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Abstract: Curcumin, a yellow polyphenol extracted from the turmeric root is used as a diet supple-
ment. It exhibits anti-inflammatory, antioxidant, and antitumor properties by modulating different
intracellular mechanisms. Due to their low solubility in water, the curcumin molecules must be encap-
sulated into liposomes to improve the bioavailability and biomedical potential. For the periodontal
tissue and systemic health, it is essential to regulate the local inflammatory response. In this study, the
possible beneficial effect of liposomes loaded with curcumin (CurLIP) in neural crest-derived human
periodontal ligament stem cells (hPDLSCs) and in endothelial-differentiated hPDLSCs (e-hPDLSCs)
induced with an inflammatory stimulus (lipopolysaccharide obtained from Porphyromonas gingivalis,
LPS-G) was evaluated. The CurLIP formulation exhibited a significant anti-inflammatory effect
by the downregulation of Toll-like receptor-4 (TLR4)/Myeloid differentiation primary response 88
(MyD88)/nuclear factor kappa light chain enhancer of activated B cells (NFkB)/NLR Family Pyrin
Domain Containing 3 (NLRP3)/Caspase-1/Interleukin (IL)-1β inflammation cascade and reactive
oxygen species (ROS) formation. Moreover, the exposure to LPS-G caused significant alterations in
the expression of epigenetic modifiers, such as DNA Methyltransferase 1 (DNMT1) and P300, while
the CurLIP treatment showed physiological expression. Overall, our in vitro study provides novel
mechanistic insights into the intracellular pathway exert by CurLIP in the regulation of inflammation
and epigenetic modifications.

Keywords: curcumin; liposome; human periodontal ligament stem cells; endothelial-differentiation;
Porphyromonas gingivalis; reactive oxygen species; inflammation; cardiovascular disease
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1. Introduction

Regenerative medicine represents the forefront of health sciences, and it is based on
the use of stem cells, including adult mesenchymal stem cells (MSCs), in order to produce
tissue regeneration.

MSCs are multipotent cells that arise from the mesoderm that avoid the ethical con-
cerns related to the use of stem cells. They are characterized by two main properties: ability
to differentiate into different lineages, and self-renewal [1]. As reported previously, MSCs,
when exposed to specific in vitro conditions, are able to differentiate towards endodermic,
mesodermal and ectodermal lines; consequently, they are able to differentiate into bone
cells, adipose cells, chondrocytes, muscle cells, liver cells, islet cells, and neurons. Since
hematopoietic cells are similar to MSCs, hematopoietic markers, such as cluster of differ-
entiation (CD) 14, CD34, CD45, and Human Leukocyte Antigens (HLA)-DR, are used to
distinguish MSCs from hematopoietic cells [2–5]. There are several fetal sources of MSCs,
such as amniotic fluid, umbilical cord, amniotic membranes, or placenta, but the interesting
aspect is the chance to obtain MSCs in adult tissues including bone marrow and adipose
tissues. In recent years, alternative sources of adult MSCs have been identified in the
oral cavity tissues, which include dental pulp, apical papilla, dental follicle, gingiva, and
periodontal ligament [6,7]. The MSCs isolated from the oral cavity niche showed the ability
to adhere to plastic culture dishes, and they are able to expand significantly through consec-
utive in vitro passages without any modifications in the stemness profile [8,9]. Moreover,
MSCs possess immunoregulatory properties and are capable of influencing both adaptive
and innate immune responses by actively interacting with the components of the immune
system and showing anti-inflammatory effects [10,11].

In particular, human periodontal ligament stem cells (hPDLSCs) have shown the
ability to differentiate into mesengenic lineages and protect against infectious diseases
by demonstrating immunomodulatory properties [12,13]. Indeed, they play an active
role in the immune response thanks to the interaction with immunity cells, avoiding the
improper activation of T lymphocytes, modulating the immune response during healing
processes [14,15]. Current research is evaluating the response of MSCs to inflammatory
events and the use of natural antioxidant agents.

Periodontitis is a chronic inflammation sustained by various types of gram-negative
bacteria that lead to destruction of teeth supporting tissue [16]. Systemic diseases are
related to a chronic inflammatory process, and the periodontal disease could represent a
possible risk factor for cardiovascular disease (CVD); indeed, the bacteria placed in the
periodontal pockets can be disseminated in the bloodstream to reach the endocardium
tissue [17]. The biological mechanism underlying the relationship between oral health and
CVD still needs to be elucidated [18].

Curcumin (Cur), a natural bioactive polyphenolic compound, is isolated from the rhi-
zome of Curcuma longa Linn and largely insoluble in water. Several studies have reported
that Cur has many pharmacological activities: antioxidant, anti-inflammatory and anti-
cancer [19]. The antioxidant action of curcumin is related to its effect on reactive species: it
eliminates superoxide anion (O−), peroxynitrite (NOO), nitric oxide (NO), peroxyl radicals
(ROO), and hydroxyl radicals (OH−), causing a consequent upregulation of antioxidant
proteins. In particular, the phenolic groups of Cur allow it to react with reactive species
and could probably be one of the mechanisms by which cells are protected from oxidative
damage following the administration of Cur. It may indirectly induce the expression of
antioxidant proteins such as superoxide dismutase (SOD), catalase (CAT), glutathione per-
oxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST) and g-glutamyl
cysteine ligase (gGCL) [20]. Several in vitro and in vivo studies have shown that Cur gives
promising results in the treatment of wound healing and inflammatory diseases.

Toll-like receptors (TLRs) play a key role in triggering the innate immune response
and inflammation. Previous studies revealed that TLR is one of the major molecular targets
of Cur, where it exhibited an inhibitory impact [21]. The myeloid differentiation factor-
88 adaptor protein (MyD88) modulates most TLRs signaling as well as Toll/Interleukin
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receptor domain signaling through the interleukin (IL)-1 and IL-18 receptors. TLRs control
the innate immunity via activation of the nuclear factor kappa-light-chain-enhancer of
activated B cells (NFkB) and mitogen-activated protein kinases (MAPK) pathways and
consequent generation of inflammatory cytokines and chemokines [22].

It has been shown that Cur is able to inhibit some pro-inflammatory transcription
factors, including NFkB [23].

The NLR family pyrin domain containing 3 (NLRP3) inflammasome is a fundamental
factor of the innate immune system that regulates caspase-1 activation and the release of
pro-inflammatory cytokines interleukin (IL)-1β/IL-18 in response to microbial infection
and cellular damage. The NLRP3 inflammasome may be activated by different stimuli, and
numerous molecular and cellular contexts, including ionic flux, mitochondrial dysfunction,
and the production of ROS [24]. Various inflammatory pathologies that determine the loss
of tissue functionality are often caused by virulent agents (bacteria, viruses, etc.), which are
often associated with systemic consequences. For example, Porphyromonas gingivalis (G), a
gram-negative bacterium, is the main pathogen of periodontal diseases [25–27]. Periodon-
titis is an inflammatory condition caused by a condition of dysbiosis under the influence of
environmental factors (smoking, pathogens, socioeconomic), systemic factors related to the
host (diabetes, other inflammatory conditions, stress, anxiety) and genetic alterations. If
left untreated, periodontitis leads to tissue damage which results in bone destruction and
eventual tooth loss [28]. Based on the literature, in periodontal disease condition, histone
acetylation induces the transcription of inflammatory genes such as p300/cAMP-regulated-
enhancer (CRE)-binding protein (CREB)-binding (CBP) histone acetyltransferase, NFkB
and other pro-inflammatory cytokines [29,30]. DNA methylation of cytosine residues is a
crucial epigenetic modification that is fundamental for gene transcription and plays a criti-
cal part in inflammatory and immune responses [31]. DNMT1 modulates the methylation
level of gene promoters, thus mediates the transcription of pro-inflammatory cytokines,
including IL-6, IL-8 and tumor necrosis factor-α (TNF-α) [32]. DNA methylation could
also affect inflammatory reactions by modulating the activation levels of crucial proteins
of the NFkB and/or MAPK pathways. DNA methylation epigenetically modulates the
transcription of TLRs and signal transduction molecules, including MyD88. This indicates
that DNA methylation is involved in signaling pathways linked with inflammation [33].

The development of an in vitro model using hPDLSCs and endothelial-differentiated
hPDLSCs (e-hPDLSCs) represents a good starting point to evaluate the intracellular mecha-
nism activated during the inflammatory process caused by the LPS of Porphyromonas gingi-
valis (LPS-G). This research is focused on the effect of the bioactive component of Cur in the
form of liposomal formulations (CurLIP) on the LPS-G dependent inflammatory process,
in hPDLSCs and e-hPDLSCs with the aim to evaluate its anti-inflammatory properties.

2. Results
2.1. Human PDLSCs Showed the MSCs Profile

The table shown in Figure 1 demonstrated the positive expression of stemness markers
CD73, CD90 and CD105, but not the expression of hematopoietic markers CD34 or CD45.
The pluripotency ability of hPDLSCs was confirmed by the capacity to differentiate into
adipogenic and osteogenic lineages in vitro. Cells were positive to specific in vitro staining,
using alizarin red and adipo oil red solution. RT-PCR showed the positive expression of
osteogenic and adipogenic-related markers, which further validated the cell differentiation
ability (Figure 1).

2.2. Characterization of CurLIP

CurLIP were characterized by dynamic laser light scattering in terms of dimensions
and ζ-potential. Both size and superficial charge varied on embedding Cur in the liposomes
as expected for a lipophilic molecule that enters the bilayer by exposing its hydrophilic
head group (the phenolic moiety) at the water-bilayer interface towards the aqueous
environment (Figure 2).
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Figure 1. Characterization of human Periodontal Ligament Stem Cells (hPDLSCs). (A) Human 
PDLSCs were positive for CD73, CD90, and CD105, but negative for CD34 and CD45.+: positive 
expression; -: negative expression. (B) Cells were able to adhere on a plastic-substrate with a fibro-
blast-like morphology. (C,D) Human PDLSCs showed their potential to differentiate towards os-
teogenic (Alizarin Red S staining) and adipogenic (Oil Red O staining) lineages. (E,F) Gene ex-
pression of osteogenic and adipogenic-related markers. Scale bar: 20 µm. ** p < 0.01. 
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somes as expected for a lipophilic molecule that enters the bilayer by exposing its hy-
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aqueous environment (Figure 2). 

Figure 1. Characterization of human Periodontal Ligament Stem Cells (hPDLSCs). (A) Human
PDLSCs were positive for CD73, CD90, and CD105, but negative for CD34 and CD45. +: positive
expression; -: negative expression. (B) Cells were able to adhere on a plastic-substrate with a
fibroblast-like morphology. (C,D) Human PDLSCs showed their potential to differentiate towards
osteogenic (Alizarin Red S staining) and adipogenic (Oil Red O staining) lineages. (E,F) Gene
expression of osteogenic and adipogenic-related markers. Scale bar: 20 µm. ** p < 0.01.

2.3. Expression Levels of TLR4/MyD88/NFkB/NLRP3/Caspase-1/IL-1β in CurLIP and LPS-G
Treated Cells

Immunofluorescence results showed that TLR4/MyD88/NFkB/NLRP3/Caspase-
1/IL-1β were expressed in hPDLSCs treated with LPS-G for 24 h compared to the untreated
cells. Cells co-treated with CurLIP and LPS-G showed a drastic reduction of inflamma-
tory protein levels. The CurLIP treatment alone does not affect the protein expression
and remains similar to the untreated hPDLSCs (Figure 3). In e-hPDLSCs the LPS-G treat-
ment showed the same inflammatory pathway, indeed, treated cells demonstrated a high
level of TLR4/MyD88/NFkB/NLRP3/Caspase-1/IL-1β when compared to the untreated
samples. The CurLIP treatment showed a decrease of the expression of inflammation
proteins (Figure 4).
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Figure 2. Liposomes loaded with curcumin (CurLIP) development.  On the left photograph of 
liposomes before (left vial) and after (right vial) the addition of CUR. On the right table reporting 
dimensions (nm) and ζ-potential of liposomes in the absence and in the presence of CUR. 
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Figure 2. Liposomes loaded with curcumin (CurLIP) development. On the left photograph of
liposomes before (left vial) and after (right vial) the addition of CUR. On the right table reporting
dimensions (nm) and ζ-potential of liposomes in the absence and in the presence of CUR.

2.4. LPS-G Induced a Down Expression of DNMT1 and an Over Expression of p300

DNMT1 was negatively regulated in hPDLSCs and e-hPDLSCs exposed to LPS-G
inflammatory stimulus, while control untreated hPDLSCS and e-hPDLSCs showed no
change in the basal expression. Interestingly, the expression of DNMT1 was similar to the
basal cells in hPDLSCs and e-hPDLSCs treated with CurLIP and the cells that underwent
co-treatment (CurLIP/LPS-G) showed a gradual increase in DNMT1 level (Figure 5). The
expression of p300 was positively regulated when cells were exposed to LPS-G, while the
expression was restored when hPDLSCs and e-hPDLSCs were co-treated with CurLIP/LPS-
G (Figure 5A1–D1). These results indicate that in vitro co-treatment by CurLIP/LPS-G
may induce a restoration of physiological expression of DNMT1 and p300 in hPDLSCs and
e-hPDLSCs (Figure 5). All confocal microscopy images were confirmed by Western blot
analyses in order to demonstrate the quantization of protein level (Figure 6).

2.5. CurLIP Treatment Attenuates ROS Production in LPS-G Treated Cells

ROS production induced by LPS-G has been studied in hPDLSCs and e-hPDLSCs
loaded with the cell-permeant ROS probes H2DCFDA. Once diffused inside the cell, the
reaction with intracellular esterases switched the molecule into the active form. In this way
the nonfluorescent H2DCFDA is converted to the highly fluorescent 2′,7′-dichlorofluorescein
(DCF) by ROS. Images were acquired in live cells by means of confocal microscopy as
reported in Figure 7A and the single cells fluorescence recorded was off-line analyzed.
Quantitative results (Figure 7B) showed a significant increase in ROS production both in
5 µg mL−1 LPS-G treated- hPDLSCs and e-hPDLSCs (LPS-G and e-LPS-G respectively)
vs the relative control condition (CTRL for hPDLSCs and e-CTRL e-hPDLSCs, respec-
tively). Comparing the response between hPDLSCs and e-hPDLSCs at 5 µg mL−1 LPS-G
it is observed that these latter ones appeared more prone to produce ROS. Indeed, for
undifferentiated hPDLSCs we found a mean value about half with respect to the endothelial-
differentiated one (0.12 ± 0.01 vs 0.21 ± 0.03, mean ± SEM *** p < 0.001). Interestingly, the
co-treatment of LPS-G together with CurLIP counteracted the LPS-G increase in ROS pro-
duction (0.21± 0.03, vs 0.12± 0.01, mean± SEM *** p < 0.001), while in the undifferentiated
cells, the reduction, even if present, appeared to be not statistically significant.
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Figure 3. TLR4/MyD88/NFkB/NLRP3/Caspase-1/IL-1β protein expression in hPDLSCs. The localization of 
TLR4/MyD88/NFkB/NLRP3/Caspase-1/IL-1β was determined by immunofluorescence in all considered sample groups. 
Positive cells showed the protein expression in red, the cytoskeleton actin was marked in green and cell nuclei were 
stained with TOPRO in blue. (A1-D1) TLR4 expression in CTRL, CurLIP, LPS-G, CuRLIP/LPS-G. (A2-D2) MyD88 ex-
pression in CTRL, CurLIP, LPS-G, CuRLIP/LPS-G. (A3-D3) NFkB expression in CTRL, CurLIP, LPS-G, CuRLIP/LPS-G. 
(A4-D4) NLRP3 expression in CTRL, CurLIP, LPS-G, CuRLIP/LPS-G. (A5-D5) Caspase-1 expression in CTRL, CurLIP, 
LPS-G, CuRLIP/LPS-G. (A6-D6) IL-1β expression in CTRL, CurLIP, LPS-G, CuRLIP/LPS-G. Scale bar = 10 µm. 

Figure 3. TLR4/MyD88/NFkB/NLRP3/Caspase-1/IL-1β protein expression in hPDLSCs. The localization of
TLR4/MyD88/NFkB/NLRP3/Caspase-1/IL-1β was determined by immunofluorescence in all considered sample groups.
Positive cells showed the protein expression in red, the cytoskeleton actin was marked in green and cell nuclei were
stained with TOPRO in blue. (A1–D1) TLR4 expression in CTRL, CurLIP, LPS-G, CuRLIP/LPS-G. (A2–D2) MyD88 ex-
pression in CTRL, CurLIP, LPS-G, CuRLIP/LPS-G. (A3–D3) NFkB expression in CTRL, CurLIP, LPS-G, CuRLIP/LPS-G.
(A4–D4) NLRP3 expression in CTRL, CurLIP, LPS-G, CuRLIP/LPS-G. (A5–D5) Caspase-1 expression in CTRL, CurLIP,
LPS-G, CuRLIP/LPS-G. (A6–D6) IL-1β expression in CTRL, CurLIP, LPS-G, CuRLIP/LPS-G. Scale bar = 10 µm.
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Figure 4. TLR4/MyD88/NFkB/NLRP3/Caspase-1/IL-1β protein expression in e-hPDLSCs. The localization of 
TLR4/MyD88/NFkB/NLRP3/Caspase-1/IL-1β was determined by immunofluorescence in all considered sample groups. 
Positive cells showed the protein expression in red, the cytoskeleton actin was marked in green and cell nuclei were 
stained with TOPRO in blue. (A1-D1) TLR4 expression in e-CTRL, e-CurLIP, e-LPS-G, CuRLIP/e-LPS-G. (A2-D2) MyD88 
expression in e-CTRL, e-CurLIP, e-LPS-G, CuRLIP/e-LPS-G. (A3-D3) NFkB expression in e-CTRL, e-CurLIP, e-LPS-G, 
CuRLIP/e-LPS-G. (A4-D4) NLRP3 expression in e-CTRL, e-CurLIP, e-LPS-G, CuRLIP/e-LPS-G. (A5-D5) Caspase-1 
expression in e-CTRL, e-CurLIP, e-LPS-G, CuRLIP/e-LPS-G. (A6-D6) IL-1β expression in e-CTRL, e-CurLIP, e-LPS-G, 
CuRLIP/e-LPS-G. Scale bar = 10 µm. 

Figure 4. TLR4/MyD88/NFkB/NLRP3/Caspase-1/IL-1β protein expression in e-hPDLSCs. The localization of
TLR4/MyD88/NFkB/NLRP3/Caspase-1/IL-1β was determined by immunofluorescence in all considered sample groups.
Positive cells showed the protein expression in red, the cytoskeleton actin was marked in green and cell nuclei were stained
with TOPRO in blue. (A1–D1) TLR4 expression in e-CTRL, e-CurLIP, e-LPS-G, CuRLIP/e-LPS-G. (A2–D2) MyD88 expres-
sion in e-CTRL, e-CurLIP, e-LPS-G, CuRLIP/e-LPS-G. (A3–D3) NFkB expression in e-CTRL, e-CurLIP, e-LPS-G, CuRLIP/e-
LPS-G. (A4–D4) NLRP3 expression in e-CTRL, e-CurLIP, e-LPS-G, CuRLIP/e-LPS-G. (A5–D5) Caspase-1 expression in
e-CTRL, e-CurLIP, e-LPS-G, CuRLIP/e-LPS-G. (A6–D6) IL-1β expression in e-CTRL, e-CurLIP, e-LPS-G, CuRLIP/e-LPS-G.
Scale bar = 10 µm.
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Figure 5. DNMT1 and p300 expression in hPDLSCs and e-hPDLSCs. The localization of DNMT1 and p300 was determined
by immunofluorescence in all considered sample groups. Positive cells showed the protein expression in red, the cytoskeleton
actin was marked in green and cell nuclei were stained with TOPRO in blue. (A1–D1) p300 expression in CTRL, CurLIP,
LPS-G and CurLIP/LPS-G. (A2–D2) DNMT1 expression in CTRL, CurLIP, LPS-G and CurLIP/LPS-G. (A3–D3) p300
expression in e-CTRL, e-CurLIP, e-LPS-G and CurLIP/e-LPS-G. (A4–D4) DNMT1 expression in e-CTRL, e-CurLIP, e-LPS-G
and CurLIP/e-LPS-G. Scale bar = 10 µm.
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Figure 6. TLR4, MyD88, NFkB, NLRP3, Caspase-1, IL-1β, DNMT1, and p300 protein quantization in hPDLSCs. (A) Protein
levels of TLR4, MyD88, NFkB, NLRP3, Caspase-1, IL-1βDNMT1 and p300 were determined by Western blotting using
specific antibodies. (B) Relative ratio of TLR4, MyD88, NFkB, NLRP3, Caspase-1, IL-1β, DNMT1 and p300 normalized with
β-actin. *** p < 0.001; ** p < 0.01.
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n = 114; e-CTRL = 85, e-CurLiP = 121, e-LPS-G n = 197, e-CurLiP/LPS-G n = 155, N = 3, *** p < 0.001). Statistical analysis
was performed by One-way ANOVA and post hoc Bonferroni Scale Bar = 10 µm.

3. Discussion

To date, several researchers are exploring the biological response of MSCs treated with
antioxidant molecules to the inflammatory events.

The minimal criteria for defining human MSCs were established by Dominici et al.,
in 2006. The cell population to be identified as MSC must show the ability to adhere to a
plastic surface, a fibroblast-like morphology, the expression of stemness markers as CD105,
CD73 and CD90, and ultimately, the lack of expression of hematopoietic markers such as
CD14, CD34 and CD45 [34]. MSCs are recognized as valuable cell source for tissue renewal,
exhibiting a critical role in tissue engineering and regenerative medicine field [35]. Many
scientists focus their attention on MSCs isolated from the human oral cavity due to their
easy access, multi-lineage differentiation abilities and high proliferation capability [36]. In
particular, oral derived-MSCs such as hPDLSCs are capable of controlling the homeostasis
of tooth and contribute to tissue regeneration [37]. They also evidenced the capacity of
MSCs to defend against infectious agents due to their immunomodulatory properties [38].

Due to the complexity and the limitations still present in the periodontal disease
treatments, it is urgently necessary to develop multi-targeted, cost-effective, non-toxic, and
highly potent molecule for the management of this multifactorial disease.

Cur, a yellow pigment, is the principal active factor of Indian spice Turmeric (Curcuma
longa), which was isolated for the first time two centuries ago in 1815 by two German
Scientists, Vogel and Pelletier.
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The Curcuma longa, a largely cultivated tropical plant, has been utilized since ancient
times as a spice, as a beauty care agent, and as a traditional medicine [39].

Curcumin is a bioactive polyphenolic molecule recognized in turmeric, which has
been collectively denoted as curcuminoids [40]. In the last decades, Cur has gained a lot
of attention in the scientific field due to its outstanding properties such as antibacterial,
anti-inflammatory, hypolipidemic, hepatoprotective, anti-cancer, anti-diabetic, anti-aging
as reported by previous findings obtained from in vitro and in vivo studies and clinical
trials [41]. This multitargeted molecule has been demonstrated to show anti-inflammatory
action through the reduction of several intracellular mechanism including NF-κB, STAT3,
Nrf2, ROS, and COX-2 at a molecular level [42].

Furthermore, the safety, tolerability, and nontoxicity of Cur has been largely recognized
by human clinical trials [43]. Clinical trials demonstrated that Cur at 8 g/day was safe and
well-tolerated without showing any side effects. The pharmacokinetics of liposomal gel
loaded with Cur exhibited that nano-sized liposomes are capable to enter in 1 h in both
strata of corneum and skin [44,45].

Based on these important notions, the present work aimed at developing an in vitro
model for evaluating the potential positive effect of CurLIP utilized at 20 µM in re-
establishing the homeostasis in hPDLSCs after LPS-G inflammatory exposure.

The prepared CurLip demonstrated a small increase of dimension and a decrease of
ζ-potential when Cur is inserted in the bilayer, similarly to previously published evidence
of inclusion of Cur in the bilayer [Curcumin/Liposome Nanotechnology as Delivery Plat-
form for Anti-inflammatory Activities via NFkB/ERK/pERK Pathway in Human Dental
Pulp Treated With 2-HydroxyEthyl MethAcrylate (HEMA)] and partial deprotonation of
phenolic moieties (pKa = 8.11 ± 0.46, calculated using Advanced Chemistry Development
(ACD/Labs) at the buffered pH.

Porphyromonas gingivalis, a Gram-negative anaerobic bacterium, is one of the prime
etiological agent involved in the pathogenesis and advancement of the inflammatory
events of periodontal disease [46]. LPS, the major constituent of outer membrane of
Porphyromonas gingivalis, is retained to be a responsible factor of the periodontitis virulence.

Periodontal disease is characterized by an inflammatory pathologic state of the gingiva
and the supporting structures of the periodontium, which enclose gingival, alveolar bone,
periodontal ligament, and cementum. The disease starts as acute inflammation of the gin-
gival tissue, and untreated infections can bring to teeth pockets formations, and ultimately
teeth destruction [47]. The periodontal chronic inflammation could be related to the CVD,
several studies demonstrated an association between periodontitis and CVD, and there is
increasing evidence that periodontal disease can have negative cardiovascular effects [48].

In the present study, the experiments were performed in order to evaluate the effect
of CurLIP formulation against the inflammation molecular cascade sustained by LPS-G.
Human PDLSCs were stimulated using LPS-G to mimic the periodontal microenviroment
in their vitro condition. Moreover, the use of e-hPDLSCs was essential to evaluate the
intracellular signaling pathway that may link the periodontal and CVD.

LPS-G plays a fundamental part in contributing inflammation and promoting cells
to release pro-inflammatory cytokines such as IL-1β, TNF-α and IL-6. Moreover, LPSs
are well-known to induce the production of pro-inflammatory cytokines, mostly through
TLR 4 and NFkB [49].

NLRP3 is the most extensively studied inflammasome and has been linked with
several disorders characterized by chronic inflammation, which includes cancer, type 2
diabetes and rheumatoid arthritis, atherosclerosis and periodontal diseases [50]

Several stimuli and various molecular and cellular events, enclosing ionic flux, mito-
chondrial failure, and the release of ROS has been demonstrated to trigger the activation
of NLPR3 [51].

NLRP3 inflammasome activation is divided into the priming and activation phases.
The priming step is ensured by inflammatory stimuli such as TLR4 agonists, which induce
NFkB-mediated NLRP3 and pro-IL-1β expression, and the activation step is triggered
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by pathogen-associated molecular patterns (PAMPs) and damage-associated molecular
patterns (DAMPs), thus inducing NLRP3 inflammasome assembly and caspase-1-mediated
IL-1β and IL-18 secretion [52].

As evidenced by immunofluorescence and western blotting analyses, the hPDLSCs
stimulated with LPS-G showed an upregulation of TLR-4, MyD88, NFkB, NLRP3, Caspase-
1 and IL-1β expression level, while the cells treated with the CurLIP in combination with
LPS-G exhibited a remarkable reduction of the inflammatory molecules, suggesting a
re-establishment of conditions reported in untreated hPDLSCs [53]. It is well known
that MyD88, a fundamental adaptor protein for most TLRs, mediates the stimulation of
inflammatory cytokines through NFkB [54,55]. Furthermore, in the periodontal disease,
histone acetylation promotes the transcription of inflammatory genes such as p300/CBP
histone acetyltransferase, NFkB and other pro-inflammatory cytokines. On this basis, we
investigated the p300/DNMT1 level expression in the hPDLSCs and in e-hPDLSCs treated
with LPS-G, or CurLIP and/or co-treated with CurLIP/LPS-G.

Our results reported a significant high level expression of p300 when both hPDLSCs
and e-hPDLSCs were treated with LPS-G, while the cells co-treated with CurLIP/LPS-G
revealed a similar level of expression of p300 reported in untreated cells, hypothesizing
beneficial effects due to CurLIP treatment. In parallel, DNMT1 level expression was also
evaluated through immunofluorescence and protein analyses, evidencing a lower expres-
sion in cells treated with LPS-G and higher expression in CurLIP alone or in combination
with LPS-G. These results suggested that LPS-G may activate the inflammatory cascade
and the p300 signal transduction induces the NFkB nuclear translocation and the down-
regulation of DNMT1, as previously reported [30,56]. In the same in vitro model, ROS
production was also investigated [57].

Our data evidenced high level of ROS production in LPS-G treated cells. Interestingly,
endothelial-differentiated hPDLSCs appear to be more susceptible, producing more ROS
than undifferentiated counterparts. When produced at physiological levels, ROS act as
crucial second messengers which transduce intracellular signals in biological processes.
On the other hand, when an anomalous production of ROS exceeds the buffering capacity
of the antioxidant defense system an oxidative stress occurs. In our model the supply of
Cur in LPS-G-treated cells were able to reduce the ROS only in endothelial-differentiated
hPDLSCs. This could be due to different metabolic features induced by differentiation as
reported for endothelial cells and endothelial progenitor cells in terms of ROS production
and glutathione peroxidase type 1 expression and activity [58]. Moreover, our results are
in accordance with the results found by Yong Sook and coll., were in human umbilical vein
endothelial cells, Cur at concentration of 10–30µM reduced, but not abolished the ROS
production induced by TNF-α and attenuated the inflammatory response [59].

4. Materials and Methods
4.1. Human Periodontal Ligament Stem Cells (hPDLSCs) Isolation and Culture Establishment

Written approval for human periodontal ligament biopsy collection was obtained
from the Medical Ethics Committee at the Medical School, “G. d’Annunzio” University,
Italy (number 266/17 April 2014), and each participant viewed, completed, and signed
the informed consent. Human PDLSCs were collected from healthy human periodontal
ligament tissue of human premolar teeth removed before starting the orthodontic treatment.
In the study three patients have been enrolled, all donors were free from oral and systemic
diseases with a good health condition [60]. After extraction, the periodontal ligament
fragments were crumbled and washed five times with phosphate buffered saline (PBS,
Lonza, Basel, Switzerland). At this point, fragments tissue was placed in MSCBM-CD
(Lonza) and then incubated in a humidified atmosphere with 5% CO2 at 37 ◦C, replacing
medium every two days to stimulate the growth of human mesenchymal stem cells [61]. It
has been reported that after two weeks the cells migrated spontaneously from the explants.
Cells were maintained in MSCBM-CD (Lonza), and those in passage 2 were used for this
experiment plating at 1 × 103 cells/cm2density.
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4.2. FACS Analysis

Human PDLSCs at the passage 2 were treated with 0.1% trypsin-EDTA, harvested
and suspended in PBS and stained with the following markers: Fluorescein isothiocyanate-
conjugated anti-CD45 (CD45 FITC) and FITC-conjugated anti-CD105 (CD105 FITC) were
obtained from Ancell (MN, USA); Phycoerythrin-conjugated anti-CD73 (CD73 PE), FITC-
conjugated anti-CD90 (CD90 FITC), and PE-conjugated anti-CD34 (CD34-PE) were pur-
chased from Beckman Coulter (Fullerton, CA, USA). 5 × 105 cells were incubated with
100 mL of 20 mM ethylenediamintetraacetic acid (EDTA) at 37 ◦C for 10 min. Cells were
washed with 3 mL of washing buffer and centrifuged (4 ◦C, 400× g, 8 min). For antigens
detection, samples were resuspended in 100 mL washing buffer containing the appro-
priate amount of surface antibodies, incubated for 30 min at 4 ◦C in the dark, washed
(3 mL of washing buffer), centrifuged (4 ◦C, 400× g, 8 min), resuspended with 1 mL 0.5%
paraformaldehyde, incubated for 5 min at room temperature, washed, centrifuged (4 ◦C,
400× g, 8 min) and stored at 4 ◦C in the dark until acquisition. Cells were analyzed using
a FACSCalibur flow cytometer (Becton-Dickinson, Mountain View, CA, USA), using Cel-
lQuestTM software (Becton-Dickinson). Quality control included regular check-ups with
Rainbow Calibration Particles (Becton-Dickinson). Debris was excluded from the analysis
by gating on morphological parameters; 20,000 non-debris events in the morphological
gate were recorded for each sample. To assess non-specific fluorescence, we used isotype
controls. All antibodies were titrated under assay conditions and optimal photomultiplier
voltages were established for each channel. Data were analyzed using FlowJoTM software
(Becton-Dickinson,) [62].

4.3. Analysis of Mesengenic Differentiation of hPDLSCs with Colorimetric Detection and RT-PCR

Since the hPDLSCs are capable of differentiating into mesengenic lines, a colorimet-
ric detection was used to confirm the stemness of the cells considered, which was then
corroborated by a reverse transcription polymerase chain reaction (RT-PCR) analysis. Start-
ing from the colorimetric analysis, to identify the osteogenic differentiation Alizarin red
S solution (Sigma-Aldrich, Milan, Italy) was used, which highlighted calcium deposits.
For this experiment, hPDLSCs were cultured in a 24-well multiwell with a density of
2 × 104 cells/well, using MSCBM-CD supplemented with 10 nmol/L dexamethasone,
10 nmol/L beta glycerophosphate (Sigma-Aldrich), and 50 mmol/L ascorbic acid for
21 days. For the adipogenic differentiation hPDLSCs were grown in a 24-well multiwell
with a density of 2 × 104 cells/well, in MSCBM-CD supplemented with 10 mmol/L dex-
amethasone, 10 nmol/L 3-isobutyl-1-methylxanthine, 5 mg/mL insulin and 60 mmol/L
indomethacin for 28 days. Medium was changed for every 3 days. Oil Red O solution
(Sigma-Aldrich) stains the lipid droplet at the cytoplasmic level, allowing to identify the
adipogenic phenotype. Leica DMIL inverted light microscope can visualize the occurred
hPDLSCs differentiation. To confirm the results of colorimetric detection by RT-PCR, the
expression of specific genes of osteogenic and adipogenic differentiation were analyzed.
In particular, the following factors were monitored: the transcription factor related to
Runt-2 (RUNX-2) and alkaline phosphatase (ALP), after 7 days in osteogenic differentiated
culture, the fatty acid-binding protein 4 (FABP4) and the peroxisomal proliferator-activated
γ receptor (PPARγ), after 28 days of differentiated adipogenic culture. Commercially avail-
able TaqMan Gene Expression Assays (RUNX-2 Hs00231692_m1; ALP Hs01029144_m1;
FABP4Hs01086177_m1; PPARγ Hs01115513_m1) and the Taq-Man Universal PCR Master
Mix (Applied Biosystems, Foster City, CA, USA) were used according to standard protocols.
Beta-2 microglobulin (B2M Hs99999907_m1) (Applied Biosystems) was used for template
normalization. Real-time PCR was performed in three independent experiments, and
duplicate determinations were carried out for each sample [63].

4.4. Endothelial Differentiation

To induce the endothelial commitment, the hPDLSCs were maintained in differentia-
tion medium for 14 days as previously described [64]. Cells were cultured in Endothelial
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growth medium (EGM-2, Lonza), supplemented with hydrocortisone, human Fibroblast
Growth Factor (hFGF-b), R3-Insulin-like Growth Factor-1 (R3-IGF-1), ascorbic acid, human
Epithelial Growth Factor (hEGF), GA-1000, heparin, 5% FBS and 50 ng/mL of Vascular
Endothelial Growth Factor-165 (VEGF-165).

4.5. Liposomes loaded with Curcumin (CurLIP)

Liposomes were prepared by thin film hydration method. A proper amount of POPC
(1-palmitoyl-2-oleoyl-phosphatidylcholine, Avanti Polar Lipids, Alabama, United States),
dissolved in chloroform, was added to a round-bottomed flask and dried using a rotary
evaporator under reduced pressure at 40 ◦C until a thin opaque film was observed on the
bottom of the flask. The phospholipid film was further dried under vacuum and kept at
4 ◦C overnight. Hydration of the lipid film was carried out by adding PBS buffer (pH 7.4)
at room temperature with constant agitation for 30 min. The obtained multivesicular
suspension was sonicated for 30 min and then subjected to sterilization under UV lamp
for 2 h [65,66]. An appropriate amount of Cur in DMSO was added to the liposomal
suspension to obtain a POPC to Cur molar ratio of 25:1. For the in vitro test POPC and Cur
concentrations in the liposomal suspension were 10 mM and 0.4 mM, respectively. 100 µL
of this liposomal suspension were added to a final volume of medium of 2 mL in order to
obtain Cur concentration of 20 µM. The size and ζ-potential of pure and curcumin loaded
POPC liposomes were determined in diluted samples using a 90Plus/BI-MAS ZetaPlus
multiangle size analyzer (Brookhaven Instrument Corp., Holtsville, NY, USA) (Figure 2).

4.6. Study Design

All experiments were performed in triplicate with hPDLSCs at passage 2.
The study was organized into the following groups:

- Untreated hPDLSCs, used as the negative control (CTRL)
- hPDLSCs treated for 24 h with 10 mmol L−1 with Liposome enriched with

Curcumin (CurLIP)
- hPDLSCs treated for 24 h with ultrapure lipopolysaccharide from P. gingivalis (Invivo-

Gen, San Diego, CA, USA) 5 µg mL−1 (LPS-G)
- hPDLSCs co-treated for 24 h with 10 mmol L−1 CurLIP and LPS-G 5 µg mL−1

(CurLIP/LPS-G)
- Untreated e-hPDLSCs, used as the negative control (e-CTRL)
- e-hPDLSCs treated for 24 h with 10 mmol L−1 CurLIP(e-CurLIP)
- e-hPDLSCs treated for 24 h with 5 µg mL−1 LPS-G (e-LPS-G)
- e-hPDLSCs co-treated for 24 h with 10 mmol L−1 CurLIPand 5 µg mL−1 LPS-G

(CurLIP/e-LPS-G)

4.7. Immunofluorescence Analysis and Confocal Laser Scanning Microscope (CLSM)

In the present work, the cells were subjected to immunofluorescence and CLSM analy-
sis for the expression of TLR4, MyD88, NFkB, NLRP3, Caspase-1, IL-1β, p300 and DNMT1.
For this purpose, samples were first fixed with a 4% solution of paraformaldehyde in 0.1 M
PBS (Lonza), then the cells were permeabilized by treating them with 0.5% Triton X-100 in
PBS for 10 min. Saturation was then performed with 5% skim milk in PBS for 30 min. Later,
the incubation was carried out for 1 h at room temperature, with the primary antibodies
specific for the markers considered, diluted in 2.5% of milk: anti-TLR4 (1:200, Santa Cruz
Biotechnology, Santa Cruz, CA, USA), anti-MyD88 (1:500, Santa Cruz Biotechnology), anti-
NFkB p65 (1:500, Santa Cruz Biotechnology), anti-NLRP3 (3 µg/mL, Novus, MIaln, Italy),
anti-Caspase-1 (1:500, Santa Cruz Biotechnology), anti-IL-1β (1 µg/mL, Termofisher, Milan,
Italy); anti-p300 (10 µg/mL, OriGene Technologies, Rockville, MD, USA) and anti-DNMT1
(1:100, OriGene). At the end of the incubation with the primary antibodies, the incubation
was carried out for 1 h at 37 ◦ C with the secondary antibodies capable of highlighting
the nuclei (TOPRO 1:200, Molecular Probes) and the cytoskeletal actin (green fluorescent
conjugate of the falloidin Alexa Fluor 488 1: 200, Molecular Probes) [41,42]. The Zeiss



Int. J. Mol. Sci. 2021, 22, 7534 15 of 19

LSM800META confocal system (Zeiss, Jena, Germany) with a Plan Neofluar oil immersion
objective (63×) was used to visualize the stained cells with the described procedure. The
excitation lines at 488 nm for the argon laser beam and at 543 and 665 nm for a helium-neon
source made it possible to obtain the different micrographs.

4.8. Western Blot Analysis

Western blot analysis was performed as previously described by Gugliandolo et al. [67].
The primary antibodies used in the procedure were: TLR4 (1:500, Santa Cruz Biotechnol-
ogy), MyD88 (1:500, Santa Cruz Biotechnology), NFkB (1:500, Santa Cruz Biotechnology),
NLRP3 (3 µg/mL, Novus), caspase-1 (1:500, Santa Cruz Biotechnology), IL-1β (1 µg/mL,
Termofisher), p300 (1:750, OriGene) and anti-DNMT1 (1:750, Origene); β-actin (1:750, Santa
Cruz Biotechnology) was used as a normalizer to ensure loading uniformity. Lastly, the
ECL method by means of Alliance 2.7 (UVItec Limited, Cambridge, UK) was used for the
identification and quantification of the obtained bands.

4.9. ROS Evaluation

Undifferentiated- and endothelial-differentiated hPDLSCs were seeded in 35 mm
imaging dish (µ-Dish, ibidi GmbH, Gräfelfing, D) and treated for 24 h in culture medium
containing 5 µg mL-1 LPS-G; or 5 µg mL-1 LPS-G plus 10 mmol L−1 Liposome enriched
with Curcumin or 10 mmol L−1 Liposome enriched with Curcumin alone or culture
medium alone. At the end of expected time, incubation media was removed and the cells
were washed with Normal External Solution (NES) containing (in mM): 125 NaCl, 5 KCl,
1 MgSO4, 1 KH2PO4, 5.5 glucose, 1 CaCl2, 20 HEPES, pH 7.4 and incubated with 10 µM of
2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA, Thermo Fisher Scientific) in NES
at 37 ◦C in humidified incubator (for 30 min). During the probes’ incubation, they were
kept constant all the respective culture media treatments. At the end of dye incubation,
the cells were washed with NES and observed in NES alone (CTRL, or e-CTRL) or NES
plus LPS-G, LPS-G, and CurLIP or CurLIP. For each conditions, confocal images were
randomly acquired by means of motorized table SMC 2009 and multiple single position
acquisition function (tiles mode, advanced setup) of Zen Blue software using a Zeiss
LSM800 microscope (Carl Zeiss, Jena, Germany), equipped with an inverted microscope
Axio-obserber. D1 and an objective W-Plan-Apo 40X/1.3 DIC. Excitation was fixed at
488 nm and emission collected setting the filter set over 505–530 nm. The acquisition
settings were maintained constant between specimens. Off-line image analyses were
performed using Fiji distribution of ImageJ measuring for each acquired cell the mean of
fluorescence intensity (arbitrary units, F) and the area of the measured cells (µm2) [68].
Quantitative data of ROS production is expressed as ratio F/µm2.

4.10. Statistical Analysis

Statistical evaluation was performed with t-test and ordinary one-way ANOVA
followed by post hoc Bonferroni′s multiple comparisons tests using GraphPad Prism
4.0 software (Graph-Pad, San Diego, CA, USA). Values of p < 0.01 were considered
statistically significant.

5. Conclusions

Taken together, these results demonstrated that CurLIP formulation is able to de-
crease the inflammatory effects triggered by LPS-G in hPDLSCs and e-hPDLSCs, high-
lighting the promising role played by CurLIP as an anti-inflammatory potential treatment
in periodontal disorder. These findings suggest that CurLIP formulation may represent
a novel strategy for re-establishing the tissue homeostasis through the modulation of
TLR4/MyD88/NFkB/NLRP3/Caspase-1/IL-1β signaling cascade in an in vitro model of
hPDLSCs and e-hPDLSCs exposed to LPS-G stimulus and may be considered as a promis-
ing molecule to be used alone or in combination therapy for the periodontal disorder. Fur-
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ther studies are needed to determine the role of these pathways in periodontitis and in car-
diovascular disease and to evaluate the mechanisms involved in the regulatory processes.
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