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Abstract
Background  Nasopharyngeal carcinoma (NPC) lacks biomarkers demonstrating both 
high specificity and sensitivity for early diagnosis. This study aimed to develop robust 
machine learning (ML)-driven diagnostic models and identify key biomarkers through 
integrated analysis of multi-cohort transcriptomic data.

Methods  Seven NPC transcriptomic datasets (GSE12452, GSE40290, GSE53819, and 
GSE64634 were merged to form the training cohort, while GSE13597, GSE34573, 
and GSE61218 served as independent external validation sets) were integrated and 
preprocessed using ComBat for batch effect correction. Differential expression analysis 
identified 293 differentially expressed genes (DEGs). Twelve ML algorithms (including 
Stepglm, glmBoost, and RF) were systematically combined into 113 distinct models 
to classify NPC versus normal tissues. Top-performing models underwent external 
validation. Immune infiltration patterns and functional enrichment were analyzed 
using CIBERSORT and GSEA/GSVA, respectively.

Results  The Stepglm[both]-RF hybrid model demonstrated exceptional performance 
with AUCs of 0.999 (training set; 95% CI: 0.997–1.000), 1.000 (GSE61218/GSE34573 
validation), and 0.960 (GSE13597 validation). The glmBoost-RF model showed 
comparable efficacy, achieving AUCs of 1.000 (training), 0.950 (GSE61218), 1.000 
(GSE34573), and 0.947 (GSE13597). Single-gene analysis identified RCN1 as a promising 
diagnostic marker (AUC = 0.953), with elevated expression levels correlating with poor 
prognosis in head and neck squamous cell carcinoma (HNSCC; p < 0.05). Immune 
profiling revealed significant enrichment of M1 macrophages and concomitant 
reduction of memory B cells in NPC. Functional enrichment analysis associated RCN1 
with cell cycle regulation and immune-related pathways.

Conclusion  This study establishes two high-performance ML models 
(Stepglm[both]-RF and glmBoost-RF) with low variability for NPC diagnosis and 
identifies RCN1 as a dual-function biomarker with diagnostic and prognostic potential. 
The findings provide a scalable framework for early NPC detection and novel insights 
into immune microenvironment dysregulation.
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1  Background
Nasopharyngeal carcinoma (NPC) demonstrates marked ethnic and geographic dis-
parities, exhibiting disproportionately high incidence rates in Southeast Asia, Southern 
China, and North Africa [1]. The disease etiology involves a well-characterized triad 
of Epstein-Barr virus (EBV) infection, genetic predisposition, and environmental car-
cinogen exposure [2]. Although advancements in radiotherapy and chemoradiotherapy 
have improved clinical outcomes, locally advanced NPC continues to present thera-
peutic challenges, with 5-year overall survival rates remaining suboptimal at approxi-
mately 60% [3, 4]. This persistent clinical challenge highlights the urgent requirement 
for enhanced early detection strategies to improve patient prognosis. While EBV DNA 
load quantification provides valuable risk stratification for NPC patients, current diag-
nostic approaches lack biomarkers demonstrating sufficient specificity and sensitivity for 
reliable early detection [5]. This diagnostic limitation has motivated extensive research 
efforts to identify molecular signatures capable of improving diagnostic accuracy and 
prognostic assessment.

Transcriptomic profiling has significantly enhanced our ability to characterize tumor-
specific molecular alterations. Large-scale genomic repositories such as the Gene 
Expression Omnibus (GEO) provide valuable resources for investigating NPC heteroge-
neity through multi-cohort analyses [6]. However, technical challenges including batch 
effects and platform-specific variability complicate cross-dataset integration, necessitat-
ing sophisticated normalization pipelines and batch correction methodologies [7]. The 
inherent complexity of oncogenic processes further requires advanced computational 
approaches, particularly machine learning (ML) algorithms, to extract biologically rel-
evant patterns from high-dimensional omics data. Previous investigations into NPC 
pathogenesis have primarily focused on discrete molecular pathways, creating a signifi-
cant knowledge gap in systematically integrated frameworks that combine differential 
expression analysis, functional pathway enrichment, and ML-driven classification across 
diverse patient cohorts. Our study addresses this critical need through comprehensive 
analysis of seven NPC transcriptomic datasets, pursuing three principal objectives: (1) 
identification of robust diagnostic biomarkers, (2) development of optimized ML classi-
fication models, and (3) characterization of tumor-immune microenvironment interac-
tions, ultimately establishing a multimodal molecular framework for NPC diagnosis and 
mechanistic elucidation.

To address the methodological and conceptual gaps in existing NPC research, this 
study integrates seven multi-cohort transcriptomic datasets (GSE12452, GSE40290, 
GSE53819, GSE64634 for training; GSE13597, GSE34573, GSE61218 for validation) 
using ComBat batch correction and hybrid machine learning (ML) frameworks. We 
systematically combined 12 ML algorithms into 113 combinatorial models, prioritiz-
ing parsimonious gene panels (< 10 genes) without compromising diagnostic accuracy 
(AUC ≥ 0.95). Differential expression analysis identified 293 high-confidence DEGs, 
with functional enrichment linking these genes to immune dysregulation and stromal 
remodeling. Through systematic evaluation, two optimized models were selected. Cru-
cially, single-gene validation pinpointed RCN1 as a dual-function biomarker, demon-
strating both diagnostic utility (AUC = 0.953) and prognostic relevance in head and neck 
malignancies. This integrative approach not only establishes robust ML models for NPC 
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detection but also uncovers novel molecular-immune interactions, providing a scalable 
framework for early diagnosis and mechanistic exploration.

2  Methods
2.1  Data acquisition and preprocessing

We obtained seven nasopharyngeal carcinoma (NPC) transcriptomic datasets from 
the Gene Expression Omnibus (GEO) database: GSE12452, GSE13597, GSE34573, 
GSE40290, GSE53819, GSE61218, and GSE64634 [8–16]. These datasets collectively 
contained gene expression profiles from both normal nasopharyngeal tissues and NPC 
biopsies. Raw data were converted into gene expression matrices using platform-specific 
preprocessing pipelines as described in the original GEO metadata. For model construc-
tion and validation, GSE12452, GSE40290, GSE53819, and GSE64634 were combined to 
create the training cohort, while GSE13597, GSE34573, and GSE61218 were designated 
as independent external validation sets (Table 1).

To address technical heterogeneity across studies, we implemented a two-step harmo-
nization protocol. First, the integrated training cohort underwent ComBat adjustment 
using study identifiers as batch variables through the R sva package (version 3.48.0). 
Subsequently, the effectiveness of batch effect correction was systematically evaluated 
through distributional alignment analysis (comparative visualization of pre- and post-
correction expression distributions using boxplots) and dimensionality assessment 
(principal component analysis [PCA] with comparative evaluation of sample clustering 
patterns before and after correction).

2.2  Differential expression analysis

Differentially expressed genes (DEGs) between NPC and normal tissues were identified 
using the limma package (v3.56.2) in R [17], implementing a linear modeling framework 
with empirical Bayes moderation to address cross-gene variance heterogeneity. Genes 
were filtered using stringent thresholds of absolute log2-fold change (|log2FC|) > 1 and 
Benjamini-Hochberg adjusted p-value (FDR) < 0.05 to ensure biological relevance while 
controlling false discovery rates. Significant DEGs were visualized through volcano plots 
(ggplot2 v3.4.2) that highlighted upregulated (log2FC > 1) and downregulated (log2FC 
< -1) genes using color-coded thresholds. To validate expression patterns, hierarchical 
clustering was performed on top-ranked DEGs (|log2FC| > 2, FDR < 1e − 5) using Euclid-
ean distance and Ward’s linkage, with results displayed as a z-score-normalized heatmap 
(pheatmap v1.0.12). All statistically significant DEGs meeting the criteria were system-
atically exported for subsequent analyses, ensuring reproducibility across downstream 
workflows.

Table 1  Overview of NPC-Related gene expression datasets
GEO series Expression type Platform Sample number Type Reference

Normal Tumor
GSE12452 mRNA GPL570 10 31 Training set 8–10
GSE13597 mRNA GPL96 3 25 Validation cohort 11
GSE34573 mRNA GPL570 4 16 Validation cohort 12
GSE40290 mRNA GPL8380 8 25 Training set /
GSE53819 mRNA GPL6480 18 18 Training set 13
GSE61218 mRNA GPL19061 6 10 Validation cohort 14–15
GSE64634 mRNA GPL570 4 12 Training set 16
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2.3  GO and KEGG pathway enrichment analysis

To functionally characterize the biological implications of NPC-associated DEGs, 
we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analyses using the clusterProfiler package (v4.8.1) [18]. 
These analyses systematically interrogated three GO domains: biological processes (BP), 
cellular components (CC), and molecular functions (MF), while KEGG analysis delin-
eated pathway-level dysregulation. Enrichment significance was assessed via hypergeo-
metric testing with Benjamini-Hochberg false discovery rate (FDR) correction (adjusted 
p < 0.05), retaining terms exhibiting gene ratio > 0.1 and minimum gene count ≥ 5 to 
ensure biological interpretability. Results were visualized as dot plots displaying enrich-
ment scores (-log10[FDR]), gene ratios, and associated gene counts, enabling prioritized 
identification of NPC-relevant mechanisms.

2.4  Machine learning model development and evaluation

We established a diagnostic framework for NPC through systematic integration of 12 
machine learning algorithms into 113 combinatorial models, utilizing differentially 
expressed genes (DEGs) as input features. To address overfitting and improve model 
generalizability, we employed regularized regression methods for feature selection, 
including Elastic Net (Enet) [19], Ridge Regression [20], Stepwise Generalized Linear 
Model (StepGLM), and LASSO [21]. The classification workflow incorporated diverse 
methodological approaches spanning Support Vector Machines (SVM), Linear Discrim-
inant Analysis (LDA), generalized linear model boosting (glmBoost), Random Forest, 
Gradient Boosting Machine (GBM), XGBoost, and Naive Bayes classifiers [22–26]. Prior 
to model training, all features underwent z-score normalization to ensure scale unifor-
mity. We implemented a two-tier validation strategy comprising internal validation with 
10-fold cross-validation incorporating nested feature selection, coupled with external 
validation across three independent transcriptomic cohorts. Model performance was 
comprehensively assessed using the area under the receiver operating characteristic 
curve (AUC), with comparative results visualized through precision-ranked heatmap 
analysis. Models demonstrating superior discriminative capacityn were selected for sub-
sequent clinical translatability evaluation.

2.5  Model evaluation using ROC and confusion matrix

The optimal model demonstrating superior predictive performance (highest AUC) 
underwent comprehensive evaluation across both training and external validation 
cohorts. Systematic generation of receiver operating characteristic (ROC) curves enabled 
quantitative assessment of discriminative capacity between NPC and normal samples, 
with area under the curve (AUC) values calculated for each dataset. We employed boot-
strap resampling to derive 95% confidence intervals (CIs) for AUC stability evaluation. 
Complementary confusion matrix analysis [27] provided detailed performance metrics 
through direct comparison of predicted versus actual classifications, including sensitiv-
ity (true positive rate), specificity (true negative rate), balanced accuracy, and positive/
negative predictive values. This multi-dimensional evaluation confirmed robust model 
performance across sensitivity, specificity, and overall accuracy metrics, with system-
atic stratification by dataset type (training versus validation) demonstrating consistent 
generalizability.
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2.6  Gene interaction network analysis

We constructed gene interaction networks using GeneMANIA [28] to elucidate func-
tional relationships among prioritized genes, utilizing the human reference database. 
The analytical framework incorporated multimodal biological evidence encompass-
ing experimentally validated physical interactions, co-expression patterns, and curated 
pathway associations. Network topology analysis identified high-confidence interactors 
through weighted edge scoring, followed by functional enrichment analysis focusing on 
kinase-related processes such as negative regulation of kinase activity and protein phos-
phorylation dynamics. The resulting network architecture provided mechanistic insights 
into selected genes’ roles in NPC pathogenesis, with hub nodes identified as priority tar-
gets for experimental validation.

2.7  Immune infiltration analysis

We performed immune cell infiltration profiling using the CIBERSORT algorithm [29], 
which applies linear support vector regression to deconvolute bulk transcriptomic data 
and estimate relative proportions of 22 immune cell subtypes. Gene expression data 
from selected samples were analyzed against the LM22 leukocyte signature matrix 
with 1,000 permutations to enhance reliability. Results were filtered using permutation-
derived p-values, Pearson correlation coefficients for feature stability, and root mean 
squared error (RMSE) metrics for deconvolution accuracy. Samples meeting stringent 
quality thresholds (p < 0.05 and RMSE < 0.15) were retained for subsequent analysis to 
ensure biological plausibility of immune cell fractions. This methodology enabled sys-
tematic characterization of tumor microenvironment composition across NPC and nor-
mal tissue cohorts.

2.8  Enrichment and prognostic analysis

Gene Set Enrichment Analysis (GSEA) was conducted using the Molecular Signatures 
Database (MSigDB) C5 (GO: gene ontology) and C2 (KEGG: Kyoto Encyclopedia of 
Genes and Genomes) gene sets (c5.go.v2023.1.Hs.symbols.gmt, c2.cp.kegg.v2023.1.Hs.
symbols.gmt) [30] to identify pathways associated with target gene differential expres-
sion. Following z-score normalization of expression data, samples were stratified into 
high/low expression groups based on median target gene expression. Genes were ranked 
by log2-fold change (log2FC) between groups, with enrichment significance determined 
through 1,000 permutations (nominal p < 0.05, false discovery rate [FDR] < 0.25). Path-
way activity quantification was performed using Gene Set Variation Analysis (GSVA) 
via single-sample GSEA (ssGSEA) with identical gene sets. After batch correction and 
control sample exclusion, normalized GSVA scores were compared between expres-
sion groups using Welch’s t-tests, categorizing pathways as upregulated (FDR < 0.05, 
log2FC > 0), downregulated (FDR < 0.05, log2FC < 0), or nonsignificant. Results were 
visualized through ranked bar plots highlighting pathway dysregulation patterns. Prog-
nostic validation was conducted through the UALCAN platform [31], integrating TCGA 
survival data with RNA-seq profiles to evaluate diagnostic efficiency and survival out-
comes (log-rank p < 0.05) for prioritized genes.
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2.9  Statistical analysis

All statistical analyses were performed using R software (version 4.3.1). Differential gene 
expression analysis employed the limma package (v3.56.2) to construct linear models 
with empirical Bayes moderation, applying significance thresholds of absolute log2-fold 
change (|log2FC|) > 1 and Benjamini-Hochberg adjusted p-value (FDR) < 0.05. Machine 
learning model evaluation incorporated the pROC (v1.18.4), caret (v6.0.94), and e1071 
(v1.7.13) packages, with classifier performance quantified through receiver operating 
characteristic (ROC) curve analysis (AUC calculations) and confusion matrices report-
ing sensitivity/specificity metrics. Gene Set Enrichment Analysis (GSEA) was executed 
using clusterProfiler (v4.8.1) and enrichplot (v1.20.0) with predefined gene sets, retain-
ing pathways demonstrating nominal significance (p < 0.05). Gene Set Variation Analysis 
(GSVA) implemented the GSVA (v1.48.3) and limma packages to calculate single-sample 
pathway activity scores, with differential pathway activities across groups assessed via 
Welch’s t-tests (significance threshold p < 0.05). All data visualizations were created using 
ggplot2 (v3.4.2) and ggpubr (v0.6.0) packages to ensure standardized graphical outputs.

3  Results
3.1  Differential expression and batch effect correction

Integrated analysis of the training datasets (GSE12452, GSE40290, GSE53819, 
GSE64634) revealed substantial technical variability necessitating batch correction. Ini-
tial preprocessing assessment identified dataset-specific expression distribution biases 
through boxplot visualization (Fig.  1A), supported by principal component analysis 
(PCA) demonstrating platform-driven sample clustering patterns (Fig. 1C). Application 
of the ComBat algorithm (sva package v3.48.0) effectively mitigated cross-platform vari-
ation, producing normalized expression distributions (Fig.  1B) and biologically mean-
ingful PCA clustering (Fig.  1D). Subsequent differential expression analysis identified 
293 high-confidence DEGs (|log2FC| > 1; Benjamini-Hochberg FDR-adjusted p < 0.05), 
with hierarchical clustering analysis showing clear segregation between NPC and nor-
mal tissues (Fig.  1E). Expression patterns were further characterized using a color-
graded volcano plot (Fig.  1F), where gradient transitions from blue (downregulated 
genes) to red (upregulated genes) encoded both log2-fold change magnitudes and statis-
tical significance.

3.2  Functional enrichment analysis of the DEGs

Gene Ontology (GO) analysis revealed significant enrichment of these differentially 
expressed genes in biological processes including humoral immune response and leu-
kocyte migration, cellular components such as collagen-containing extracellular matrix, 
and molecular functions related to receptor-ligand activity (Fig.  2A). KEGG pathway 
analysis further demonstrated their involvement in cytokine-cytokine receptor interac-
tion, amoebiasis pathogenesis, chemokine signaling, and muscle cell cytoskeletal regu-
lation (Fig. 2B), collectively highlighting the multi-faceted biological relevance of these 
transcriptional alterations in NPC progression.

3.3  Evaluation of top-performing machine learning models

A cohort of 113 machine learning models was systematically developed and validated 
using integrated training datasets (GSE12452, GSE40290, GSE53819, GSE64634) and 
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external validation cohorts (GSE13597, GSE34573, GSE61218) (Fig.  3A). All models 
exhibited strong discriminatory capacity in distinguishing NPC from normal tissues. To 
enhance clinical translation potential, model selection prioritized parsimonious feature 
sets without compromising diagnostic precision. For example, while the RF-plsRglm 

Fig. 2  Functional Enrichment Analysis. A GO enrichment of consensus DEGs, highlighting humoral immune re-
sponse, leukocyte migration, collagen-containing extracellular matrix, and receptor-ligand activity. B KEGG path-
way analysis revealing cytokine-cytokine receptor interaction, amoebiasis pathogenesis, chemokine signaling, and 
muscle cell cytoskeleton regulation

 

Fig. 1  Batch Effect Correction and Differential Gene Expression Analysis. A Pre-correction boxplots showing inter-
dataset variability across GSE12452, GSE40290, GSE53819, and GSE64634. B Post-ComBat harmonization demon-
strating aligned expression distributions. C PCA plot revealing batch-driven clustering prior to correction. D PCA 
plot after batch correction, illustrating improved alignment and reduced batch effects. E Heatmap of top DEGs 
(rows) distinguishing NPC (columns) from normal tissues. F Gradient volcano plot depicting expression dynam-
ics: leftward blue gradient (downregulated genes, log2FC < -1) to rightward red gradient (upregulated genes, 
log2FC > 1), with significance threshold (FDR < 0.05)
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model achieved high accuracy, its requirement of 94 features limited practicality (Sup-
plementary Document 1). Through systematic evaluation, two optimized models were 
selected, with comprehensive performance metrics detailed in Table 2 and visualized in 
Fig. 3B-I.

3.4  Model validation through confusion matrix analysis

Confusion matrices were constructed to quantify classification accuracy across train-
ing and validation cohorts (Fig.  4A-H). For the Stepglm[both]-RF model, the training 
set (Fig. 4A) correctly classified 40 controls and 86 NPC samples, with two controls mis-
classified as NPC. External validation demonstrated consistent performance: GSE61218 
(Fig.  4B) and GSE34573 (Fig.  4C) achieved perfect classification, while GSE13597 

Fig. 3  Machine Learning Model Evaluation for NPC Classification. (B-E) Stepglm[both]-RF Model Perfor-
mance. (F-I) glmBoost-RF Model Performance. A Heatmap of AUC performance for 113 models across training 
(GSE12452/GSE40290/GSE53819/GSE64634) and validation cohorts (GSE13597/GSE34573/GSE61218). B Training 
set: AUC = 0.999 (95%CI: 0.997-1.000). C GSE61218 validation: AUC = 1.000 (1.000–1.000). D GSE34573 validation: 
AUC = 1.000 (1.000–1.000). E GSE13597 validation: AUC = 0.960 (0.887-1.000). F Training set: AUC = 1.000 (1.000–
1.000). G GSE61218 validation: AUC = 0.950 (0.800-1.000). H GSE34573 validation: AUC = 1.000 (1.000–1.000). I 
GSE13597 validation: AUC = 0.947 (0.840-1.000)
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(Fig. 4D) misclassified two NPC samples as controls. The glmBoost-RF model showed 
equivalent training set accuracy (Fig. 4E: 40 controls, 86 NPCs), with validation results 
indicating: one control misclassified in GSE61218 (Fig.  4F), perfect classification in 
GSE34573 (Fig. 4G), and two NPC misclassifications in GSE13597 (Fig. 4H). Both mod-
els maintained robust diagnostic performance across all datasets, as evidenced by ROC 
curve analysis and confusion matrices, confirming high accuracy and generalizability for 
NPC detection.

3.5  Identification and validation of key prognostic markers using ridge regression model

The top-performing models (Stepglm[both]-RF and glmBoost-RF) were further applied 
to identify key prognostic markers in NPC. Differential expression analysis identified 
286 DEGs, from which 12 genes were selected for diagnostic model construction, as 
visualized in volcano plots (Fig. 5A and B). Comparative expression analysis of these 12 
genes between NPC and control tissues revealed distinct differential patterns (Fig. 5C), 
with all genes showing statistically significant differences (p < 0.001). Correlation analysis 
(Fig. 5D) identified notable associations, including a strong positive correlation between 
LYL1 and BLK. ROC curve evaluation (Fig. 5E) demonstrated diagnostic potential for 
all markers, with RCN1 achieving the highest AUC (0.953). GeneMANIA network 

Table 2  Diagnostic performance of Stepglm[both]-RF and glmBoost-RF models
Model Stepglm[both]-RF glmBoost-RF
Feature Genes CXCL10, ARNT2, DHRS9, DLEC1, KCNE1 RCN1, LTF, UPK1B, FOXJ1, LYL1, BLK, TNFSF15
Training Set AUC = 0.999 (0.997–1.000)

[Fig. 3B]
AUC = 1.000 (1.000–1.000)
[Fig. 3F]

External validation
GSE61218 AUC = 1.000 (1.000–1.000)

[Fig. 3C]
AUC = 0.950 (0.800–1.000)
[Fig. 3G]

GSE34573 AUC = 1.000 (1.000–1.000)
[Fig. 3D]

AUC = 1.000 (1.000–1.000)
[Fig. 3H]

GSE13597 AUC = 0.960 (0.887–1.000)
[Fig. 3E]

AUC = 0.947 (0.840–1.000)
[Fig. 3I]

Fig. 4  Confusion Matrix Analysis of Diagnostic Models (A) Training Set (Stepglm[both]-RF): 40 controls and 86 
NPCs correctly classified; 2 controls misclassified as NPC. B GSE61218 (Stepglm[both]-RF): Flawless NPC/control 
classification. C GSE34573 (Stepglm[both]-RF): Perfect accuracy (0 misclassifications). D GSE13597 (Stepglm[both]-
RF): All controls correct; 2 NPCs misclassified. E Training Set (glmBoost-RF): 40 controls and 86 NPCs correctly 
classified (0 NPC errors). F GSE61218 (glmBoost-RF): 1 control misclassified as NPC; all NPCs correct. G GSE34573 
(glmBoost-RF): Perfect classification. H GSE13597 (glmBoost-RF): All controls correct; 2 NPCs misclassified
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analysis (Fig. 5F) revealed functional interactions involving microtubule bundle forma-
tion and humoral immune response, supported by physical interactions, co-expression 
patterns, and shared pathways among the genes, confirming their collective role in NPC 
pathogenesis.

3.6  Immune infiltration analysis in NPC

The relative proportions of 22 immune cell types in NPC and control tissues were quan-
tified using the CIBERSORT algorithm. Figure 6A displays the differential distribution 
of immune cell subtypes between groups, revealing distinct compositional shifts in NPC 
samples characterized by elevated M0/M1 macrophage infiltration and reduced memory 

Fig. 5  Identification and Validation of Key NPC-Associated Genes. A Gradient volcano plot of genes used in the 
Stepglm[both]-RF model: DHRS9, DLEC1, KCNE1 (downregulated); CXCL10, ARNT2 (upregulated). B Gradient vol-
cano plot for glmBoost-RF model genes: LTF, UPK1B, FOXJ1, LYL1, BLK (downregulated); RCN1, TNFSF15 (upregu-
lated). C Expression profiles of selected genes in NPC vs. controls (***p < 0.001, **p < 0.01). D Correlation matrix 
depicting pairwise correlations (coefficients and significance) among genes. E ROC curves showing diagnostic 
potential (AUC values), with RCN1 achieving peak performance (AUC = 0.953). F GeneMANIA interaction network 
implicating genes in microtubule bundle formation and humoral immunity via physical interactions, co-expres-
sion, and shared pathways
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B cell populations. Intercellular correlation analysis (Fig. 6B) identified significant nega-
tive associations between activated and resting mast cells, as well as between memory 
B cells and naïve B cells, suggesting dynamic regulatory interplay within the tumor 
microenvironment.

Comparative quantification of immune cell fractions (Fig. 6C) confirmed pronounced 
increases in M1 macrophages and decreases in memory B cells in NPC specimens. 
Gene-immune correlation analysis (Fig.  6D) revealed strong associations between 
activated mast cells, NK cells, memory B cells, and naïve CD4 + T cells with specific 
transcriptional profiles. Notably, integrative network analysis (Fig. 6E) demonstrated sig-
nificant co-variation between key genes (RCN1, UPK1B, FOXJ1, LTF) and immune cell 
infiltration, with RCN1/ARNT2 expression showing positive correlations with activated 
NK cells. These findings delineate an immunosuppressive microenvironment in NPC, 
characterized by coordinated interactions between dysregulated immune cell popula-
tions and tumor-associated gene expression patterns.

3.7  Functional enrichment analysis of RCN1 and prognosis

To investigate the functional implications of RCN1 expression in NPC, we performed 
Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) on 

Fig. 6  Immune Infiltration Analysis in NPC. A Bar plot comparing relative proportions of immune cell types be-
tween NPC (treatment) and control groups using CIBERSORT analysis, revealing distinct immune landscape altera-
tions in NPC. B T Heatmap displaying correlation coefficients among immune cell populations, demonstrating 
both positive associations and mutual exclusivity patterns. C Box plots showing significant differences in immune 
cell infiltration levels between groups, particularly in M1 macrophages and memory B cells. D Lollipop plot ranking 
immune cell types by their correlation with key NPC gene expression, identifying mast cells (activated), NK cells 
(activated), memory B cells, and naive CD4 + T cells as having strongest associations. E Cell-cell interaction network 
mapping significant positive/negative associations between key genes and immune cell populations, revealing 
complex immune microenvironment dynamics in NPC
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pathways associated with differential RCN1 expression. Significant enrichment was 
observed in both high- and low-RCN1 expression groups. GSEA results for GO terms 
(Fig.  7A, B) revealed that the high-expression group showed enrichment in cell divi-
sion, chromosome organization, and embryonic morphogenesis (Fig.  7A), while the 
low-expression group exhibited enrichment in adaptive immune response and antigen 
processing and presentation (Fig. 7B). KEGG pathway analysis further confirmed these 
associations: high RCN1 expression correlated with cell cycle, ECM-receptor interac-
tion, and lysine degradation (Fig. 7C), whereas low expression was linked to chemokine 
signaling pathway, hematopoietic cell lineage, and intestinal immune network for IgA 
production (Fig.  7D). GSVA results (Fig.  7E, F) revealed distinct pathway activity dif-
ferences between the groups. The t-value bar plots demonstrated RCN1’s significant 
influence on biological processes, particularly cardiac muscle cell fate commitment, 
proteasome function, and protein export. These findings collectively indicate that RCN1 

Fig. 7  Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) for RCN1 in NPC. A GSEA 
of high-RCN1-expressing samples showing significant enrichment in mucin transport, cell division, chromosome 
organization, and embryonic morphogenesis. Enrichment plots demonstrate strong pathway associations. B GSEA 
of low-RCN1-expressing samples revealing enrichment in adaptive immune response and antigen processing/
presentation, suggesting tumor microenvironment modulation. C KEGG analysis of high-RCN1 group highlight-
ing cell cycle, ECM-receptor interaction, and lysine degradation pathways. D KEGG analysis of low-RCN1 group 
identifying chemokine signaling, hematopoietic cell lineage, and intestinal immune network for IgA production. 
E GSVA heatmap displaying RCN1-associated pathway activity differences across samples. F GSVA t-value plot 
categorizing upregulated/downregulated pathways, emphasizing RCN1’s regulatory role in NPC progression. G 
Significant RCN1 upregulation in HNSCC versus normal tissues (p < 0.01). H Kaplan-Meier curve showing reduced 
overall survival in high-RCN1 patients (p < 0.05)
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modulates key pathways in NPC, with differential expression driving distinct tumor bio-
logical outcomes.

To assess RCN1’s clinical relevance in head and neck squamous cell carcinoma 
(HNSCC), we analyzed TCGA data via UALCAN. RCN1 expression was significantly 
elevated in HNSCC tissues compared to normal controls (p < 0.01; Fig.  7G). Kaplan-
Meier analysis showed significantly shorter overall survival (OS) in patients with high 
RCN1 expression (p < 0.05; Fig. 7H), suggesting poor prognosis associated with elevated 
RCN1 levels.

4  Discussion
This investigation systematically integrates multi-cohort transcriptomic data to identify 
robust diagnostic biomarkers for nasopharyngeal carcinoma (NPC) while elucidating 
molecular-immune microenvironment interactions. Through advanced machine learn-
ing (ML) analysis of seven independent GEO datasets, we identified two gene panels 
demonstrating high diagnostic accuracy in distinguishing NPC from normal tissues. 
The Stepglm[both]-RF and glmBoost-RF models achieved demonstrated high accuracy 
(AUC: 0.999-1.000) across training and validation cohorts, surpassing conventional 
EBV DNA biomarkers in specificity. Characterized by minimal feature requirements 
and strong generalizability, these models propose a paradigm shift in NPC diagnostics, 
enabling cost-effective early detection in high-risk populations.

CIBERSORT-based immune profiling revealed an NPC microenvironment domi-
nated by M1 macrophages with concomitant depletion of memory B cell populations. 
This immunosuppressive signature aligns with established mechanisms of EBV-associ-
ated immune evasion, including impaired antigen presentation and T cell exhaustion 
[32–34]. The observed M1 macrophage predominance correlates with chronic inflam-
matory states in viral oncogenesis [35]– [36], while memory B cell depletion mirrors pat-
terns in head and neck squamous cell carcinoma, suggesting conserved immune escape 
strategies. Notably, the inverse correlation between mast cell activation states (Fig. 6D) 
indicates dynamic stromal remodeling requiring mechanistic exploration. The identified 
gene-immune correlations—particularly RCN1/UPK1B associations with activated NK 
cells—suggest transcriptional regulation of immune cell trafficking. RCN1’s dual asso-
ciation with extracellular matrix remodeling and lysine degradation pathways implicates 
its role in stromal barrier formation, potentially mediating immune exclusion. Its prog-
nostic significance in HNSCC further positions RCN1 as a therapeutic target with dual 
diagnostic utility.

RCN1 is a calcium-binding protein that resides within the lumen of the endoplasmic 
reticulum (ER) and plays a significant role in maintaining intracellular calcium homeo-
stasis. Its involvement in various cellular processes, including cell proliferation and 
apoptosis, makes it a critical factor in the pathogenesis of several cancers, including 
NPC. In NPC, RCN1 is significantly upregulated, which correlates with tumor progres-
sion and poor prognosis. This upregulation is associated with the modulation of calcium 
signaling pathways that are crucial for the survival and proliferation of cancer cells [37]– 
[38]. RCN1’s role in NPC is further highlighted by its ability to interact with other pro-
teins involved in calcium homeostasis and ER stress response. For instance, RCN1 has 
been shown to interact with inositol 1,4,5-trisphosphate receptor type 1 (IP3R1), thereby 
influencing calcium release from the ER. This interaction is crucial for the regulation of 
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intracellular calcium levels, which, when dysregulated, can lead to enhanced cell survival 
and resistance to apoptosis, contributing to the malignancy of NPC [39]– [40]. Addi-
tionally, RCN1’s role extends to influencing the tumor microenvironment, particularly 
through its impact on tumor-associated macrophages (TAMs). RCN1 has been shown 
to promote the polarization of macrophages towards the M2 phenotype, which is asso-
ciated with tumor progression and immune evasion [37]– [38]. This effect on TAMs 
further contributes to the aggressive nature of NPC and highlights RCN1 as a potential 
target for therapeutic intervention.

Functional enrichment analysis revealed NPC-associated DEG enrichment in tumori-
genic pathways including cytokine signaling and chemokine interactions, consistent 
with EBV-driven oncogenic processes [41]– [42]. Our work extends current under-
standing by identifying novel pathway associations—microtubule bundle formation and 
humoral immune regulation—that may drive NPC-specific pathobiology. Integrated 
GSEA-GSVA analysis uncovered RCN1’s context-dependent roles: high expression cor-
relates with cell cycle progression, while low expression enhances adaptive immunity, 
revealing therapeutic vulnerabilities [43]– [44].

While plasma EBV DNA remains the gold-standard biomarker for NPC diagnostics, it 
exhibits critical limitations in clinical practice: (1) up to 29% of NPC patients in endemic 
regions show undetectable pretreatment EBV DNA levels, particularly in early-stage dis-
ease; (2) transient EBV reactivation in healthy individuals leads to false positives (5–7% 
in screening cohorts); and (3) EBV DNA alone cannot resolve molecular heterogeneity 
for personalized therapeutic strategies. Our multi-omics gene panel directly addresses 
these gaps by integrating complementary biomarkers beyond viral load. Future stud-
ies will explore the potential of this panel to reduce NPC diagnostic false-positive rates, 
either independently or in combination with EBV DNA [45]– [46].

Study limitations include inherent biases from retrospective GEO data analysis, par-
tially addressed through ComBat correction but necessitating validation in prospective 
cohorts. The inflated performance metrics in small validation datasets underscore the 
need for multi-ethnic validation. Future research should prioritize mechanistic investi-
gations of identified biomarkers, particularly their interactions with EBV latency pro-
grams and immune checkpoint regulation.

5  Limitations
While this study establishes a robust computational framework for NPC biomarker dis-
covery and diagnostic modeling, several limitations should be acknowledged. First, the 
retrospective nature of publicly sourced transcriptomic datasets may inherently intro-
duce selection biases and technical heterogeneity, despite our implementation of Com-
Bat-based batch correction. While bioinformatics validation demonstrated strong model 
performance, the diagnostic utility of prioritized biomarkers and the mechanistic basis 
of model-selected gene signatures require experimental confirmation through in vitro 
functional assays and in vivo preclinical models. Second, the near-perfect AUC values 
observed in limited validation cohorts may inflate real-world applicability estimates, 
necessitating validation through larger multi-center prospective cohorts encompass-
ing diverse ethnic populations. Furthermore, immune microenvironment characteriza-
tion via CIBERSORT deconvolution, while computationally robust, could be refined 
through spatially resolved transcriptomics or single-cell RNA sequencing to resolve 
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cell-type-specific interactions. Future investigations integrating mechanistic wet-lab 
experiments with multi-omics validation will be essential to bridge computational pre-
dictions and clinical translation.

6  Conclusions
In summary, we integrated multi-cohort transcriptomic data with multiple machine 
learning algorithms to develop two minimal-feature, high-accuracy diagnostic models 
for NPC (Stepglm[both]-RF and glmBoost-RF models). Our findings position RCN1 
as a promising dual-purpose biomarker for NPC diagnosis and prognosis, demonstrat-
ing robust diagnostic performance. Future studies will focus on clinical cohort valida-
tion and model optimization to establish a scalable, cost-effective strategy for early NPC 
detection.
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