2/CaCO3; bituminous materials; viscoelastic behaviors; dynamic shear
rheometer; static compression creep; dynamic modulus

1. Introduction

Due to superior performance, bituminous pavement has become the most common
pavement in China’s high-level pavements [1–3]. With the development of transportation,
bituminous pavement related technology and measurements have been continuously
developed, and its service performance and level have been significantly improved [4–8].
However, it is worth noting that there are yet many problems in the field of flexible
pavement that need to be solved urgently. Bituminous material has a significant feature
that its properties are strongly influenced by its service temperature [9–11]. Damage
resulting from extremes in temperature will reduce the service performance of bituminous
flexible pavement, as evident in rutting, cracks and other defects [2,12,13].

There are many factors affecting the performance degradation of bituminous flexi-
ble pavement, including material internal factors and service condition factors [14]. For
the sake of improving the mechanical properties of bituminous flexible pavement, a lot
of related research work has been done, including modification of bituminous materi-
als [15,16], optimizing bituminous flexible pavement structure [17]. However, with the
rapid development of nanotechnology, more and more researchers are committed to in-
troducing nanomaterials to modify bitumen [18]. Nanomaterials refer to materials in the
range of 1~100 nanometers in at least one dimension. It has previously been observed
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that the physical, chemical and other properties of nanomaterials have great differences
with the original raw materials [19]. It is worth noting that nanomaterials usually have the
advantages of significant temperature susceptibility, better extendability and larger specific
surface area (SSA). Therefore, on the above basis, researchers introduced nanomaterials
into road and construction fields. Jahromi et al. employed two kinds of nano-clay to
improve the performance of bituminous materials. According to X-ray diffraction, along
with dynamic shear rheometer (DSR) tests, it was found that the nano-clay modified bitu-
men increased stiffness and decreased phase angle [20]. Abdelrahma et al. assessed the
physical performances of bitumen through adding the modified nano-clay using dynamic
mechanical analysis and showed that the incorporation of modified nano-clay materials
into bituminous materials enhanced their physical properties. Also, they investigated
the modification mechanism of nano-clay, which was considered to be the interactivity
of the modified nano-silox tetrahedron in bitumen using FTIR test [21]. You et al. used
nano-clay to modify bitumen and compared two kinds of nano-clay. The results indi-
cated that nano-clay could effectively boost the comprehensive performance of bituminous
materials. Furthermore, the blending procedure was considered as the key to achieving
a well-distributed nano-clay modified bitumen [22]. Khattak et al. employed different
dosages of carbon nanofibers to modified three types of bituminous cements based on two
bituminous mixing procedures, i.e., dry and wet procedures. Due to the larger SSA, better
interface combination effect, as well as higher modulus values of carbon nanofiber, the
test results showed that carbon nanofiber modified bitumen exhibited good viscoelastic
response and fatigue performances [23]. Filho PG et al. applied different contents of
nano-TiO2 to base asphalt binder with penetration grade 50/70. Through multiple stress
creep recovery, linear amplitude sweep and conventional tests, they found that nano-TiO2
could improve the fatigue resistance [24]. Besides, they also concluded that nano-TiO2
addition demonstrated a delay on ageing of asphalt [25]. Chen et al. utilized nano-TiO2
to modify bitumen through permeability technology, and evaluated the penetration ef-
fect using scanning electron microscope. Due to the large surface area and advanced
oxidation technology of nano-TiO2, nano-TiO2 modify bitumen produced good perfor-
mances of bitumen and also had good environment purification function [26]. Due to
the large SSA, good dispersion as well as stability of nano-silica, it was widely used in
the fields of medicine, engineering and so on. It was found that the performances of bi-
tuminous materials were greatly enhanced through incorporating nano-silica [27]. Yusoff
et al. found that the susceptibility to moisture damage of polymer modified bituminous
materials was decreased while their anti-rutting and fatigue performance were increased
through incorporating nano-silica [28]. Using the mentioned nano materials could signifi-
cantly boost the ability of bituminous flexible pavement to meet the requirements of service
conditions; for instance, anti-rutting and anti-cracking [29,30].

Despite all that, considering the typical visco-elastic-plastic characteristics of bitumi-
nous flexible pavement under its service conditions, there are still inescapable deforma-
tions [31–33]. Despite various technical measures, there are still many problems related to
deformation resistance of bituminous flexible pavement, including ruts, cracks and other
deformation damage phenomena, which can be attributed to the insufficient deformation
resistance [34,35]. Consequently, it is quite essential to discuss and evaluate the deforma-
tion performance of bituminous materials from the perspective of a viscoelastic constitutive
model. Liu et al. proposed two methods based on the Kramers-Kronig relations. They
constructed the master curve models with four viscoelastic parameters for bituminous
mixtures by these two methods [36]. Lagos-Varas et al. developed a new method of
viscoelastic mechanical behaviors based on derivatives of fractional order. This method
can well describe the practical construction and be suitable for modified bitumen [37].
Wang et al. prepared the polymer and basalt fiber modified bituminous mixtures by Super-
pave gyratory compaction. Then they evaluated the influences of freeze-thaw cycles on the
viscoelastic properties [38]. In order to investigate the influences of various ingredients
on the viscoelastic behavior of bituminous materials, Ma et al. performed laboratory tests



Nanomaterials 2021, 11, 106 3 of 19

and virtual creep test based on discrete element method [39]. Darabi et al. investigated the
nonlinear viscoelastic, viscoplastic and hardening-relaxation of bituminous mixture using
a proposed systematic analysis means. Then they applied dynamic modulus and repeated
creep recovery tests to verify the mechanical response of the proposed method [40].

The purpose of the current work was to evaluate the application of nano-TiO2/CaCO3
in bituminous materials and presented an experimental characterization of viscoelastic
behaviors of bitumen and bituminous mixture modified by nano-TiO2/CaCO3. Compared
to the control base bituminous materials, a series of viscoelastic behavior characterization
experiments were carried out, including dynamic shear rheometer (DSR) test for bitumen,
uniaxial static compression creep test and dynamic modulus test for bituminous mixture.
Moreover, various viscoelastic models with clear physical meanings were used to dis-
cuss the influences of nano-TiO2/CaCO3 on the macroscopic performance of bituminous
materials.

2. Raw Materials and Experimental Methods
2.1. Raw Materials and Tested Specimens
2.1.1. Raw Materials

1. Base Bitumen

The 90# base bitumen (AH-90, with the penetration at 25 ◦C of 80–100/0.1 mm) was
acquired from the Panjin Petroteum Asphalt Co., Ltd. (Panjin, Liaoning Province, China).
Its main technical properties are shown in Table 1.

Table 1. Technical properties of 90# base bitumen.

Technical Properties Methods Values

Penetration 0.1 mm @ 25 ◦C T0604 95.9

Ductility cm @ 5 ◦C
T0605

12.8
cm @ 10 ◦C >100

Softening point ◦C T0606 43.0
Density g/cm3 @ 15 ◦C T0603 1.018

Dynamic viscosity Pa·s @ 60 ◦C
T0620

98.8
Pa·s @ 135 ◦C 0.294

RTFOT
Mass loss % T0610 −0.189

Residual penetration ratio % (@ 25 ◦C) T0604 85.2

2. Nano-TiO2/CaCO3

The nano-TiO2/CaCO3 was developed and provided by the college of chemistry, Jilin
University [41]. Its detailed technical characteristics are presented in Table 2.

Table 2. Technical properties of nano-TiO2/CaCO3.

Technical Properties Values

Appearance — White power
Bulk density g/cm3 0.3

Average particle size nm 300
Specific surface area m2/g 10

Proportion — 20% TiO2 + 80% CaCO3

3. Aggregates and Mineral Filler

The coarse and fine aggregates were acquired by crushing basalt stone from Jiutai
City, Jilin Province for later preparation of bituminous mixtures. In addition, the filler used
in the bituminous mixture was limestone powder from Antu City, Jilin Province. Table 3
shows the main technical properties of coarse and fine aggregates and limestone powder
in this paper, which meets the requirements of the specification JTG F40-2004.
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Table 3. Technical properties of aggregates and mineral filler.

Technical Properties Unit Methods Values

Coarse Aggregate

Los Angeles abrasion value % T0317 16.8
Crushing value % T0316 13.4

Apparent
specific
gravity

13.2 mm
— T0304

2.829
9.5 mm 2.803

4.75 mm 2.847

Water
absorption

13.2 mm
% T0304

0.65
9.5 mm 0.36

4.75 mm 0.88
Flat and elongated particle content % T0312 8.8

Fine Aggregate

Apparent specific gravity — T0328 2.764
Sand equivalent % T0334 75

Mineral Filler

Apparent density t/m3 T0352 2.748
Hydrophilic coefficient — T0353 0.87

Water content % T0103 0.9
Plastic index % T0354 2

Granular
composition

<0.6 mm
% T0351

100
<0.15 mm 98.6
<0.075 mm 78.5

2.1.2. Preparation of Nano-TiO2/CaCO3 Modified Bitumen and Bituminous Mixture

Prior studies that have noted the reasonable dosage of nano-TiO2/CaCO3 is 5% in
weight of bitumen [41]. During the preparatory stage of nano-TiO2/CaCO3 modified
bitumen, original bituminous material was preheated to 160 ◦C and next it was blended
with modified nano-TiO2/CaCO3 by manually stirring for 5 min. The corresponding
temperature increased to 170 ◦C in a short time. Finally, the high-speed shearing was carried
out with a speed of 6000 r/min at 170 ◦C for 40 min. Before use, heat the bituminous sample
again to 170 ◦C, and control the shearing speed at 450~600 r/min, and stir continuously for
20 min.

In addition, the coarse aggregate voids-filling method (CAVF) was adopted to design
the gradation of bituminous mixtures, including base bitumen and nano-TiO2/CaCO3
modified bitumen, and the gradation curve is illustrated in Figure 1 [42]. According to
the specification JTG E20-2011, the optimum asphalt-aggregate ratios of base original
bituminous concrete as well as nano-TiO2/CaCO3 modified bituminous concrete were
obtained by Marshall design method. Marshall stability, flow, air voids, etc. have been
comprehensively considered for different asphalt-aggregate composition from 4.0% to 6.0%
with an interval of 0.5% [17,43]. The asphalt-aggregate ratio of base original bituminous
concrete as well as nano-TiO2/CaCO3 modified bituminous concrete were determined as
4.9% and 5.3% by the weight of the aggregates, respectively.
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Figure 1. Bituminous mixture gradation curve in this paper.

2.2. Laboratory Tests
2.2.1. Dynamic Shear Rheometer Test of Bitumen

The DSR test developed by SHRP is employed to analyze the dynamic characteristics
and evaluate the viscoelastic behavior of asphalt materials [44–46]. Compared to static
experiments (penetration, softening point, etc.), the DSR test has more intuitive and real
advantages to assess the properties of bituminous materials. According to the specification
ASTM D7175 (AASHTO T31509), the rheological parameters of bituminous materials are
determined by Malvern Bohlin Gemini 150 (British Malvern Instruments Ltd.). As shown
in Figure 2, by using two parallel plates at the temperature, the DSR test is carried out
under constant strain mode at 10 rad/s.
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Figure 2. DSR loading method of bituminous sample.

In the DSR test, the dynamic viscoelastic characteristics of bitumen can be divided
into two parts, i.e., complex shear modulus (G*) and phase angle (δ). The complex shear
modulus (G*) is generally calculated by applying dynamic shear stress (τmax) to bituminous
sample and the corresponding measured shear strain (γmax), defined in the Equation
(1). The phase angle (δ) reflects the ratio of viscoelasticity in bitumen. When at higher
temperatures or lower-frequency loading, bitumen is more prone to viscous flow, so the
phase angle is larger. While at lower temperature or higher-frequency loading, bitumen
exhibits more elastic properties and the phase angle is smaller.

G∗ =
τmax

γmax
(1)
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2.2.2. Uniaxial Static Compression Creep Test

The creep test methods mainly include uniaxial static compression creep, bending
creep and splitting creep, dynamic triaxial compression creep. At present, the commonly
used creep test methods in the world for bituminous mixture are mainly uniaxial static
compression creep and bending creep, in which the uniaxial static compression creep test is
the simplest and most practical method. A major advantage of uniaxial static compression
creep test is that the test equipment is relatively simple, therefore, this creep test method
has been widely used [38,47].

In this paper, the uniaxial static compression creep experiment was performed for
base original bituminous concrete and nano-TiO2/CaCO3 modified bituminous concrete
specimens using a NU-14 tester, whose sensor measurement accuracy is 0.001%. Before
the test, a smooth polytetrafluoroethylene (PTFE) plastic film was placed on the upper
and lower surfaces of bituminous mixture sample to eliminate or reduce the influence of
friction on contact surfaces. Meanwhile, bituminous mixture samples should be kept in
an environmental chamber for more than 4 h to ensure a uniform sample temperature.
Figure 3 exhibits the uniaxial static compression creep test, and both sides of test samples
are required to be flat to prevent local stress concentration from affecting the deformation
response. At the beginning of the creep test, a loading of 0.002 MPa was preloaded first,
and then the loading with a stress level of 0.3 MPa for 2700 s as well as unloading for 1800 s
was carried out. During the creep test, the deformation data of samples were collected by
LVDT sensors.
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2.2.3. Dynamic Modulus Test

Dynamic mechanical analysis has been used in the past to investigate the viscoelastic
properties of bituminous concretes. Dynamic modulus test is one of the most common
procedures for determining the dynamic modulus of bituminous mixture [48,49]. In this
paper, the dynamic modulus experiment was carried out for three replicate specimens at
different experimental conditions, the detailed test program is shown in Tables 4 and 5.

Table 4. Load levels at different temperatures.

Temperature (◦C) 5 20 35 50

Load range (kPa) 700~1400 350~700 140~250 35~70
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Table 5. Repeat loading cycles at different load frequencies.

Load frequency (Hz) 0.1 0.5 1 5 10 25

Repeat loading cycle 15 15 20 100 200 200

Based on the collected stress and strain data, the complex modulus (E*) can be cal-
culated, which characterizes their relationship subjected to semi-sine load. The complex
modulus is related to the corresponding maximum values (2σ0 and 2ε0) of sine wave at a
given time (t) and angular frequency (ω), as expressed in the Equation (2). The mechanical
response is shown in Figure 4 [50].

E∗ =
σ0 sin(ωt)

ε0 sin(ωt− δ)
(2)
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The dynamic modulus |E∗| is the absolute value of E*, and the characteristics (δ)
describes the relative lag of the viscous and elastic parts of bituminous material, written as
the Equations (3) and (4).

|E∗| = σ0

ε0
(3)

δ =
ti
tp

(4)

where ti is the average retardation time in the last five cycles, tp is the average load period
of the last five loading cycles.

3. Results and Discussion
3.1. Dynamic Shear Rheometer Test of Bitumen
3.1.1. Complex Shear Modulus (G*)

The frequency sweep test is currently the most popular method for investigating
viscoelastic mechanical parameters of bitumen. The dynamic shear modulus mechanical
response of bitumen in the linear viscoelastic range can be obtained using DSR test with
small strain level under different loading frequencies at the test temperature. To explore
the viscoelastic properties of nano-TiO2/CaCO3 modified bitumen at higher temperature,
the frequency sweep experiment was conducted based on DSR test from 40~80 ◦C with
an interval temperature of 10 ◦C for three replicate samples of base bitumen and nano-
TiO2/CaCO3 modified bitumen. Before the frequency sweep test, bitumen needs to be kept
at the test temperature for at least 15 min. The measured complex modulus (G*) varying
with frequency are shown in Figure 5.



Nanomaterials 2021, 11, 106 8 of 19Nanomaterials 2021, 11, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 5. Complex modulus results versus frequencies and temperatures for base bitumen and 
nano-TiO2/CaCO3 modified bitumen. 

3.1.2. Master Curve Analysis of Complex Shear Modulus 
In DSR, the loading frequency is generally selected as 0.1~100 rad/s. Then, based on 

the principle of time-temperature equivalence, the complex shear modulus data at differ-
ent test temperatures can be shifted horizontally, and a master curve of complex shear 
modulus is obtained to characterize its linear viscoelastic properties [45]. 

The Christensen-Anderson-Marasteanu (CAM) model is adopted as fitting equation 
of master curve of complex shear modulus, shown as below: 

( )
/

1 /

g

m kk
c

G
G

f f

∗
∗ =

 ′+  

 (5)

where 
gG ∗  is the glassy shear modulus of bitumen and set as 109 Pa in this paper, k and 

m represent fitting terms, f’ and fc are the reduced frequency and actual loading frequency, 
respectively. 

Based on the traditional Williams-Landel-Ferry (WLF) equation, the shift factor (αT) 
can be obtained as shown in the Equation (6) [48,50]. 

1 0

2 0

( )
(

lo
)

g T

p T T
p T T

α
+

−
−

−
=  (6)

in which p1 and p2 represent fitted terms, T0 is the reference temperature. 
Taking 60 °C as the reference temperature, the shift factors (αT) of base bitumen and 

nano-TiO2/CaCO3 modified bitumen at different temperatures are shown in Table 6. Based 
on the CAM model equation, the complex shear modulus and CAM model are plotted in 
Figure 6. 

Figure 5. Complex modulus results versus frequencies and temperatures for base bitumen and
nano-TiO2/CaCO3 modified bitumen.

As seen in Figure 5, as loading frequency increases, the complex shear modulus
of both base bitumen and nano-TiO2/CaCO3 modified bitumen increases, and shows a
linear growth trend in the logarithmic coordinate. Simultaneously, nano-TiO2/CaCO3
modified bitumen has a slightly higher complex shear modulus than base bitumen at the
same frequency.

3.1.2. Master Curve Analysis of Complex Shear Modulus

In DSR, the loading frequency is generally selected as 0.1~100 rad/s. Then, based on
the principle of time-temperature equivalence, the complex shear modulus data at different
test temperatures can be shifted horizontally, and a master curve of complex shear modulus
is obtained to characterize its linear viscoelastic properties [45].

The Christensen-Anderson-Marasteanu (CAM) model is adopted as fitting equation
of master curve of complex shear modulus, shown as below:

|G∗| =

∣∣∣G∗g ∣∣∣[
1 + ( fc/ f ′)k

]m/k (5)

where
∣∣∣G∗g ∣∣∣ is the glassy shear modulus of bitumen and set as 109 Pa in this paper, k and m

represent fitting terms, f ’ and fc are the reduced frequency and actual loading frequency,
respectively.

Based on the traditional Williams-Landel-Ferry (WLF) equation, the shift factor (αT)
can be obtained as shown in the Equation (6) [48,50].

log αT = − p1(T − T0)

p2 + (T − T0)
(6)

in which p1 and p2 represent fitted terms, T0 is the reference temperature.
Taking 60 ◦C as the reference temperature, the shift factors (αT) of base bitumen and

nano-TiO2/CaCO3 modified bitumen at different temperatures are shown in Table 6. Based
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on the CAM model equation, the complex shear modulus and CAM model are plotted in
Figure 6.

Table 6. The shift factor sat different temperatures.

Temperature (◦C) 40 50 60 70 80

Base bitumen (control grup) 27.417 4.681 1 0.268 0.090
Nano-TiO2/CaCO3 bitumen 24.858 4.523 1 0.275 0.088
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As presented in Figure 6, complex modulus of base bitumen and nano-TiO2/CaCO3
modified bitumen are frequency dependent, and their complex modulus increases with
reduced frequency. At the same reduced frequency, the complex modulus of nano-
TiO2/CaCO3 modified bitumen is higher. Moreover, the higher the frequency, the more
significant their difference. Since the frequency relates to temperature, it also indicates
that nano-TiO2/CaCO3 could boost the stabilization capability at higher temperature. In
addition, CAM model is able to better fit the complex modulus of base original bitumen and
nano-TiO2/CaCO3 modified bitumen with frequency. The fitting parameter m generally
represents the sensitivity of bitumen to frequency, and the smaller the value of m, the lower
the sensitivity of bitumen to frequency. Thus, the addition of nano-TiO2/CaCO3 reduced
the temperature sensitivity of bitumen.

3.2. Uniaxial Static Compression Creep Test
3.2.1. Uniaxial Static Compression Creep Test

(1) Creep deformation

Taking into account the climatic characteristics of the seasonal freezing zone in North-
east China, the uniaxial static compression creep tests at 20 ◦C, 35 ◦C and 50 ◦C were
carried out on three replicate specimens of base bitumen and nano-TiO2/CaCO3 modified
bitumen. The creep deformation results versus time are plotted in Figure 7.
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modified bituminous mixture at 20 ◦C, 35 ◦C and 50 ◦C.

From Figure 7, it shows that base bituminous mixture and nano-TiO2/CaCO3 mod-
ified bituminous mixture have similar creep deformation curves. At the loading stage,
the creep deformation includes instant and delayed elastic as well as viscous flow de-
formations, while at unloading stage, creep deformation includes instant and delayed
elastic recovery deformation as well as permanent deformation. Although incorporating
nano-TiO2/CaCO3 will not change the creep deformation law of bituminous mixture,
nano-TiO2/CaCO3 could affect the creep deformation rate, cumulative deformation and
residual permanent deformation.

Figure 8 summarizes the cumulative strain and residual strain during the creep test for
base original bituminous concrete and nano-TiO2/CaCO3 modified bituminous concrete
at various test temperatures. The cumulative, as well as residual strain values of nano-
TiO2/CaCO3 modified bituminous concrete are smaller at the same temperature, which
represents nano-TiO2/CaCO3 can boost the deformation resistance of bituminous concrete
at higher temperature.
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(2) Creep Stiffness Modulus

Bituminous concrete is a typical type of viscoelastic material, and its stiffness modulus
is a function of time (t) and temperature (T). In the uniaxial static compression creep test,
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the applied stress is a constant value (σ), its creep stiffness modulus (Sm) versus strain ε(t,T)
can be expressed in the Equation (7)

Sm(t, T) = σ/ε(t, T) (7)

Figure 9 plots the creep stiffness modulus curves versus time for base original bi-
tuminous concrete and nano-TiO2/CaCO3 modified bituminous concrete at various test
conditions. Evidently, creep stiffness modulus of both two bituminous mixtures decrease
with loading time, but nano-TiO2/CaCO3 modified bituminous concrete has a higher creep
stiffness modulus than base original bituminous concrete, indicating that incorporating
nano-TiO2/CaCO3 would enhance the high temperature property of bituminous concrete.
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In addition, through power function fitting analysis, it is clear that nano-TiO2/CaCO3
modified bituminous mixture has a smaller absolute value of power parameter in the fitting
equations, which represents the incorporation of nano-TiO2/CaCO3 reduces the variation
rate of creep stiffness modulus of bituminous mixture.

(3) Creep Activation Energy

Creep curve describes the deformation properties of bituminous concrete while testing.
Prior studies have shown that the creep rate tends to be stable at the second stage of creep,
which is called creep stable stage. The second stage lasts for a long time and has the
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greatest effect on permanent deformation of bituminous concrete. Creep curve slope (k) is
the steady-state creep rate of bituminous mixture at the second stage, which is related to the
material characteristics and test temperature. Generally, the larger the slope (k), the faster
the deformation produced under loading and the worse the resistance to deformation.
Moreover, The relationship between slope (k) and absolute temperature (T) can be expressed
as the Arrhenius form:

k = A2 exp(−Qc/RT) (8)

where Qc represents creep activation energy, R is 8.314 J/(mol·K), A2 is material constant.
The creep curve slope (k) and creep activation energy are presented in Table 7. As

the temperature increases, the steady-state creep rate (k) of both two bituminous mixtures
increase. However, the slope (k) value of nano-TiO2/CaCO3 modified bituminous concrete
is lower. Meanwhile, incorporating nano-TiO2/CaCO3 could improve the creep activation
energy of bituminous mixture significantly. In other words, the deformance resistance of
bituminous concrete at higher temperature has been greatly improved.

Table 7. The creep curve slope (k) and creep activation energy.

Bituminous Mixture Types
Creep Curve Slope (s−1)

Creep Activation Energy (J/mol)
20 ◦C 35 ◦C 50 ◦C

Base bitumen (control grup) 2.41 × 10−5 3.69 × 10−5 4.62 × 10−5 17,091.92
Nano-TiO2/CaCO3 bitumen 2.10 × 10−5 3.12 × 10−5 3.99 × 10−5 20,574.66

3.2.2. Creep Model Analysis of Bituminous Mixture

The viscous and elastic elements are generally combined in series or in parallel to repre-
sent the viscoelastic mechanical performances of bituminous concretes, and Burgers model
as well as its modified model are widely used and have good application effects [38,47].
The creep functions of both models are given as follow:

Burgers model : ε(t) = σ0

[
1

E1
+

t
η1

+
1

E2

(
1− e−E2t/η2

)]
(9)

Modified Burgers model : ε(t) = σ0

[
1

E1
+

(1− e−Bt)

AB
+

1
E2

(
1− e−E2t/η2

)]
, (10)

where E1, E2, η1, and η2 are viscoelastic parameters, A and B are fitting constants.
Figure 10 plots the fitting curves of creep deformation for base original bituminous

concrete and nano-TiO2/CaCO3 modified bituminous concrete at different test temper-
atures based on both models. As seen from Figure 10, the modified Burgers model are
closer to actual measured creep deformation data, and the fitting accuracy is higher. The
modified Burgers model could consider the consolidation effect of bituminous concrete,
that is, the creep growth rate of bituminous mixture gradually decreases in the actual creep
process. However, the Burgers model has good fitting results at the early stage of creep,
but the creep deformation is gradually different from the actual deformation after the creep
migration period. Therefore, the Burgers model is more ideal and the modified Burgers
model is closer to reality.
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3.3. Dynamic Modulus Test
3.3.1. Uniaxial Compression Dynamic Modulus Test

(1) Dynamic Modulus

In this paper, dynamic modulus experiment was carried out on mechanical testing &
simulation (MTS) test system at test conditions listed in Table 5. And this test was carried
out in the order of increasing temperature and decreasing frequency.

Figure 11 presents the dynamic modulus of base original bituminous concrete as
well as nano-TiO2/CaCO3 modified bituminous concrete at various test conditions. It is
observed intuitively in Figure 11 that the dynamic modulus of both bituminous concretes
increase significantly with frequency, but the growth rate of dynamic modulus slows
down gradually, which shows that the dynamic modulus of bituminous concretes will not
increase indefinitely with frequency. The base bituminous mixture has higher dynamic
modulus than nano-TiO2/CaCO3 modified bituminous mixture at lower temperature,
while the opposite result at higher temperatures.
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(2) Phase Angle

Generally, the viscoelastic ratio of bituminous mixture increases with the increasing
of test temperature or decreasing of loading frequency, which means that the phase angle
should increase. Figure 12 shows the phase angle of base original bituminous concrete
and nano-TiO2/CaCO3 modified bituminous concrete at different test temperatures. It
can be seen that when the test temperature ≤20 ◦C, the phase angle (δ) changes of both
two bituminous mixtures and conforms to this law. At 35 ◦C and above, the values of δ
first increase and then decrease. This is because bituminous concrete is more influenced
by the bituminous binder at lower temperatures or high-frequency loading. While at high
temperatures or low-frequency loading, the mineral skeleton plays an important role for
bituminous mixture. Due to the phase angle 0◦ of elastic aggregates, the phase angle of
bituminous mixture will drop.
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3.3.2. Master Curve Analysis of Dynamic Modulus

Viscoelastic materials are dependent on time and temperature, that is, increasing
temperature and extending time have equivalent effect with decreasing temperature and
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shortening time for the viscoelastic characteristics, i.e., the principle of time-temperature
equivalence. Based on this, the measured dynamic modulus of bituminous mixture in
dynamic modulus test at various test conditions can be converted into the values at the
reference temperature using the shift factor, thereby forming a smooth master curve of
dynamic modulus. Therefore, the viscoelastic behavior of bituminous concretes in a larger
temperature and frequency interval would be forecasted according to the master curve of
dynamic modulus [48,50].

As mentioned in the literature review, the generalized Sigmoidal model can well
characterize the master curve of bituminous mixture, as shown below:

lg|E∗( fr)| = δ +
α− δ(

1 + λ · eβ+γlg fr
) 1

λ

(11)

Figure 13 presents the shifted dynamic modulus along with measured dynamic mod-
ulus at 20 ◦C. From Figure 13, the dynamic modulus of nano-TiO2/CaCO3 modified
bituminous concrete is larger at low frequencies, and the corresponding value is 8~25%
larger compared to base bituminous concrete at 50 ◦C. This shows that incorporating
nano-TiO2/CaCO3 greatly improves the high-temperature rutting resistance of bituminous
concrete, which is consist with the analysis results of creep stiffness modulus. While at high
frequencies, the dynamic modulus of nano-TiO2/CaCO3 modified bituminous concrete
is lower, and compared to base bituminous concrete, the corresponding values are also
lower by about 1~4% at 5 ◦C. Therefore, it can be considered that the incorporation of nano-
TiO2/CaCO3 could boost the anti-cracking of bituminous concrete at lower temperature to
some extent.
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According to the generalized Sigmoidal model in Equation (11), the master curves
of dynamic modulus of base bituminous concrete and nano-TiO2/CaCO3 modified bi-
tuminous concrete at 20 ◦C are also plotted in Figure 13. It can be seen that the fitting
generalized Sigmoidal models could correctly grasp the relationship characteristics of the
two, which has higher correlation coefficient R2 close to 1. Generally, the lower frequency
range and higher frequency range can indirectly reflect the high temperature and low tem-
perature performances. From the comparison of master curves between base bituminous
concrete and nano-TiO2/CaCO3 modified bituminous concrete, it is also observed that
incorporating nano-TiO2/CaCO3 could significantly enhance the high-temperature rutting
resistance of bituminous concrete, and the change in low-temperature crack resistance was
not apparent. In addition, within the entire frequency range, the dynamic modulus of nano-
TiO2/CaCO3 modified bituminous mixture has a relative smaller variation, indicating that
nano-TiO2/CaCO3 modified bituminous mixture is less sensitive to temperature.

4. Conclusions

In this work, composite nanomaterials (nano-TiO2/CaCO3) were used to modify
base bitumen, and then the nano-TiO2/CaCO3 modified bitumen was used to prepare
bituminous mixture. In addition, the rheological properties, and dynamic and static
viscoelastic characterizations of base bituminous mixture and nano-TiO2/CaCO3 modified
bituminous mixture were tested and analyzed. The following conclusions are drawn:

(1) The frequency sweep based on DSR test indicated that the complex modulus of both
base bitumen and nano-TiO2/CaCO3 modified bitumen are frequency dependent.
Moreover, the addition of nano-TiO2/CaCO3 can effectively reduce the temperature
sensitivity of bitumen, as reflected in the master curve of complex shear modulus
base on CAM model.

(2) For uniaxial static compression creep performance, the cumulative creep deformation
and residual permanent deformation of nano-TiO2/CaCO3 modified bituminous
mixture exhibited lower values than the control base bituminous mixture. This indi-
cated that bituminous mixture modified with nano-TiO2/CaCO3 had higher high-
temperature rutting resistance. The reason is that the addition of nano-TiO2/CaCO3
can significantly improve the creep stiffness modulus and activation energy of bitu-
minous mixture.

(3) The modified Burgers model can accurately characterize the cumulative strain of
bituminous mixtures in the first two creep stages, as well as the influence of test
temperature. The modified Burgers model can reflect the consolidation effect of
bituminous mixture; that is, the creep growth rate of bituminous mixture gradually
decreases in the actual creep process.
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(4) According to the analysis of dynamic modulus and phase angle, the dynamic modulus
of bituminous mixtures increased significantly as the frequency increased or the
temperature decreased. Additionally, the phase angle of bituminous mixtures was
more affected by the bituminous binder at lower temperatures or high-frequency
loading. However, the mineral skeleton played an important role for the phase angle
of bituminous mixture at high temperatures or low-frequency loading.

(5) The generalized Sigmoidal model can accurately grasp the characteristics of the rela-
tionship between dynamic modulus and reduced frequency. In addition, combined
with the predicted dynamic modulus in a wider frequency range, the incorporation of
nano-TiO2/CaCO3 can significantly enhance the high-temperature anti-rutting, and
slightly improve the low-temperature anti-cracking of bituminous mixture.
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