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Recent genome-wide profiling reveals highly complex regulation networks among ERa and its targets. We
integrated estrogen (E2)-stimulated time-series ERa ChIP-seq and gene expression data to identify the
ERa-centered transcription factor (TF) hubs and their target genes, and inferred the time-variant
hierarchical network structures using a Bayesian multivariate modeling approach. With its recurrent motif
patterns, we determined three embedded regulatory modules from the ERa core transcriptional network.
The GO analyses revealed the distinct biological function associated with each of three embedded modules.
The survival analysis showed the genes in each module were able to render a significant survival correlation
in breast cancer patient cohorts. In summary, our Bayesian statistical modeling and modularity analysis not
only reveals the dynamic properties of the ERa-centered regulatory network and associated distinct
biological functions, but also provides a reliable and effective genomic analytical approach for the analysis of
dynamic regulatory network for any given TF.

R
everse engineering of genetic regulatory networks and discovering inherent major interactions within
complex biological processes persist as the key tasks of computational systems biology1–5. Barenco et al.
proposed a genome-wide transcriptional modeling approach, requiring no prior information in identifying

the regulatory network6. This approach ignored different time and space effects existing in cellular transcriptional
contents and as a result, it may be ineffective in detecting specific regulatory processes. While many other
computational methods for reconstructing transcription networks were also presented during the same per-
iod7–13, most of them focused on a single data source, i.e. ChIP-chip data, cDNA microarray, or combined with
other pre-defined transcription factor and motif information to infer network structures7–9,11. Others studied
network properties such as time-variant, hierarchical and collaborative, correlations between specific network
structures and underlying functions10,12,13.

The evolved in vivo genome-wide profiling techniques from ChIP-chip14 to ChIP-seq15,16 enable us to identify
thousands of transcription factor binding sites and chromatin modifications at a higher resolution and lower cost.
The ChIP-seq technique facilitates accurate identification of transcription factor binding sites and provides the
ability to directly ascertain the details of the underlying transcription factors during regulatory processes. As a
result, it optimizes the network inference approaches in both accuracy and reliability.

A recent study from Sun et al. proposed a Bayesian error model for identifying regulatory process using single
time-point ChIP-chip and cell cycle gene expression data, and they adopted the MCMC sampling technique to
infer model parameters, where the model considers the random effects as the error terms in the regulatory
process17. However, it is a linear fitting approach, and for most genetic regulatory processes, due to time and
space scale differences, linear modeling approach may not reflect those nonlinear and stochastic transcription
regulatory processes. Furthermore, due to the single time-point ChIP-chip data, the model can only present a
static cell cycle regulatory network.

To our knowledge, the computational methods based on the time-series, or multiple continuous ChIP-seq data
have not yet been proposed for the inference of time-varying transcriptional networks. Given the fact that the
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cellular signaling dynamically responds to an external stimuli, it is
essential to integrate both the time-series ChIP-seq and gene expres-
sion data in order to capture the dynamic network structures and
related biological properties, which are the key to elucidate the inher-
ent regulatory mechanisms.

ERa is an estrogen (E2)-inducible transcription factor (TF) and
member of the nuclear receptor superfamily, the dysfunction of
which accounts for 70% breast tumors. ERa binds to estrogen res-
ponse elements (EREs) at target gene’s regulatory regions, and works
with other signaling components to control downstream transcrip-
tional and translational processes. Many recent genome-wide profil-
ing studies of ERa18–20, including ours21,22, have shown a highly
complex regulation network involved with both ERa and other
TFs23. These studies revealed that many ERa binding sites could be
located far away, up to 50-100kb, from a known transcription start
site (TSS) and a large number of other TF binding sites (TFBSs) could
be co-enriched with ERa binding sites, which constitute a hierarch-
ical regulatory network with target hubs. However, the static network
fails to capture dynamic properties of transcriptional regulation res-
ponses to estrogens, due to lack of time-series ChIP-seq data.

In this study, we integrated both E2-stimulated time-series ERa
ChIP-seq data conducted in our laboratory and publically avail-
able E2-stimulated time-series gene expression data for reverse
engineering the ERa-mediated transcriptional regulatory network.
We identified the ERa-centered TF hubs and their target genes
from the ERa ChIP-seq data at the four time points after estrogen
stimulation, and inferred the time-variant hierarchical network
structures using a Bayesian multivariate modeling approach.
Furthermore we analyzed the properties of network structures
including global connectivity distribution, the correlation between
the regulatory coefficients and components’ signal-to-noise ratios
with respect to absolute rank value distribution of regulatory
strength. Finally, we used inherent recurrent motif patterns to
determine self-bedded regulatory modules within the hierarchical
networks. The Gene Ontology (GO) analyses were also performed
to reveal distinct biological functions of ERa genes regulated by
each module at different time. Together the survival analysis for
the module-regulated targets based on three breast cancer patient
data sets revealed statistically significant clinical outcomes. A

schematic flowchart (Figure 1) depicts the procedure in analyzing
the ERa transcription regulatory network.

Results
Computational identification of ERa-regulated TFs and target
genes. Estrogen-stimulated ERa data (ChIP-seq) at the time 0, 1, 4
and 24 hours were conducted as described in detail in Methods and
Supplemental Materials. Since there are several statistical
parameters (false discovery rate (FDR) and bin size), in order to
derive an optimal set of ERa binding sites at each time point, we
propose a flexible data feature detection approach, in which the
output parameters can be formulated as a class of optimal track
(Methods). Figures 2(A) and (B) illustrate the optimal parameters
selection process for ERa ChIP-seq data at the time point 0, where
normally it needs to find the highest peak number with a suitable bin-
size and a statistically acceptable FDR. Once the optimal parameters
for each time point of data are determined, then ERa targeted genes
are identified at each time points (see Supplemental Excel file 1).

We identified ERa-regulated TF hubs by scanning all possible TF
candidates through TRANSFAC database which collects more than
,1,000 positional weight matrices (PWM)24,25. We determined the
final TF hubs based on the quantitative selective criteria: (1) fre-
quency of occurrence of each TF in all binding sites, see
Figure 2(C), where the frequency of occurrence range varies from
0.832% (SP1) to 28.5% (AP1), and the total occurrence counts for
those identified TF candidates are 3,997,164 (0 hour), 4,184,256
(1 hour), 2,174,429 (4 hours) and 3,912,712 (24 hours); (2) continu-
ity of occurrence (or TF’s overlap information) across four time
points, i.e. whether or not those TF hubs have been detected at each
time point; and (3) further manually selecting those major TF hubs
functionally associating with ERa based on our experiment emphasis
and published results from recent literatures.

From recent associated literatures, FOXA1 (also named as
HNF3a) has been reported as a pioneer protein for ERa transcrip-
tional process, and its function has potential regulatory roles in ERa
activities and relative endocrine responses23,26. The TFs such as AP1,
SP1 and NFkB have already been discovered to be regulated by ERa
through nontraditional pathways and meanwhile their gene expres-
sions are affected by the ERa regulation27. New binding site event of

Figure 1 | The computational analysis flowchart for inferring ERa transcription regulatory network. It contains two major sections, one is for data

processing and the other is for network and modularity analyses. The first section includes ChIP-seq data mapping and peak-calling, correlating ChIP-seq

with microarray gene expression data, and Bayesian multivariate modeling for network inference. The second section covers analysis on the inferred

network and modularity, the corresponding gene ontology (GO) analysis, and patient survival analysis on the network modules based on three clinical

data sets published recently.
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approximately 67 kbp upstream from MYC was discovered recently,
and accordingly OCT1 and CEBP were claimed as nuclear receptor-
interacting TF and putative regulator of estrogen target genes in the
recent experiments of MCF-7 cell line28. GATA3 and FOXA1 were
found with cooperative roles in mediating the ERa transcriptional
network29. PAX2, without any previously recognized role, was dis-
covered with a crucial mediator of ER repression30. X-box binding
protein, XBP1, is an estrogen-regulated gene and also recognized as
being strongly correlated with ERa expression in breast cancers31.

On Figure 2(C), AP1, PAX2, CEBP and GATA3 are the four TFs
with the top 4 frequencies of occurrence, approximately 28.5%,
26.3%, 18.7% and 14%, respectively. Others’ frequencies of occur-
rence range from 0.832% to 2.721%. Although other genes have also
been detected in those scanning, their frequencies of occurrence or

continuity of occurrence in each time point may not satisfy the above
criteria.

As above, a total of 11 TFs, i.e. ERa, AP1, CEBP, GATA3, FOXA1,
MYC, NFkB, OCT1, PAX2, SP1 and XBP1 were determined as the
TF hubs and used for inferring a Bayesian statistical model (See
Methods and Supplemental Materials).

We further performed correlation analysis for those TF candidates
at each time point by calculating a pairwise TF intersection matrix
across the four time points (Figure 2(D)). Our analysis revealed that
the correlation between those TF candidates differs in any two time
points, i.e. the number of the identified TF candidates at each time
point, and the number of identified pairwise common TF candidates
among those time points. Those facts also indicated the underlying
time-variant property during the ERa regulatory process.

Figure 2 | The selection of optimal parameters for the ERa ChIP-seq data at time point 0 hour. A distribution of peak numbers (the upper panel) and

FDR (the lower panel) vs. the p-threshold (A). A track rate distribution for peak number and FDR with respect to the interval number N (B). The global

peak number and FDR distributions, track rate distributions for peak number and FDR plots at other time points are given in the Supplemental Figures
S1–3. C and D. The identification of TF hubs according to the occurrence frequency of those candidates (C). The percentages denote the corresponding

occurrence distribution among all candidates identified from the time-series ChIP-seq data. TF candidates’ pairwise intersection matrix across all the four

time points (D). The diagonal entries denote the candidate counts at the corresponding time points, and other non-diagonal entries denote those

candidate counts of intersection identified between any two different time points.
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After determining a final set of 11 ERa-regulated TF hubs from the
time-series ChIP-seq data, we identified each TF hub regulated target
genes by re-scanning each hub TF’s PWMs within all target genes
(binding regions) at each of the four time points. We found that the
TF hubs, PAX2, GATA3, CEBP, OCT1 and ERa itself, regulate rela-
tively larger numbers of target genes, while the TF hubs NFkB, SP1
and MYC only regulate a smaller number of target genes (Table 1).
The common target genes for each TF hub for all four time points
were also identified (Table 1). A list of the TF hub target genes and
their associated gene annotation (Entrez IDs) for each TF hub are
provided in the Supplemental Excel file 2.

Bayesian statistical modeling of the ERa regulatory network. In
order to dissect the dynamics of ERa transcriptional regulatory net-
works, we proposed a Bayesian multivariate statistical approach32–34

to reconstruct a hierarchical structure for the ERa-centered time-
variant networks. In addition to ERa regulated genes and the
identified 11 TF hubs from the time-series ERa ChIP-seq data, we
collected a publically available time-series gene expression data18

which monitors gene expression level changes at 20 time-points
after estrogen stimulation. In the research work, we selected the
expression data at the four time points (0, 1, 4 and 24 hours) to
match the corresponding ChIP-seq datasets. The transcription rate
is defined by Equation (15) (Supplemental Section 3), the time
interval Dt for the transcription rate is determined based on the
selected ChIP-seq and microarray data points.

For the statistical modeling, the gene expression values were not
only for the input matrix, but also were used for approximating their
corresponding transcription rates, see the Methods and Supple-
mental Materials, and the modeling errors were assumed to follow
a normal distribution with zero mean. The transcription rates were
formulated as a conditional probability distribution on the a priori
distribution of the regulatory coefficient matrix and the correspond-
ing error term distribution. After the regulatory coefficients were
normalized within the range 21 to 1, we acquire a regulatory
strength distribution.

Figure 3(A) illustrates the ERa-centered regulatory network at
time 4 hours, and a topology of the hierarchical structure of the
network is shown on Figure 3(B), where hierarchical refers to a
regulatory network that has an ERa-centered structure as the net-
work core; the ERa directly-regulated hubs and genes form its sec-
ondary network structure; and the third layer contains genes directly
regulated by other hubs. Other inferred ERa-centered regulatory
networks at time points 0, 1, and 24 hours are shown on the
Supplemental Figures S4–S6 (A) and (B), respectively.

And to quantitatively characterize the inferred network prop-
erties, we analyzed the network structural property, i.e. the global
network (edge) connectivity with respect to the absolute rank value
distribution of regulatory strength. We found that the global con-
nectivity for each inferred network was approximately following a
log-linear trend regarding the absolute rank value distribution of
regulatory strength at all the four time points, Figure 3(C) and
Supplemental Figures S4–S6 (C).

Furthermore, we analyzed the correlation distribution between the
inferred regulatory strength and signal-to-noise ratio (SNR, see
Methods) for the network components (TF and target genes),
together with the corresponding p-values were also given.

By measuring the SNR values, we captured the major character-
istics of the signal and noise levels of the network component
expression process during the transcriptional regulation. In this
study, we calculated the SNR values by using the time-series E2-
treated gene expression profiles. Based on its definition, the higher
the SNR value, the higher the signal density and the less noise content
will be contained in the corresponding gene expression process. We
discovered the inherent statistical trend by increasing the absolute
rank value of regulatory strength from 0 to 1, the absolute correlation

values between the regulatory coefficient and related SNR also
increased, and vice versa (Figure 3(D)).

Figures 3(C) and (D) are the statistical analysis on the inferred
network at time 4 hours. Figure 3(C) gives the node connectivity
characteristics of the inferred network. Figure 3(D) depicts the cor-
relation distribution between the inferred regulatory coefficient and
SNR measure of the network nodes. Both statistical network analyses
are based on the inferred regulatory coefficients of the whole network
nodes. Horizontal axis (absolute rank value) denotes the threshold of
the absolute value of the regulatory coefficients between nodes, from
0 to 1, while the actual regulatory coefficient ranges from 21 (nega-
tive regulation) to 1 (positive regulation). Using the absolute rank
value as the threshold, we statistically characterize the inferred reg-
ulatory node distribution from the whole transcription regulatory
network.

Together with the analysis results at the other time points in the
supplementary Figures S4, S5 and S6, those analyses are to quanti-
tatively characterize the network difference and dynamic properties
across the whole transcription regulatory process. Meanwhile from
the analysis results at time points 1, 4 and 24 hours, we also observed
the evidently correlative trends, although there exists some abrupt
points along those trends across the four time points (Supplemental
Figures S4–6D).

Our analysis illustrated that the SNR distribution had certain stat-
istical association with the global network connectivity in the ERa
regulation network, i.e. network component with a high SNR value
tended to have a high regulatory strength on its potential target
components during its regulatory processes. Thus the SNR measure
is a meaningful index to determine which component in the ERa
transcription network, compared with other ones, has the most
prominent roles (regulatory strength) on regulatory processes.

Modularity analysis on the ERa transcriptional regulatory network.
Modularity is recognized as a ubiquitous feature in biochemical net-
works, and it acts as basic building block in genetic regulatory pro-
cesses through inherent biological functionality, genetic mechanisms
and regulatory patterns35–37.

Thus, to illustrate the corresponding network characteristics, we
further investigated the inferred ERa regulatory network by employ-
ing a quantitative modularity analysis approach, and uncovered the
inherent design principles and regulatory mechanisms in ERa tran-
scriptional network.

The modularity analysis was based on the following criteria: (1)
each identified module should contain the key TF hub, ERa, since we
attempted to discover mediatory or regulatory mechanisms of ERa
on different TFs within those modules; (2) each identified module
should contain one or more regulatory patterns detected from the
core regulatory network structure, provided in the Supplemental
Figure S7. Such regulatory patterns are important for collecting,

Table 1 | The statistics of the 11 TF hubs’ regulated genes and their
corresponding commonly-regulated genes across the four time
points, 0, 1, 4 and 24 hours, respectively

Hubs 0 hour 1 hour 4 hours 24 hours Common

ERa 169 241 206 178 105
MYC 92 107 83 91 59
GATA3 276 422 320 278 142
XBP1 107 134 108 108 80
AP1 218 322 252 211 119
CEBP 288 452 368 274 143
HNF3a 132 172 123 135 84
NFkB 45 57 35 48 22
OCT1 198 289 203 192 107
PAX2 340 533 449 313 173
SP1 65 71 60 62 40
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dispatching and feedbacking biological signals (regulation or medi-
ation). And it is commonly recognized that they are basic building
blocks of regulatory modules or pathways; (3) each identified module
should be of topologically reasonable structure. From the topology
perspective, we may view the identified module as a directed graphic
model with one or more feedback loops. As such, specific regulatory
signals can propagate within the models and certain feedback loops
will ensure source TFs can receive corresponding feedbacks or reac-
tion signals from other TFs and targets. From the perspective of
biological functions, such modularity design principles are essential
to maintain their stable structure characteristics.

We utilized the above considerations and recurrent motif patterns
(see Supplemental Figure S7 and Supplemental Materials) to deter-
mine three self-embedded regulatory modules from the core tran-
scription network structure (Figure 4).

Module I (ERa-GATA3-XBP1-MYC): In this regulatory module,
the major events are: ERa activates XBP1 and GATA3, while inhibits
MYC; GATA3 activates XBP1 while inhibits MYC. Module II (ERa-
SP1-CEBP-AP1-FOXA1): In this module ERa only inhibits SP1
while activates other components. This module is mainly composed
of feed-forward loops, e.g. ERa-CEBP-SP1 and ERa-FOXA1-AP1.
Module III (ERa-NFkB-PAX2-XBP1-OCT1): This module mainly
contains one interactive loop (NFkB and XBP1), two bi-span loop
(ERa-NFkB:XBP1-OCT1, i.e. ERa activates while NFkB inhibits
both XBP1 and OCT1; ERa-XBP1:NFkB-PAX2, i.e. ERa and
XBP1 both have activation and inhibition on NFkB and PAX2),
feed-forward loops (e.g. ERa-XBP1-PAX2) and self-inhibitory loops
(NFkB, OCT1 and XBP1).

Quantitative models interwoven with major network components
significantly contribute to the understanding of cellular networks

Figure 3 | The ERa transcription regulatory network structure and related analysis at time 4 hours. (A) The inferred ERa transcription regulatory

network structure at time 4 hours. The red edges denote positive activation, and dashed blue edges denote negative inhibition. (B) The hierarchical

topological structure of the inferred ERa transcription regulatory network at time 4 hours. (C) and (D) illustrate the connectivity distribution, Pearson

correlation and p-value distributions (between the regulatory coefficients and SNRs) as the functions of absolute rank value of regulatory strength for the

network structure at time 4 hours. The plots for other time points, i.e. 0, 1, and 24 hours are given in the Supplemental Figures S4–S6.
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and underlying biological mechanisms. For example, a small set of
recurring regulation patterns, known as motifs, are the basic building
elements in diverse organisms from bacteria to humans, and such
specific recurrent motif patterns relate directly to certain functions of
those models38–40. As such, we further analyzed the underlying bio-
logical design principles and related properties of the ERa-centered
regulatory network and its embedded modules with several major
considerations: the identified motif patterns, module’s SNR distribu-
tions, and the target gene’s expression patterns. Thus based on those
results, we could determine whether or not there existed any inter-
dependency among those patterns.

In Module I (ERa-GATA3-XBP1-MYC), we found the underlying
feed-forward and self-inhibitory motif patterns (top left panel of
Figure 5). And the gene expression patterns of those module com-
ponents showed ERa and GATA3 are on down-regulating trends
across all the time points, while MYC and XBP1 have the up-
down-up wavy trend, partially because both undergo positive and
negative activities. For Module I, its components’ SNR statistics are
given on the left bottom panel of Figure 5, and the module’s average
SNR is 5.161 dB.

In Module II (ERa-SP1-CEBP-AP1-FOXA1), the feed-forward
loops contributed the most to the gene expression patterns and we
also found one bi-span loop. The five components constitute two
bi-span loops and other interwoven feed-forward loops, and the
components are all down regulated (right panel of Figure 6). For
SP1 and AP1, they mainly receive inhibitory activities by self-inhibi-
tion and feed-forward loops. For other down-regulated components
(FOXA1 and CEBP), they mainly respond to the down-regulation of
ERa by the feed-forward loops. Module II’s SNR statistics are pro-
vided on the left bottom panel of Figure 6, with the average SNR
5.667 dB.

Within Module II, those TFs as AP1, SP1 and NFkB have already
been discovered regulated by ERa through nontraditional pathways,
and meanwhile their gene expressions are affected by the ERa regu-
lation27. On Figures 6 and 7, those regulatory activities are mainly
implemented by the bi-span (ERa-CEBP:AP1-SP1, Figure 6) and
feed-forward loops from ERa.

In the work by Kong et al.29, ERa, FOXA1 and GATA3 have been
discovered to form a functional enhanceosome regulating the genes
that shape core ERa function and cooperatively modulate the

Figure 4 | The ERa-centered core regulatory module structure. The hub nodes were selected based on their respective occurrence frequency of

transcription binding activities, identified from the time-series ChIP-seq data sets, together with the manually-selected ones, which have already been

validated and acknowledged in experiments and literatures published recently. The red edges denote positive activation, and dashed blue ones denote

negative inhibition.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 875 | DOI: 10.1038/srep00875 6



transcriptional network. In the dissected Modules I and II, such a
cooperative mode is implemented through feed-forward loop.

In Module III (ERa-NFkB-PAX2-XBP1-OCT1), the self-inhibi-
tion loops contribute less explicitly than bi-span and feed-forward
loops to the components’ expression patterns, i.e. such components
as OCT1 and XBP1 with self-inhibition loops are up-regulated
except NFkB (top left panel of Figure 7). For PAX2, the positive
feed-forward loop from OCT1, XBP1 and NFkB contributes expli-
citly in its gene expression pattern. Module III’s SNR statistics are
provided on the left bottom panel of Figure 7, with the average SNR
6.291 dB, see the supplemental Tables S1, S2 and S3.

Within Module III, PAX2’s crucial role as a mediator of ERa
repression has been depicted30, mainly by means of feed-forward
and bi-span loops with XBP1 and OCT1. Together, X-box binding
protein, XBP1, is an estrogen-regulated gene recognized as being
strongly correlated with ERa expression in breast cancers31, in this
module, the roles have been clearly illustrated through bi-span and
feed-forward loops with PAX2 and NFkB.

Furthermore from the association analysis between the SNR
values and expression patterns of those module components, on
Figures 5 and 6, we find that MYC with a low SNR value
(4.3471 dB) is up-regulated; components with high SNR values
(from 5.4318 to 6.0196 dB) tend to be down-regulated, see ERa,
GATA3, CEBP, SP1, AP1 and FOXA1, except for XBP1. While for

those with much higher SNR values (from 6.6181 to 7.5316 dB), e.g.
PAX2 and OCT1 on Figure 7, they are up-regulated. This interesting
discovery indicates that SNR measure is relevant to the gene expres-
sion to a certain extent.

Gene ontology analysis on the targeted genes in the modules. In
addition to the identification of three ERa regulatory modules from
the network, we further investigated the time-variant biological
functions of those regulated targets during the transcription
processes. Across the four time points, those regulated targets by
those TF hubs also changed in the quantity, e.g. in Module III, the
ERa target genes cover 355 genes at time point 0; at 1 hour those
genes rise to 583; at 4 hours these regulated genes begins falling to
522; and at time 24 hours, the genes fall to 335 (Figures 8(A) and
8(B), Supplemental Figures S8(A) and (B)).

We then performed the GO analysis on those target genes regu-
lated by each module. Through the GO functional comparison
among those modules across the different time points, we found that
Module III has the most significant time-variant properties during
the whole transcriptional regulatory process; see the results on
Table 2.

From the GO analysis results, we found such terms as calcium
binding, phosphoprotein and short sequence motif: DEAH box were
the common ones throughout the four time points. At time point 0,

Figure 5 | The structure of the embedded Module I (ERa-GATA3-XBP1-MYC). The subplots illustrate gene expression patterns and corresponding

SNR values for those module components. Module I contains only one self-inhibition loop (XBP1). And the corresponding time-course gene expression

plots and inherent expression patterns are given in right panels, together with the up-/down-regulated information (1/2) for each gene on the rightmost

column of the bottom plot. MYC and XBP1 are up-regulated in the module.
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several events were found relevant to the response to bacterium or
other organism; at time point 1 hour, calcium-dependent membrane
targeting, response to DNA damage stimulus and cell adhesion
events were found. At time point 4 hours, splice variant, mutagenesis
site, sequence variant and polymorphism events were also discov-
ered. And for the last time point of 24 hours, helicase ATP-binding,
ATPase activity and alternative splicing were also identified. The
alternative splicing events were found at all other time points with
the exception of time point 0 hour. The GO analysis results for other
modules (Modules I and II) are provided in Supplemental Figures S9
and S10.

Target gene signatures of selection and their clinical outcome
analysis. One of the most evident advantages of genome-wide
analysis via diverse cell lines is to globally identify gene signatures
and corresponding clinical information with prognostic functions.

To address the association analysis on the ERa target genes in each of
three modules and derive underlying clinical outcomes of breast cancers
regarding patients’ histological grade and survival rate, we adopt the
Kaplan-Meier survival analysis approach and investigated the estrogen
receptor status, histological grade (stage) of three breast cancer patient
groups composed of 337, 251 and 137 patients41–44, respectively.

Normally Kaplan-Meier survival probability is adopted for the
analysis purpose and differences in survival are further statistically
estimated by the log-rank test45–47. The analysis results can provide
statistically meaningful insights into the relationship between diverse
patients’ treatment results and certain gene signatures.

For each patient cohort, we adopted an unsupervised clustering
approach (k-means) and clustered the patients into 4 different sub-
groups (PGs) based on their gene signatures, and then associated the
targeted genes in each modules with corresponding clinical patho-
logical features, i.e. survival years, histological stages and estrogen
receptor status.

Through analyzing the clinical cohort of 337 patients from van de
Vijver, et al.41,42, we found that the targeted genes in each modules
had the reasonable predictive abilities to render a significant survival
correlation with log-rank p-values much less than 0.05, see Figure 9.
Figure 9(A) gives clinical prediction for the patient subgroups PG:3
vs PG:4 (patient subgroups 3 and 4) with the log-rank test p-value ,

0.005 (see more details for selecting gene signatures in Supplemental
Materials).

The patient group under the investigation has the predicative char-
acteristics of the early survival period (,5 6 years) compared with
other patient groups, provided in the Supplemental Figures S12 and

Figure 6 | The structure of the embedded Module II (ERa-CEBP-AP1-GATA3-SP1-FOXA1). The subplots illustrate the gene expression patterns and

corresponding SNR values for those module components. Module II mainly contains feed-forward loops, while only one bi-span (ERa-CEBP:AP1-SP1) and

self-inhibition loop (SP1). And the corresponding time-course gene expression plots and inherent expression patterns are given in right panels, together with

the up-/down-regulated information (1/2) for each gene on the rightmost column of the bottom plot. All genes are down-regulated in the module.
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S13, respectively. And those patient subgroups in Figure 9 mainly
came from the tumor grades (stages) II and III, with their estrogen
receptor status 20.22 to 21.22 (ER-, negative ER status), respectively.

The clinical analysis results on the other two patient cohorts are
provided in the Supplemental Figures S12 and S13, all of which have
statically significant log-rank test p-values , 0.05.

Discussion
We proposed a Bayesian multivariate modeling approach for infer-
ring the ERa-centered transcription network, and together the stat-
istical properties of the inferred transcription network were analyzed.
Our method utilized the E2-stimulated time-series ChIP-seq data for
identifying TF hubs and their targets, and the time-series gene
expression data for capturing transcription rates. Our approach is
different from traditional linear modeling, fitting or regression
approaches for analyzing transcriptional regulation, which is a hier-
archical, nonlinear and dynamic-evolving process.

Given that the cellular signaling dynamically responds to external
stimuli, it is reasonable to integrate time-series ChIP-seq and gene
expression data to capture the time-variant network structures and
further elucidate the inherent regulatory mechanisms. To our know-
ledge, the proposed method by integrating time-series ChIP-seq data
and gene expression data has not yet been proposed for analyzing
time-varying transcriptional networks.

Through analyzing the statistical properties of the inferred ERa
network structure, we found that the SNR measure has statistical
association with the inferred regulatory strength, i.e. the components
with the higher SNRs tend to have the higher regulatory strength to
any possible downstream targets. As a matter of fact, genes with the
higher signal densities (SNR value) contributed much more to the
inferred ERa-centered regulatory networks than those with the lower
ones. Across all the four time points, we noticed this meaningful
property from the inferred ERa-centered regulatory networks.
Thus, the SNR measure can be an index for the transcriptional reg-
ulatory activities among the network components.

Furthermore from the association analysis between the SNR values
and expression patterns of those module components, on Figures 5
and 6, we found that MYC with a low SNR value (4.3471) is up-
regulated; components with high SNR values (from 5.4318 to 6.0196)
tend to be down-regulated, see ERa, GATA3, CEBP, SP1, AP1 and
FOXA1, except for XBP1. While for those with much higher SNR
values (from 6.6181 to 7.5316), e.g. PAX2 and OCT1 on Figure 7,
they are up-regulated. This interesting discovery indicates that to a
certain degree the SNR measure is also relevant to the gene express-
ion. The inference error statistical plots for those TF hubs’ transcrip-
tion rates are provided in the supplemental Figure S11.

And with the inherent recurrent motif patterns, we further dis-
covered three self-embedded ERa regulatory modules. From the

Figure 7 | The structure of the embedded Module III (ERa-XBP1-NFkB-OCT1-PAX2). The subplots illustrate gene expression patterns and

corresponding SNR values for those module components. Module III mainly contains four bi-span loops, self-inhibition loops (NFkB, OCT1 and XBP1)

and one co-inhibitory loop (XBP1 and NFkB). And the corresponding time-course gene expression plots and inherent expression patterns are given in

right panels, together with the up-/down-regulated information (1/2) for each gene node on the rightmost column of the bottom plot. XBP1 is up-

regulated, and NFkB is down-regulated in Module III.
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modularity properties and quantitative analysis, we found that feed-
forward and bi-span loops contributed the most to the gene express-
ion patterns in the ERa-centered transcription regulatory network.
And other patterns, such as self-loop (activating or inhibitory) and
interactive loop also played important roles in the ERa-centered
transcription regulatory network.

The GO analyses on those regulatory modules and their targets indi-
cated that distinct functions of ERa target genes were associated with
each of the modules at different time points, demonstrating that our
modularity analysis was indeed capable of discovering the functional
association of the embedded modules together with their target genes.

Furthermore, to address the association analysis on the ERa target
genes in each modules and potential clinical outcomes of breast
cancer patients in different stages, we adopted the Kaplan-Meier
survival analysis approach and further examined the estrogen recep-
tor status, histological grade (stage) of the tumor. Based on the
patient survival time, histological grade (stage) and the estrogen
receptor status (ER negative/positive) information, the survival ana-
lysis results on three cancer patient data sets proved the embedded
modules and their targets could render the reasonable clinical out-
comes of statistical meanings.

In summary, through the Bayesian statistical modeling and mod-
ularity analysis, we not only revealed the dynamic properties of the
ERa-centered regulatory network and its associated distinct biological
functions, but also discussed the biological design principles from the
time-series genomic (binding and expression) data. Furthermore we
also performed the GO and clinical survival analysis on the modules
and their targets. All the above proved the reliability and effectiveness
of our proposed network and modularity analysis approach.

Methods
E2-stimulated time-series ERa ChIP-seq data. The protocol of ERa ChIP-seq was
described in detail in our previous study and Supplemental Materials. Briefly, after
serum starvation, MCF-7 cells48 were stimulated with 17b-estradiol (E2, 70 nM) for 1,
4 and 24 hours or DMSO (Control) at 0 hour time point.

After crosslinking, cells were treated by lysis buffers and sonicated to fragment the
chromatin to a size range of 500 bp - 1 kbp. Chromatin fragments were then
immunoprecipitated with 10 ug of antibody/magnetic beads. The antibodies against

ERa were purchased from Santa Cruz Biotechnology (Santa Cruz, sc-8005 X). After
immunoprecipitation, washing, and elution, ChIP DNA was purified by phenol:-
chloroform:isoamyl alcohol and solubilized in 70 ml of water. The library was con-
structed using an Illumina genomic DNA prep kit by following its protocol (Illumina,
cat# FC-102-1002). DNA samples (20 nM per sample) quantified by an Agilent
Bioanalyzer, were loaded onto an Illumina Genome Analyzer IIx (GAIIx) for
sequencing according to the manufacturer’s protocol. Reads generated from the
Illumina GAIIx pipeline were aligned to the Human Genome Assembly (NCBI build
36.1/hg18) using the ELAND algorithm.

All raw and processed ChIP-seq datasets under this study have been deposited in
the Gene Expression Omnibus (GEO) database at National Center for Biotechnology
Information (www.ncbi.nlm.gov/geo, accession number: GSE35109).

E2-stimulated time-series gene expression microarray data. E2-stimulated time-
series gene expression microarray data in this study were obtained from a publicly
available resource and downloaded from the EMBL-EBI (www.ebi.ac.uk, accession
number: E-TABM-742).

The raw microarray expression data were preprocessed with the quantile nor-
malization, and then normalized by the log2-transformation.

Parameter-optimization in ChIP-seq data analysis. Due to the direct relationship
between peak number and enrichment level of transcription regulation binding
sites, parameter-optimization is a key pre-process step for the further ChIP-seq
data analysis. There are several statistical parameters constraining the peak
number output, e.g. FDR and bin-size, we need to determine an optimal set of
binding events (peak number). Thus, we propose a flexible data feature
detection algorithm which can be formulated as an optimal track process,
illustrated as,

arg max
i

Pi, i [ N

s:t: : fiƒx,biƒb,piƒd:

ð1Þ

where Pi denotes a set of optimal peak numbers under corresponding argument
constraints (FDR, bin-size and p-threshold), fi stands for the argument FDR, bi

for the bin-size and pi for the p-threshold, x, b and d represent presupposed up-
bound argument values, respectively.

Based on the optimized results from Equation (1), herein we define a track rate
function (TR) to quantitatively characterize the inherent data features from diverse
argument pair sets (peak number and FDR), depicted as,

TRi~
SATi

SSTi
~

PM
j~1

SAT (j)

PN
k~1

SST (k)

, i [ N ð2Þ

Figure 8 | The statistical analysis of the regulated genes by Module III across the four time points. (A) The subplots ilustrate the regulated gene

expression by Module III at each time, respectively. At time 0 hour, Module III directly regulates the 355 genes; at 1 hour, Module III regulates 583 genes;

for time 4 hours, the regulated genes fall down to 522, and 335 at time 24 hours. (B) The right panel depicts the association matrix of those gene regulated

by Module III across the four time points, the diagonal entries denote the individual gene number regulated by Module III across all four time points, and

off-diagonal entries denote common gene number (percentage) between the corresponding two time points.
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where M denotes the interval number for the scoring steps in numerator (actual
track), N for the step number for the shortest track from the initial to the destination
point in denominator. The shortest track is defined as one path from the initially-
selected start (normally the point of minimum peak number with the most stringent
FDR and bin-size constraints) to the optimal destination of maximum peak number,
similar to the shortest path definition in graph theory, i.e. one path that connects two
adjacent nodes but traverses the least intermediate nodes. The shortest track is pro-
grammed according to the existing path blocks, e.g. on the upper panel of Figure 2(A)
the p-threshold interval is 0.003 and bin-size interval is 50 bp, where the track moves
across one block, no matter which direction, then the corresponding score function
increases one, denoted by SST. Its score function SST(?) is based on the steps needed
for one shortest path, i.e. if n available steps are needed from an initial to a terminal
point, then a score n will be assigned to the SST.

SAT represents an actual track score based on the interval M. The procedure for
computing SAT is firstly to set an interval number, M and divide the range
between minimum to maximum FDR into M intervals, denoted as d, then from
the minimum FDR, pn, one may search the suitable peak number subject to the
current FDR threshold, pn1id (i[N), the corresponding steps taken are scoring
into the SAT function. The pseudo-code for detecting a track set for SAT is
depicted as,

Figure 9 | The Kaplan-Meier survival analysis based on the target genes regulated by the three modules. The clinical survival information of 337 breast

cancer patients is selected from van de Vijver et al.41,42. The subplot (A) gives the statiscally siginificant result between the patient groups PG:3 vs PG:4

(Module I), and their corresponding group estrogen receptor status and survival stage (grade) information are also provided on the left bottom (log-rank

test p-value: 0.0044178). The subplots (B) and (C) depict the analysis results on the patient groups PG:2 vs PG:4 (Module II), and PG:1 vs PG:4 (Module

III), respectively.

Input:
px: maximum FDR value
pn: minimum FDR value
d: incremental step

Output:
track set for SAT: P

Begin:
index5pn

while index # px do
1. search a maximum peak number s.t.: (1) index;

(2) binsize; (3) p-threshold;
2. index r index 1 d
3. P r index’s information

end while
end
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Equation (1) illustrates the maximization of peak number subject to argument
constraints, FDR, bin-size and p-threshold. It is a parameter optimization since the
whole process is to determine the satisfactory parameter pairs by means of adjusting
constraints, see Figure 2(A). Equation (2) (track rate function) is introduced to
quantitatively characterize the time-series ChIP-seq data features based on the two
arguments, FDR and peak number.

Figure 2(B) depicts the relationship between the track rate function TR and
interval number N, where we may discover that for this time point 0 hour, the track
rate function TR reaches its equilibrium when N is larger than 35. The related plots at
other time points are provided at the supplementary Figures S1, S2 and S3.

Furthermore, through comparing both TR measures across the four time points
(0.33/0.23 R 0.78/0.72 R 0.61/0.39 R 0.46/0.35) with the common TF candidate
counts (309 R 475 R 404 R 381) in Figure 2(D), we found such a parabolic trend in
both TR values similar to the common TF candidate counts. Further analysis revealed
a strong statistical correlation among those counts, i.e. the Pearson correlation 0.9811
(p-value: 0.0189) between the peak number TR values and the common TF candi-
dates, and 0.9545 (p-value: 0.0455) between the FDR TR values and the common TF
candidates across four time points, respectively. The strong statistical correlation
between the defined TR function value and the identified TF candidates across the
four time points indicates the predictive capability of the defined TR function for the
TF candidate counts.

Bayesian multivariate statistical modeling of genetic transcription rates. In the
Bayesian statistical modeling schema, prior information about the model parameter is
denoted by the probability density function p(h), the likelihood function is
represented as p(Xjh), and the inference purpose is to derive the posterior density
function p(hjX). According to the Bayes theorem, the general inference can be
formulated as,

p(hjX)~
p(Xjh)p(h)

p(X)
ð3Þ

For the multivariate case, p(X) can be specified by the decomposition,

p(X)~ P
n

i~1
p(XijPa(Xi)) ð4Þ

where Pa(?) denote the parental node. It can be regarded as a normalized constant by
integrating over all values of h in the product p(Xjh)p(h). Thus, the equation above
can be formulated as,

p(hjX)!p(Xjh)p(h) ð5Þ

The strength of the observation data and corresponding prior knowledge influence
those diverse weights on the beliefs inferred from the multiple sources.

Due to a relatively small sample size of E2-stimulated time-series gene expression
data which contain no knowledge of transcription factors, binding information and
direct target genes, the conventional Bayesian modeling has its limitation. In order to
infer ERa-centered regulatory network, we integrate the time-series E2-stimulated
ERa ChIP-seq data, where it can detect transcription factors and hubs, and facilitate
the further reverse-engineering of the regulatory network by means of inferring
parameters in the Bayesian statistical framework.

Herein we propose a Bayesian multivariate statistical approach for modeling the
time-variant ERa transcriptional regulatory network. The basic model framework is
illustrated as follows,

_yi(t)~
X

i,j

aijxj(t)ze, i~1,:::,M, j~1,:::,N ð6Þ

where _yi(t) denotes the ith gene’s transcription rate, xj(t) for the jth gene’s expression
level at the investigated time, aij for the corresponding regulatory strength of the jth
gene that has any possible transcription regulatory activity on the ith gene, and e
represents the potential stochastic effects during the transcription regulatory process,
which normally follows a normal distribution, i.e. e*N(0,s2).

Thus for a genetic regulatory network containing M transcription factors at T time
points, the above equation can be organized as,

( _YjA,J)M|T~½AX�M|TzJM|T ð7Þ

where _Y~( _y1 _y2::: _yM)0denotes the transcription rate matrix of M transcription fac-
tors, A~(a1a2:::aM)0 denote the regulatory coefficient matrix, X~(x1x2:::xN )0 gene
matrix and J~(e1e2:::eM)0 the error term. Thus, inferring the coefficient matrix A of
the above equation is to acquire concrete knowledge about the transcription regu-
latory strength of transcription factors over diverse target genes under investigation.

The detailed analysis for deriving the posterior mean estimation is given in the
Supplemental Materials, Section 3.

Signal power-based criteria for defining regulatory strength. In consideration of
the large p-value problem incurred by conventional correlation analysis on short
observation samples, we introduce a signal-to-noise (SNR) measure for
characterizing the difference of those investigated genes’ expression levels. By
definition, the SNR measure is used for quantifying the corruption degree of a signal
by the inherent systematic noise, defined as49,

SNR(s)dB~
Psignal(s)

Pnoise(s)
ð8Þ

where P denotes the average power operator. For most periodic signals, the average
power is defined equally to the square of the root-mean-square (RMS), that is,

Table 2 | The GO analysis on Module III across the four time points, respectively. Each table lists the top 10 GO annotation terms at each
time, respectively, with their statistically acceptable p-values (,0.001)

Time 0 hour Time 4 hours

GO annotation p-value GO annotation p-value

phosphoprotein 6.80E-10 phosphoprotein 1.34E-09
calcium binding, subdomain 7.85E-05 calcium ion binding 3.40E-05
nucleus 2.02E-04 calcium-dep. membrane targeting 2.75E-04
short sequence motif: DEAH box 6.25E-04 cell adhesion 3.65E-04
cell cycle 1.24E-03 Golgi apparatus 5.78E-04
cellular response to stress 1.31E-03 short sequence motif: DEAH box 6.05E-04
cytoplasm 2.33E-03 alternative splicing 1.39E-03
response to DNA damage stimulus 4.05E-03 response to drug 1.64E-03
meiosis I 5.16E-03 sequence-specific DNA binding 1.74E-03
mutagenesis site 5.34E-03 response to DNA damage stimulus 1.91E-03

Time 1 hour Time 24 hours

GO annotation p-value GO annotation p-value

phosphoprotein 4.79E-14 phosphoprotein 1.34E-05
alternative splicing 1.56E-06 short sequence motif: DEAH box 4.99E-05
splice variant 1.93E-06 calcium binding, subdomain 9.07E-04
short sequence motif: DEAH box 1.41E-04 domain: Helicase ATP-binding 1.89E-03
cellular response to stress 3.65E-04 alternative splicing 2.26E-03
mutagenesis site 3.85E-04 cell cycle 2.45E-03
sequence variant 6.30E-04 ATPase activity, coupled 3.43E-03
hydrolase 7.94E-04 splice variant 3.57E-03
calcium binding, subdomain 8.78E-04 ATP-dependent helicase activity 4.14E-03
polymorphism 9.38E-04 DNA damage 5.45E-03
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P(s)~RMS2(s)~
1
T

ðT

0
s2(t)dt ð9Þ

where T denotes the signal period. For characterizing the expression process, here we
consider one gene’s mean expression level as the useful signal content and the
deviation of the gene’s global expression level as the noise factor. The SNR measure
can be expressed using the logarithmic decibel scale in standard unit dB.

In our work, we considered ChIP-seq and microarray datasets across the four time
points, thus the SNR value for each network node (gene) was calculated on the
selected microarray expression values across the four time points.
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