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Abstract: We review recent works for nucleophilic fluorination of organic compounds in which
the Coulombic interactions between ionic species and/or hydrogen bonding affect the outcome of
the reaction. SN2 fluorination of aliphatic compounds promoted by ionic liquids is first discussed,
focusing on the mechanistic features for reaction using alkali metal fluorides. The influence of the
interplay of ionic liquid cation, anion, nucleophile and counter-cation is treated in detail. The role of
ionic liquid as bifunctional (both electrophilic and nucleophilic) activator is envisaged. We also review
the SNAr fluorination of diaryliodonium salts from the same perspective. Nucleophilic fluorination
of guanidine-containing of diaryliodonium salts, which are capable of forming hydrogen bonds
with the nucleophile, is exemplified as an excellent case where ionic interactions and hydrogen
bonding significantly affect the efficiency of reaction. The origin of experimental observation for the
strong dependence of fluorination yields on the positions of -Boc protection is understood in terms
of the location of the nucleophile with respect to the reaction center, being either close to far from
it. Recent advances in the synthesis of [18F]F-dopa are also cited in relation to SNAr fluorination of
diaryliodonium salts. Discussions are made with a focus on tailor-making promoters and solvent
engineering based on ionic interactions and hydrogen bonding.
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1. Introduction

Nucleophilic fluorination [1–4] using various sources of F fluoride exhibits several advantages
over the electrophilic [5,6] counterpart, especially for introducing the isotopic F-fluorine onto organic
compounds: First, it does not need to use the carrier added [18F]F2 gas that are very cumbersome to
handle. This feature is especially important when the radioisotopic fluorine-18 [18F] is to be incorporated
into an organic substance for clinical applications to positron emission tomography (PET) [7–9]. Second,
[18F]F-labeled molecules can generally be produced in higher radiochemical yield and higher activity
than the electrophilic substitution using carrier added [18F]F2 sources by several orders of magnitude.
Third, the reaction yields from nucleophilic fluorination may improve tremendously (up to > 90%)
in reasonable reaction time (<2 h) by employing a variety of promoter/catalyst with a minimum
amount of by-products. Recent use of alkali metal fluoride in ionic liquids (ILs) have clearly opened
this possibility by designing and applying various ‘task-specific’ ILs for nucleophilic fluorination.
This novel capability of ILs as promoter/catalyst is really the results of the fact that ILs comprise the
ionic species (cation and anion), but the detailed mechanism has been seldom understood. Here
we review recent advances in the catalysis/promotion of SN2 fluorination by ILs, focusing on the
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mechanistic features of the process. We show that the rates and yields of nucleophilic fluorination may
be improved by monitoring and controlling the Coulombic forces and weak interactions (hydrogen
bonding, π-interactions, etc.) between IL cation, anion and substrates (especially, the leaving group).

These interactions also determine the efficiency of SNAr fluorination of diaryliodonium salts that
are gaining much importance as a useful path to incorporating 18F and 19F to aromatic compounds.
Since diaryliodonium salts consist of diaryliodonium cation and the counter-anion such as Br−, OTf−

etc., Coulombic interactions with the alkali metal counter-cation and the nucleophile F− would be
critical to determine the efficiency of fluorination. When the substrate contains functional groups such
as hydroxyl (-OH), amino (-NH2, -NHR) that are amenable to hydrogen bonding, the situation becomes
too complicated to scrutinize by intuition only. In the second part of this brief review, we show that
nucleophilic fluorinations of diaryliodonium salts using alkali metal fluoride are indeed significantly
affected by these electrostatic interactions. In some cases, the position of the nucleophile F− relative
to those of the electropositive C atom and the leaving group may be determined by these ionic
interactions and hydrogen bonding. Either the nucleophile F− is positioned close to the electropositive
C atom for efficient fluorination, or F− may be located far from the center of reaction as the results
of intricate interplay of the electrostatic interactions. In the latter case, of course, fluorination will
not proceed at all. In order to scrutinize the configuration of the reacting system (diaryliodonium
cation, counter-anion, leaving group, metal cation and F−) in pre-reaction complex and transition
state to analyze the experimentally observed efficiency of reaction, quantum chemical calculations are
indispensable, and we discuss the relevant recent works.

2. SN2 Fluorination in Ionic Liquids

Besides being considered excellent solvent for chemical reactions because of its many useful
physicochemical properties such as very low vapor pressure, non-combustibility, high thermal
stability, low viscosity, easy recovery and high ionic conductivity, ionic liquids (ILs) [10–19] have
found further significant role as catalysts/promoters [20,21] in many chemical transformations such
as SN2 [22–28], Diels-Alder [29], aldol condensation [30], Heck [31–33], and Michael addition [34]
reactions. The acceleration of reaction rates of organic reactions by IL occur by the nature of the
substance comprising cation and anion. However, the detailed mechanism seldom seems to be fully
elucidated. Song and coworkers [26] gave a detailed review for experimental observations of increasing
catalytic activity of metal triflates such as Sc(OTf)3 in ILs, attributing the phenomenon to formation
of superacidic Lewis acidic catalysts by anion exchange. They systematically studied the “anion
effect” for reactions such as Diels-Alder, and Friedel-Crafts Alkylation (Scheme 1). Therefore, we skip
the discussion on this topic, and only review the catalytic activity of ILs in organic solvents or in
solvent-free environment.

Scheme 1. Sc(OTf)3-catalyzed Friedel-Crafts alkylation of benzene with 1-hexene in various solvents.
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The first demonstration (Table 1) of promotion of nucleophilic fluorination in ionic liquids reaction
media was made by Kim, Song and Chi [23,35]. They reported that KF is the source of F− in imidazolium
based ILs [bmim][X] resulted in excellent yields (>90%) in reasonable reaction time (<2 h) with a
minimal amount of by-products. Use of cosolvent such as acetonitrile did not affect or improve the
reactivity of fluorination. They also showed that fluorination in [bmim][X] did not require anhydrous
condition, demonstrating the extreme flexibility of ionic liquids for reaction conditions. However,
less than stoichiometric amounts of IL (0.5 equiv) as catalyst/promoter showed rather poor performance
for the nucleophilic fluorination.

Table 1. Fluorinations using KF in various ionic liquids and cosolvents a.

Ionic Liquid (mL) Cosolvent (mL) Reaction Time (h) Yield (%) b

[bmin][PF6] (1.6) CH3CN (3.2) 2 90
[bmin][SbF6] (1.6) CH3CN (3.2) 2 93
[bmin][BF4] (1.6) 1,4-dioxane (3.2) 1.5 91

0.5 equiv of [bmin][BF4] (0.1) CH3CN (5) 12 84

a All reactions were carried out on a 1.0 mmol reaction scale of mesylate substrate using 5 mmol of KF at 100 ◦C.
b Isolated yield.

The mechanism of these very interesting observations was elucidated by Lee and co-workers [24]
in quantum chemical analysis. It was found that the ionic liquid anion plays a key role as a Lewis base
by binding to the counter-cation K+ or Cs+, thereby reducing its retarding Coulombic influence on the
nucleophile F−. That is, the counter-cation becomes a ‘ghost-like’ agent by the action of the negative
charge of IL anion. The intricate interplay (Coulombic forces) of the counter-cation, the nucleophile,
IL cation and anion helps to form a pre-reaction complex and transition state that is optimal for SN2
fluorination, prohibiting the formation of by-products (Figure 1). The role of IL anion in this mechanism
corresponds to that of electronegative O atoms in oligoethylene glycols [36] or in bulky alcohols [37–39]
(t-butanol and amyl alcohol) that were proved to act as catalyst/promoter in nucleophilic fluorination,
but were probably better because of the explicit negative charge of IL anions.

Figure 1. Transition state for SN2 fluorination using CsF in [bmim][OMs]. MPW1K/6-311G ** method
for C, H, O, N, F, S atoms, Hay-Wadt VDZ (n + 1) basis set with relevant effective core potential for
alkali metal elements Cs, using Gaussian 03 set of programs.

Magnier and coworkers [40] carried out a somewhat different approach to using ILs for nucleophilic
fluorination. Unlike the experiments listed in Table 1, in which the source of the fluorinating agent
is metal fluoride, they employed IL [bmim][F] directly, thereby in solvent-free environment. The IL
[bmim][F] was prepared by the exchange of [bmim][Cl] with KF. Another interesting observation was
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that the reaction yields increased from 49 to 84 and 95% as the equivalent of IL increased from 1:1
to 1:2 and 1:3 (Table 2). The underlying mechanism [41] of Magnier and coworkers observations is
depicted in Figure 2. When 1 eq. of IL is employed, the calculated pre-dissociation complex is shown in
Figure 2a. Here, the IL cation bmim+ bridges the nucleophile F− and the leaving group -OTs, helping
the formation of compact pre-reaction complex with optimal configuration for SN2 fluorination. For 2
eq. of [bmim][F] used (Figure 2b), the role of F− is two- fold: One of the two F− acts as a regular
nucleophile, whereas the other one is off the electropositive carbon and the leaving group, whose
action is on the two IL bmim+ cations to reduce their strong Coulombic forces on the nucleophile.

Table 2. Fluorination of 3-phenylpropyl p-toluenesulfonate with [bmim][F].

Entry Time (min) Temperature (◦C) BMIMF (Equiv) Yield a (%)

1 30 80 1 49
2 30 80 2 84
3 30 80 3 95 (85) b

a Yield determined 19F NMR with internal reference. b Isolated yield.

Figure 2. Pre-reaction complexes of SN2 fluorination in [bmim][F]. (a) equivalent of IL = 1 (b) equivalent
of IL = 2. M06-2X/6-311G ** method for C, H, O, N, S, F atoms, using Gaussian 09 set of programs.

It seems that Magnier and coworkers’ experiments were the first implicit demonstration of the
contact ion-pair SN2 mechanism proposed by Lee and co-workers [42], in that the separation of IL cation
and anion in liquid phase [bmim][F] would be extremely difficult in reaction medium because of the
strong electrostatic force between them. The calculated pre-reaction complexes (whose coordinates are
given in Supplementary Materials) shown in Figure 2 also support this suggestion that IL counter-cation
and anion/nucleophile are in close contact. This role of IL for promoting the process of nucleophilic
fluorination may also be described as an electrophile – nucleophile dual activator proposed by Lu and
co-workers [43].

As a “task-specific” promoter/catalyst for organic transformations to be designed, the structure
of side-chain [44] of IL cation and anion would be an important determinant of the efficiency of ILs.
Modification of ILs by oligoethylene glycol chain is a good example, in which the synergistic effects of
the two moieties improve the overall efficiency of the promoter/catalyst (Figure 3) [24].
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Figure 3. Promotion of SN2 fluorination by oligoethylene glycol substituted imidazolium salts.

Another example is the design and use of pyrene-tagged IL (Figure 4) [45]. As presented in
Figure 4, the pyrene moiety acts as an additional Lewis base besides the IL anion in this mechanism,
further strengthening the catalytic efficiency of IL. The mechanism (Figure 5) (pre-reaction complex
→ transition state→ post-reaction complex) of the reaction is depicted in Figure 5: Pyrene - cation π
interactions facilitate the reaction by giving π electrons to the counter-cation, further alleviating the
Coulombic influence of the cation on the nucleophile [24].

Figure 4. SN2 fluorination in pyrene-tagged IL.

Figure 5. Mechanism of SN2 fluorination catalyzed by pyrene-tagged IL. M06-2X/6-311G ** method
for C, H, O, N, S atoms, LANL2DZ24 basis set with relevant effective core potential for alkali metal
elements (Cs, K). Gaussian 09 set of programs.

3. SNAr Fluorination of Diaryliodonium Salts

As in the case of SN2 fluorination, electrophilic SNAr fluorination such as fluorodestannylation [46]
using [18F]F2 suffers similar kinds of drawbacks. A conventional approach to incorporating F to aromatic
compounds was to try nucleophilic fluorination of electron deficient aromatics. Use of diaryliodonium
salts have now proved very useful for the preparation of [18F]fluoroaromatics electron-rich rings at any
desired ring position. This methodology is particularly important in relation to the synthesis of many
useful [18F] radiophamaceutical compounds to be clinically detected by non-evasive PET technique.
The seminal work by Pike and coworkers [47] was published in 1998, and since then this approach has
found wide applicability [48–53]. This feature of diaryliodonium salts seems to originate from the ionic
nature of the compounds. There exists an excellent review by Gouverneur and coworkers, [8] so we
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will not try to be comprehensive in this concise review. In some studies, metals such as copper [54–56]
were employed to carry out SNAr fluorination of diaryliodonium salts, but we will also leave this topic
to other reviews. We will only cite three typical studies: Coenen and coworkers’ [49] metal-free SNAr
fluorination of diaryliodonium salts containing the 2-thienyl group (Scheme 2) is a good example of
regioselective no-carrier-added [49,57,58] radiofluorination. The influence of the substitution pattern,
of counteranions, and of different reaction conditions were studied carefully. Seid et al. studied one-pot
synthesis of unsymmetrical aryl(2,4,6-trimethoxyphenyl)iodonium salts [57]. Chun and coworkers’ [58]
chemoselective radiosynthesis of [18F]fluoroarenes using an aryl(2,4,6-trimethoxyphenyl)iodonium
tosylate for 18F-incorporation on electron-rich aryl rings (Scheme 3) is a most recent study.

Scheme 2. [18F]Fluorination of SNAr fluorination of diaryliodonium salts containing the 2-thienyl group.

Scheme 3. Chemoselective radiosynthesis of [18F]fluoroarenes using an aryl(2,4,6-
trimethoxyphenyl)iodonium tosylate as a precursor for 18F-incorporation on electron-rich aryl rings.

SNAr fluorination of diaryliodonium salts may even give products that are contrary to what can
be expected by conventional inductive effects: [18F] labeling may occur at the ring with larger electron
density with RCY up to 68% in 30 min. (Table 3) [59].

When aromatic fluorination is carried out for diaryliodonium salts with alkali metal fluoride,
complicated ionic interactions would arise among the diaryliodonium cation, counter-anion, metal
cation and the nuclephile F−, and they would certainly affect the outcomes of the reaction significantly.
Presence of ring substituents and/or the leaving group prone to forming hydrogen bonding with
ionic species would cause further complications. These interactions may make the elucidation of the
mechanism by intuition a formidable task. However, they may constitute a very instructive approach
to synthesizing [18F]fluoroaromatics that are difficult to achieve by conventional methods.

One such strategy results from the question: Could we monitor and control the position of F−

relative to the SNAr center (that is, the electropositive C atom at which the SNAr occur) by harnessing
these interactions? Among the numerous studies of SNAr fluorination, diaryliodonium salts containing
side chains that are amenable to form hydrogen bonds seem to be the best example to address
this question.
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Table 3. [18F]Fluorination of various diaryliodonium salts. Fluorination may occur at the ring with
more electron-donating substituents, and subsequently with larger electron density, in contrast to what
is predicted by substituent inductive effects.

Entry Substrate Radio TLC Yield

5 min 10 min 15 min 30 min

1 1a 37.27 38.54 39.84 40.99
2 1b 15.68 23.28 24.53 18.50
3 1c 25.62 25.99 34.00 34.41
4 1d 65.12 68.12 68.33 68.35
5 1e 28.21 30.14 30.55 31.79
6 1f 20.47 20.86 18.35 30.05

a All reactions were carried out on a 10 mg reaction scale of precursor (1a–1f) in CH3CN (0.5 mL) with 70 mol%
TEMPO at 120 ◦C.

One such example is the aromatic 18F-labeling of guanidine-containing radiopharmaceutical [60–70]
that was synthesized by nucleophilic fluorination of diaryliodonium salts. Jang and coworkers [71]
found that the positions of -Boc protection profoundly affected the efficiency of 18F-labeling: The fully
protected N,N’,N¨,N¨-tetrakis-Boc guanidine group (1b in Scheme 4) exhibited remarkably enhanced
reactivity (yield = 39% in 5 min) and improved selectivity in contrast to N,N’-bis-Boc protected
guanidine (1a, yield ≈ 0) in the absence of hydrogen bonding with fluoride ion (Scheme 4). What is
the origin of these very intriguing observations? The observed difference in reactivity of (1a) and (1b)
may be understood by scrutinizing the structures of corresponding pre-reaction complexes depicted in
Figure 6: It was proposed by quantum chemical analysis that strong Coulombic interactions among
the ionic species and hydrogen bonding between the anion and the amino group –NHR resulted in
very different position of the nucleophile relative to the electropositive C atom. As shown in Figure 6,
the nucleophile F− in (pre-8a) forms a hydrogen bond with the amino group in guanidine, and this
interaction moves the nucleophile far away from the iodonium site. Thus, the SNAr reaction may never
proceed from this complex. On the other hand, in (pre-8b), the absence of the hydrogen bonding with
the fully protected (N,N’,N¨,N¨-tetrakis-Boc) amine group allows F− to be near the iodonium site, and
therefore from this favorable configuration the nuclephilic attack of F− onto the electropositive C atom
may easily ensue. This example seems to give a good answer to the question posed above: By carefully
monitoring the ionic interactions and hydrogen bonding, it is possible to locate the nucleophile at a
position that is favorable for SNAr reactions.

Scheme 4. Dependence of 18F-labeling of guanidine-containing radiopharmaceutical on the positions
of -Boc protection.
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Figure 6. Pre-reaction complexes for reactions listed in Scheme 2. In (a) the absence of hydrogen
bonding positions F− favorable for fluorination, whereas in (b) hydrogen bonding with -NHR moves
F− far off the reaction center. M06-2X/6-311G ** method for C, H, O, N, F, S atoms, LANL2DZ basis
set with relevant effective core potential for alkali metal elements (I, Br, Cs), using Gaussian 09 set
of programs.

Another 18F-labeled radiopharmaceutical that is under intense investigation recently by SNAr
fluorination is [18F]F-dopa. There have been considerable amount of efforts [72–76] to prepare this
radiotracer over the years. Neumaier and coworkers work based on Ritter and co-workers’ [74]
scheme (Scheme 5) of nickel-based fluoride-derived electrophilic radiofluorination reagent is a good
example. Numerous attempts to synthesize [18F]F-dopa by SNAr scheme have also experienced
severe problems of poor yields along with many undesirable by-products. Besides these problems,
the number of steps in the synthesis of this elusive radiotracer is of profound importance in order
to be used for clinical purposes. Wirth and co-workers’ recent work [72] seems to deserve attention
because of the simplicity of the synthetic scheme (Scheme 6) (SNAr fluorination of diaryl iodonium
salt based on DiMagno and co-workers procedure [49]) despite the low yields (0–5%) of both “cold”
(19F) and “hot” ([18F]) fluorination. The origin of the observed poor yields was also studied by
quantum chemical calculations [75]: Focusing on the counter-anion Br− in diaryliodonium salt, it was
proposed that SNAr bromination (Model I in Scheme 7) would be the predominant process rather
than fluorination, resulting in very small amount of fluorinated product. This suggests that ionic
interactions with the counter-anion (Br− in Wirth’s experiments) strongly affect the reaction yield,
and using a counter-cation such as OTf− with lower nucleophilicity seems to be preferable. In ‘hot’
fluorination for synthesizing [18F]F-dopa, further complication would result from the use of base such
as K2CO3 employed to extract 18F−. The alkali metal cation K+ may certainly be unfavorable due to its
interactions with the nucleophile 18F−, and using Cs+ instead may be better. More recent experimental
work by Maisonial-Besset et al. [76] for [18F] labelling of L-dopa (Scheme 8) without the use of base,
cryptand or metal catalyst would also be of interest, because their methods gave improved RCY
(27–38%) for [18F] labeling. It would be an excellent system to be investigated by quantum chemical
methods. It seems that careful choice of the counter-anion (to the diaryiodonium) and counter-cation
(to the nucleophile) and the base may lead to robust synthetic route to [18F]F-dopa with excellent yield
and in short reaction time sufficiently satisfactory for clinical usage.
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Scheme 5. Nickel-mediated preparation of [18F]fluoroarenes.

Scheme 6. Cold fluorination of tri-Boc protected iodonium salts with tetramethylammonium fluoride
(TMAF).

Scheme 7. Proposed processes for Wirth and co-workers. Model I process (SNAr bromination) is
predicted to be dominant over Model II process (SNAr fluorination).

Scheme 8. Preparation of [18F]F-dopa from tert-butyl ester precursor.
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4. Conclusions

Nucleophilic fluorination, and especially [18F]Fluorination, is usually very difficult due to
unfavorable solvent effects on the small-sized F fluoride when the reaction is attempted in organic
solvent. Careful choice of efficient promoter/catalyst is usually required for this process. Use of alkali
metal fluoride in Lewis base solvent/promoter such as bulky alcohols and oligoethylene glycols proved
to be such a breakthrough for efficient nucleophilic fluorination. Employing ILs for that purpose
is another example, in which the IL anion acts as Lewis base due to its ionic nature. We discussed
that systematic design of the structure of ILs allowed very efficient SN2 fluorination with a minimum
amount of by-products in reasonable reaction time. The harnessing of ionic interactions and hydrogen
bonding also proved critical in controlling the reaction yield and rates. For SNAr fluorination of
diaryliodonium salts, we presented a number of examples where quantum chemical analysis allowed
the elucidation of underlying mechanism and design of experiments. We presented the synthesis
of [18F]F-dopa by SNAr fluorination of diaryliodonium salts as a very recent example. We believe
that our present review would help to advance further developments concerning the tailor-making of
promoters/catalysts and solvent engineering based on ionic interactions and hydrogen bonding in the
field of organic synthesis, medicinal chemistry, and environmental chemistry.

Supplementary Materials: The Supplementary Materials are available online.
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