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Abstract

Implementation is a crucial component for the success of interventions in health service sys-

tems, as failure to implement well can have detrimental impacts on the effectiveness of evi-

dence-based practices. Therefore, evaluations conducted in real-world contexts should

consider how interventions are implemented and sustained. However, the complexity of

healthcare environments poses considerable challenges to the evaluation of interventions

and the impact of implementation efforts on the effectiveness of evidence-based practices.

In consequence, implementation and intervention effectiveness are often assessed sepa-

rately in health services research, which prevents the direct investigation of the relationships

of implementation components and effectiveness of the intervention. This article describes

multilevel decision juncture models based on advances in implementation research and

causal inference to study implementation in health service systems. The multilevel decision

juncture model is a theory-driven systems approach that integrates structural causal models

with frameworks for implementation. This integration enables investigation of interventions

and their implementation within a single model that considers the causal links between lev-

els of the system. Using a hypothetical youth mental health intervention inspired by pub-

lished studies from the health service research and implementation literature, we

demonstrate that such theory-based systems models enable investigations of the causal

pathways between the implementation outcomes as well as their links to patient outcomes.

Results from Monte Carlo simulations also highlight the benefits of structural causal models

for covariate selection as consistent estimation requires only the inclusion of a minimal set

of covariates. Such models are applicable to real-world context using different study

designs, including longitudinal analyses which facilitates the investigation of sustainment of

interventions.
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Introduction

Identifying the barriers, facilitators and causal mechanisms that affect successful implementa-

tion of complex interventions is crucial for understanding their potential effects in different

contexts [1–4]. After a decade of implementation research, we are now at a stage where barri-

ers and facilitators to adopting evidence-based practices (EBPs) have been identified [5], scales

to measure these factors have been developed [6], frameworks that describe these factors in

context have been proposed to understand the process of implementation and facilitate imple-

mentation planning [7–9]. Additionally, implementation outcomes, distinct from that of inter-

vention effectiveness, have been suggested [10].

Yet, there remain substantial challenges in this area of research, mostly due to the complex-

ity of dynamic systems of care [11]. This has led to the recommendation of focused research

efforts in three areas: 1. Scaling up of EBPs to broaden their reach and impact; 2. Addressing

multiple levels of changes in service systems; 3. Adoption and sustainment of multiple EBPs by

large systems of care, as patients routinely face multiple problems [12].

In past analyses, implementation effectiveness and intervention effectiveness have been

investigated together in hybrid designs [13] but they did not attempt to model implementation

and intervention as a parts of a single system. Hence, these approaches did not formally

account for the causal mechanisms linking different systems components. This presents a con-

siderable gap since in implementation research, knowledge accumulation requires methods

for causal inference that consider the complex structure of the systems in which interventions

are implemented and investigate the pathways through which implementation works [14,15].

A causal approach to health systems implementation research in real-world contexts brings

with it two challenges. First, formal methodologies describing the causal linkages between

implementation outcomes and intervention effectiveness are not readily available. Second, rig-

orous methods for establishing causality in this field have largely been limited to randomized

controlled trials (RCT), which makes the identification of causal relationships between imple-

mentation outcomes and intervention effectiveness difficult. Moreover, conclusions drawn

from RCTs, especially regarding external validity, depend on a series of prerequisites [16] that

may be untenable in complex social contexts [3,17–20]. Hence, findings from RCTs may be of

limited value for understanding and addressing the barriers to successful implementation of

EBPs in real-world contexts in the absence of a cumulative scientific progress [17] based on

formal models of how implementation strategies are related to intervention effectiveness.

In this paper, we address issues regarding implementation and intervention effectiveness

raised in the recent literature on implementation and health service research. We present

implementation as an intervention itself within a complex system where multiple levels are

linked through stakeholder decisions at different points. Taking this approach to modeling

implementation has several major advantages: (i) it allows us to model implementation com-

ponents and intervention outcomes as integrated elements of a complex process within a single

system, (ii) it enables us to integrate implementation frameworks with structural causal sys-

tems [21] to investigate the effects of implementation strategies and outcomes as well as inter-

vention effectiveness, and (iii) it makes all model assumptions explicit, leading to transparency

of research.

From a methodological perspective, our model can be interpreted as an extension of hybrid

designs [13] by formally considering causal links between implementation and intervention

components of the system. To demonstrate how the approach can be applied in practice, we

use a hypothetical example based on empirical studies in the health service research literature.

We also discuss the implications of this approach for implementation research and the evalua-

tion of complex interventions in systems.

Implementation outcomes and intervention effectiveness in health care systems
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A decision-based causal model of implementation and intervention

effectiveness

The key idea in our approach is that the process of implementation can be structured as a

series of conditional decision points or choices. These choices are represented by a set of causal

relationships between the decision outcome and characteristics of the inner, outer, and patient

contexts, as well as the intervention itself. This results in the implementation, systems, and

effectiveness outcomes being treated as integrated and linked parts of a system. By defining the

implementation process as a series of decision points, our model puts stakeholders at the cen-

ter of the system. In other words, barriers, facilitators and other variables related to the imple-

mentation and intervention processes take effects through the choices made by stakeholders at

different levels of the implementation system, including policy makers, organizations, practi-

tioners, and patients.

Decision-based implementation systems

To explain the underlying idea of framing the implementation process as a series of decisions,

we begin by describing how individual choice situations are formulated within a structural

causal model. A structural causal model consists of a set of structural equations. Each equation

represents a causal relationship between an outcome, or dependent variable, and the explana-

tory variables of interest, which are often denoted as ‘parents’ of a particular outcome variable

[21]. Applying this informal definition of structural functions to a particular decision node, we

can represent a causal equation of each choice with the diagram shown in Fig 1. In the dia-

gram, both observed causes and unobserved causes are factors in the decision process or func-

tion which leads to an observed choice, with unobserved causes represented as error terms.

Structural models are subject to such error terms or uncertainties since researchers usually

cannot observe all the causal factors driving a particular decision. Nevertheless, we can still

make probabilistic statements about observed choice processes [22] and these statements have

causal interpretation under certain assumptions, as described in the S1 Appendix.

The particular forms of these causal relationships are based on theoretical models that are

derived from our understanding of the world. In our case, these theoretical models explain

how decisions are made in the implementation process. A thorough treatment of structural

equations, especially in a choice context, is beyond the scope of this article and we defer a

more detailed exposition of this topic to the S1 Appendix.

As mentioned above, we assume that each person acting within the implementation system

is confronted with making at least one choice among different options. For example, a man-

ager in an organization may choose between several implementation strategies and a practi-

tioner can choose alternative interventions that may be appropriate for a particular patient.

An observed choice made by an actor in the system is framed as a result of a comparative

process. A decision maker weighs the benefits and costs of each alternative, which are not nec-

essarily measured in monetary units, and compares the net benefits of available options to

come to a conclusion. It is exactly the series of such decision processes that determine the path-

way of implementation in the system and, consequently, the effectiveness of the intervention.

To integrate the structural causal approach into a decision framework, we must understand

the behavioral process leading to decision makers’ observed choices [22]. In other words, we

will need to understand what the drivers and barriers are at each decision point in the system.

As such, the decision-based implementation approach is based on a theoretical behavioral

model of how people make choices which is, in turn, context-specific and should be informed

by evidence in implementation research and behavioral theory. The structural causal approach

examines how people along the implementation process select one of the alternative pathways

Implementation outcomes and intervention effectiveness in health care systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0223129 October 17, 2019 3 / 17

https://doi.org/10.1371/journal.pone.0223129


at each decision juncture. The emphasis is on learning about what drives people to make these

decisions, how different decisions are related to each other, and how these are related to spe-

cific, measurable consequences.

In the next step, we will integrate structural decision models with implementation systems

using the Exploration, Preparation, Implementation, Sustainment (EPIS) framework [7]. This

model has been widely used [23] and it interprets implementation as a process consisting of

four phases: (i) Exploration, (ii) Adoption Decision/Preparation, (iii) Active Implementation,

and (iv) Sustainment.

The Exploration phase refers to the awareness among organizations of issues to be

addressed or service aspects to be improved. This phase transitions to the next when a decision

is made by the organizational leadership to implement one or more interventions.

During the Adoption Decision/Preparation phase, organizations search for existing evi-

dence-based innovations or interventions that can be used to address these issues. In this

phase the organization sets an implementation goal, weighted against relevant outer context

and inner context barriers and facilitators. Implementation strategies which may be a complex

plan of implementation involving more than one strategic element or discrete implementation

strategy [24] are guided by the organization’s goals as well as balancing the cost of implementa-

tion and the anticipated benefits of the intervention(s) [25].

Active Implementation refers to organization-wide application of the interventions. This

phase also encompasses practitioners’ decisions to implement and patients actually receiving

the interventions. It is therefore the phase where implementation outcomes [10] are situated

and linked to intervention effectiveness and service outcomes. For example, feasibility, fidelity,

adoption, or acceptability are all directly influenced by decisions made during earlier phases.

Moreover, these outcomes are themselves mediators and moderators on the pathways from

the choice of implementation strategies over practitioner uptake decisions to patient

outcomes.

The potentially iterative nature of implementation has long been recognized [26]. An

important concept of the Sustainment phase is the impact of experiences or lessons learned in

one implementation project on future iterations of the same project or different implementa-

tion efforts [7]. We view implementation as an ongoing iterative process with experiences

Fig 1. Graphical representation of a structural equation for a single decision point.

https://doi.org/10.1371/journal.pone.0223129.g001
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providing feedback to the system as a form of continuous quality improvement (CQI) of care.

Phases of implementation can be fluid in the sense that an organization may revisit preceding

phases with new information generated from subsequent phases. CQI becomes a critical part

of the implementation process and implementation becomes part of routine practice of an

organization through CQI.

Fig 2 illustrates the systems approach as a multiple-level decision juncture model. The three

boxes at the top of the diagram represent variables of the outer context, inner context, and

patients where bi-directional arrows indicate mutual influences among the three sets.

The broad arrow at the bottom of the diagram denotes the first three stages of implementa-

tion, with the Sustainment phase depicted as a feedback loop linking outcomes at various levels

of the system into the three sets of variables. Decision-making junctures along the organiza-

tional decision chain (denoted by the letter D) are located in the middle of the diagram, span-

ning the phases of implementation. At the right-hand side of the decision-making chain are

T1, T2, and Y, which denote practitioners’ decision to buy-in, patient uptake, and intervention

outcome respectively. At each decision juncture, decision makers can choose from a set of

alternatives which results in an observed choice outcome as shown in Fig 1. Note that each

decision is actually an outcome itself and is conditioned on previous paths.

Analyzing implementation and intervention effectiveness

Much of implementation research is guided by the paradigm of the Potential Outcomes

Framework [27], which is based on idealized experiments [13]. Recent developments in the lit-

erature on causal inference have provided unified frameworks [21,28–30] which view counter-

factuals as derived from structural systems and define treatment effects within structural

causal models. This provides an intuitive representation of the decision processes faced by

stakeholders in implementation-intervention systems, allowing us to causally link decision

outcomes, implementation outcomes, service outcomes, and patient outcomes in a cohesive

Fig 2. Multilevel decision juncture model.

https://doi.org/10.1371/journal.pone.0223129.g002
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model. The phased interpretation of the multilevel decision juncture model for implementa-

tion described in the previous section results in a dynamic specification where the choice

options and outcomes of one phase depend on the decisions made in previous phases.

Researchers may require a fully specified structural model or focus on treatment effects,

depending on the research question and their confidence in making functional and structural

assumptions about the system [31,32]. Given our focus on intervention and implementation

effectiveness, we will concentrate on treatment effects and will not discuss the identification of

structural parameters.

We follow a three-stage or three-task process as a general procedure for causal analysis in

implementation systems. These stages are (1) defining the counterfactual conditions; (2) iden-

tifying causal and non-causal parameters ignoring sampling uncertainties; and (3) statistically

estimating parameters using real data [33]. Task 1 sets up the core of the structural model by

developing a theoretical map of the implementation system, including causal relations between

its elements. This includes defining a set of hypotheticals or counterfactuals, which are queries

of the kind: “Given the observed characteristics of a particular individual, organization or set-

ting, what would the outcome have been had variable X been set to value x while all else would

have been the same?” [34]. In other words, we are interested in changes of a particular out-

come (e.g., patient outcome) had the decision maker (e.g., practitioner) made a different

choice (e.g., treatment or implementation strategy) at an earlier point in time. Counterfactuals

are derived from structural systems, guided by a precisely formulated scientific theory [21,33].

This theory should reflect our knowledge based on existing research on domains and con-

structs of implementation such as the Consolidated Framework For Implementation Research

(CFIR) [8], the relationships between those elements [14,15], theories and scientific evidence

on human behavior [35,36], models for behavior change [37] and qualitative knowledge pro-

vided by practitioners, patients and other stakeholders. The theoretical map in this stage deter-

mines the structure of the multilevel juncture decision model described above.

Task 2 is concerned with identifying parameters under the assumption of infinitely large

samples [21] and considering self-selection of decision makers into pathways. The aim here is

to see whether the desired effects can be identified in the given system.

Task 3 introduces statistical uncertainty and is concerned with the estimation of effects

using real data. As statistical inference is the goal in this stage, researchers have to consider

that they may be working with finite samples rather than population data. Hence controlling

for sampling variation, measurement error, design effects (e.g., cluster sampling), or family-

wise error rates should be considered in this stage where appropriate. It is also important to

note that while the decision models and counterfactuals are defined at the individual levels, the

individual treatment effects are generally not identified due to missing information on alterna-

tive outcomes for each individual [38]. Nevertheless, as we demonstrate in the hypothetical

example and in supporting information, several relevant parameters may be identified, includ-

ing the average treatment effect or heterogeneous treatment effects across different subpopula-

tions (S1 Appendix).

A hypothetical example with simulation

We now demonstrate the structural decision approach using a simplified case example of cog-

nitive behavioral therapy (CBT) for anxiety disorders in children and adolescents. Although

hypothetical, the context is inspired by studies published in the area of implementation of

mental health interventions in allied healthcare settings [39–41] and it is important to note

that this multilevel decision juncture model can be applied to any healthcare setting.

Implementation outcomes and intervention effectiveness in health care systems
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In this scenario, an individual-format of cognitive behavioral therapy is funded by a state

government for delivery by mental health service providers, including community agencies

and hospitals. Existing evidence shows that CBT is an effective treatment for anxiety disorders

in child and adolescent patient populations [39,40] and the government decided to bring the

therapy to scale, introducing it at a regional level.

However, the evidence of the comparative advantage of CBT to other treatments and its

long-term effectiveness are mixed [42] and therefore perceptions on the state of evidence vary

among organizational decision makers in our example. Organizations are free to choose to

adopt CBT to treat anxiety or to provide a different treatment (e.g., service as usual). The CBT

program can be implemented in one of two ways, either without (basic strategy) or with facili-

tated support structures, such as workshops, that incur costs on the organizations (enhanced

strategy). We further assume that existing evidence suggests that the enhanced strategy will

lead to improved implementation outcomes.

Fig 3 depicts a flow chart of the case example, with decision junctures mapped out through

the first three phases of implementation–Exploration, Adoption Decision/Preparation, and

Active Implementation. The colored boxes show the three main decision junctures. In the

Exploration phase, organizations will choose whether to implement or not (D1 = 1 or 0) based

on their expected net benefits from the intervention. In the Adoption Decision/Planning

phase, they will choose the implementation strategy that will maximize their net benefits or

utilities (D2 = 1 for enhanced or 0 for basic).

Further along, implementation is rolled out and practitioners decide on whether to assign

individual patients to the CBT treatment or not (T1 = 1 or 0). In this example, patients are

assumed to comply with treatment protocols although this could be included in the model by

creating another decision juncture. In a final step, treatment affects patients’ outcomes (Y).

The decisions incorporate a complex choice process that is influenced by patient and case-

worker characteristics as well as restrictions imposed by the system (e.g. time restrictions,

equipment or limited budget).

This hypothetical case study is deliberately presented in a structure that facilitates compari-

son of traditional approaches with decision-based structural models, which link outcomes at

different levels of the system through causal pathways. For example, in a RCT, unit-level ran-

domization would be situated at decision node T1 in Fig 3. In a Hybrid Type 3 study [13], ran-

domization would occur at decision node D2 and a cluster-randomized study focused on

treatment effectiveness would be situated at decision node D1. This highlights a significant

advantage of decision-based structural systems–they can be seen as theory-driven systems

models that extend traditional approaches, such as hybrid designs, to enable learning about

Fig 3. Flow chart for a hypothetical study of the implementation of CBT.

https://doi.org/10.1371/journal.pone.0223129.g003
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how different elements of the system affect outcomes through the chain of decisions, in line

with the cumulative scientific progress [17].

The process of analysis can proceed iteratively. As we learn more about the system, we also

understand how to effectively sustain and improve the implementation, which may change

what we do and the decisions we make as we go. However, our example, as an illustration of

the approach, excludes feedback and dynamic effects and we also assume that patients do not

influence each other (i.e., patients’ outcomes are mutually independent).

We now apply the three-stage process to investigate effects of interest using techniques

described in the literature on causal inference [21,43]. With a broad audience in mind, we

refrain from providing technical details or definitions and refer readers to the supporting

information and references therein (S1 Appendix).

Task 1: Defining hypotheticals or counterfactuals. Guided by clearly specified research

questions, the first step is to define the counterfactuals. In this example, we investigate the

effect of an intervention and implementation strategy which sets the causal variables of interest

(e.g., the implementation strategy) to a specific value, holding all other variables constant.

Based on theory, existing evidence, practical knowledge and available data, researchers gen-

erate a structural model of the intervention system. We assume that the following variables are

included in the analysis (Fig 4):

• Organizational variables–intra-organizational networks (Z1), management style (Z2), and

organizational structure (Z3).

• Implementation- and intervention-specific characteristics–anticipated costs of each imple-

mentation strategy (W1, W2), an aggregate cost variable (W) and empirical evidence of effec-

tiveness (B1).

Fig 4. Directed acyclic graph for a hypothetical implementation of CBT.

https://doi.org/10.1371/journal.pone.0223129.g004
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• Practitioner variables–age (X1), perceived leadership in organization (X2), tenure in current

job (X3), perceived feasibility of the treatment (X4), and perceived appropriateness of the

treatment (X5).

• Patient variables–age (V1), gender (V2), socio-economic status (V3), patient outcome scores

at baseline (Y1) and follow-up (Y2).

Given our assumptions for this example, we formulate the system using a directed acyclic

graph (DAG) [21]. DAGs present the causal system in nonparametric form [21] and have the

advantage of being more accessible for our purpose than systems of equations (see S1

Appendix).

Fig 4 shows the DAG of the structural causal model for this hypothetical example. All

assumptions about causal mechanisms are made explicit in the graph (see S1 Appendix). Solid

unidirectional arrows represent a causal effect from one variable to another (e.g. organizational

variable Z1 and cost of strategy W1 are parents to decision-node D2) and dashed bi-directional

arrows represent unobserved correlated errors between two variables. The absence of an arrow

between variables implies the absence of direct causal relationships [21]. Each node also has an

unobserved error as input, which, per convention, are not shown in the graph and are assumed

to be mutually independent [21].

D1, D2 and T1 are decision nodes as in Fig 3. Note that practitioners in organizations not

implementing CBT do not participate in subsequent choices. In this example, outcome vari-

ables at baseline (Y1) and follow-up (Y2) are assumed to be continuous assessment scores.

From an implementation perspective, variables representing feasibility (X4), appropriate-

ness (X5), and practitioners’ decision to adopt the intervention by assigning patients to treat-

ment (T1) are of particular interest as they represent examples of implementation outcomes in

the system [10]. While these variables are measured at the practitioner level, their distributions

(e.g., averages, percentiles, etc.) can be interpreted as implementation outcomes regarding

whether a particular intervention was perceived as being feasible (X4) or appropriate (X5) and

whether the intervention was adopted by practitioners (T1). The model presented in Fig 4

directly illustrates how implementation strategies (D2) are linked with implementation out-

comes (X4, X5, T1), which in turn mediate the pathways to patient outcomes (Y2) and hence

intervention effectiveness. Furthermore, the model also highlights how implementation out-

comes influence each other, as emphasized in the literature [10].

Task 2: Identification of effects. Based on Fig 4, we can investigate whether parameters

of interests are identified in the model using theorems stated in the causal inference literature,

the references to which are provided in the S1 Appendix.

For example, the effect of the implementation strategy (D2) on perceived feasibility (X4)

and appropriateness (X5) can be identified by controlling for intra-organizational networks

(Z1) and perceived leadership (X2). The effect of feasibility on the probability of treatment

assignment (T1) is identified by controlling for variables Z1, X2 and X5 as justified by the back-

door criterion [21]. While X3, V1, V2 and Y1 are not necessary for identification of this effect,

inclusion will generally increase precision of estimation [43]. The effect of X5 on T1 is identi-

fied using a similar approach.

Finally, identification of the treatment effect of T1 on the outcomes score at follow-up (Y2)

requires control for case characteristics such as age (V1), gender (V2), and the baseline score

(Y1) as they are all confounders. From an efficiency perspective, V3 should also be considered

as a covariate [43].

Following this approach, we can try to identify any relationship expressed in the graph as is

discussed in more detail in the S1 Appendix. These examples highlight how structural models

Implementation outcomes and intervention effectiveness in health care systems
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facilitate the selection of variables to be included for estimation by making assumptions about

the causal relationships explicit.

Task 3: Statistical estimation. The final task is to estimate the effects of interest from

actual data. We demonstrate this using Monte-Carlo simulations. These simulations are based

on a designed dataset that has predetermined characteristics and a specified structure that opti-

mally approximates a real scenario [44]. Since the true structure of the model is known in sim-

ulations, they allow us to show that using the decision juncture model combined with a

structural causal approach, we are indeed able to obtain the estimated effects in an implemen-

tation system. Demonstrating the appropriateness of such an approach is not possible in exper-

imental or observational studies as we do not have information about the true structure of the

system.

In the present study, data are created from a data-generating process that follows the struc-

ture shown in Fig 4. The generated dataset is intended to approximate a realistic scenario,

where each organization employs several professionals who each work with several patients.

This results in a hierarchical dataset that resembles the structure generally observed in allied

healthcare settings, including mental health services [41]. The overall sample size for the simu-

lations was set to 6000 patients, which is well within the range of government administrative

databases in reality. This sample size was chosen to avoid problems arising from the hierarchi-

cal structure of the data or low statistical power. However, structural decision models can also

be applied to data with smaller sample sizes as often observed in the implementation literature

[41] and it is important to note that Tasks 1 and 2 are independent of sample size.

As the estimates retrieved from a single sample can vary substantially, we run the simulated

model 10000 times, which reveals whether the estimated effects are consistent (i.e., unbiased in

large samples) and whether statistical inference based on these estimates is reliable.

Each repetition represents an analysis using a different sample. In other words, we estimate

each of the effects discussed in Task 2 many times and then analyze the results over all 10000

repetitions. A detailed description of the assumptions for the simulations as well as the Stata

code used to conduct the simulation is available in the S1 Appendix.

For the sake of simplicity, the functional forms of causal relationships were specified so that

average effects in the model can be estimated using standard methods such as linear least

squares and probit regressions. As the purpose of this simulation is to demonstrate that the

structural causal approach can be used to retrieve estimates of the true effects, we focus on the

bias of the estimates over the 10000 repetitions. Fig 5 shows the relative bias for estimated aver-

age effects as described in Task 2 above. The arrow in the parameter name on the abscissa indi-

cates the direction of the effect. For the effect of feasibility (X4) and appropriateness (X5) on

treatment probability (T1), as well as the effect of T1 on patient outcome (Y2), we conducted

estimations using two models–short specifications and full specifications. The short specifica-

tions model includes only variables that are necessary to control for confounding [21] while

the full specifications model includes all parent variables of the dependent variable, which

increases the precision of the estimate. The relative bias estimates shown in the figure are

based on the true average effects observed in the generated sample for each of the 10000 repeti-

tions. The 95 per cent confidence intervals are based on the empirical standard error of the sta-

tistic [44,45].

The results show that the estimated average effects are very close to the true effects with the

average relative bias being less than one percent for each parameter. Furthermore, the 95 per

cent confidence intervals include zero for all effects [45]. However, the results also show signif-

icant variation in some of the estimates. Particularly, the effects of implementations strategies

(D2) on feasibility and acceptability exhibit large variations. A major contributor to this
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variation in estimates is the smaller sample sizes as these implementation outcomes vary at

organization-level only (see S1 Appendix).

Additionally, the short regressions, which include only the covariates necessary to block

back-door paths, exhibit significantly higher variability than the fully specified models, which

corroborates our theoretical discussion above. This hypothetical example highlights how struc-

tural models can serve to provide justification for critical assumptions made in our estimation

models, such as unconfoundedness [30].

In the S1 Appendix, we provide further details as well as results that show the consistency

of the parameters rather than average treatment or marginal effects. Evidence that the multi-

level structure of the data can be appropriately considered in the models is also shown.

Discussion

The approach described in this paper frames implementation as a series of decisions at differ-

ent levels of complex systems. Doing so contributes to implementation and intervention

research in multiple ways: (i) learning about causal pathways and dynamic processes in imple-

mentation systems, (ii) providing a rigorous and flexible methodology to facilitate evaluation

of implementation and intervention effectiveness in real world contexts, and (iii) enhance

transparency of research by making all model assumptions explicit.

Learning about implementation systems and enhancing transparency of

research

Recent developments in the literature on causal inference and structural systems have increas-

ingly recognized that the structural approach and the experimental ideal are not necessarily at

odds but should be rather seen as complementary [17,32,46]. An advantage of interpreting

Fig 5. Results from Monte Carlo simulations–Relative effect bias.

https://doi.org/10.1371/journal.pone.0223129.g005
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treatment effects within structural systems is that all assumptions about causal relationships

are made explicit [47] and are derived from a theoretical model. This understanding is espe-

cially critical for quasi-experimental studies, which do not have the qualities of randomized

studies in controlling for confounding causes [32].

A theory-based approach enables us to link the process of implementation with the effec-

tiveness of interventions in a cohesive and logically structured systems model. Guided by the-

ory, structural causal models enable us to gain insight into individual decision processes and,

consequently, the direct and indirect pathways through which implementation strategies and

interventions are chosen and work within the system, thus contributing to the cumulative sci-

entific progress [17]. Generally, these pathways cannot be tracked in RCTs without relying on

structural assumptions because they are, by definition, randomized out [33].

By integrating implementation frameworks [7], existing research on implementation facili-

tators and barriers [8] and the mechanisms of implementation [14] into structural causal mod-

els, this study provides a decision-based approach to structural analysis for implementation

research. Causal relationships in the theoretical model specify which constructs and variables

enter the system at each decision point. By generating a structural causal model, all assump-

tions about the system are made explicit and critical assumptions, such as conditional exogene-

ity, can be justified and may even be tested in some cases [34,48]. This enhances the

transparency of implementation research.

It is important to note that the structural causal models described here are fundamentally

different from statistical approaches used for descriptive modeling and prediction [49–51]. A

major difference is that structural models are based on theory while predictive modeling is

generally data-driven. Whereas descriptive models are usually concerned with associations or

predicting outcomes, structural models as illustrated in this paper focus on the causal interpre-

tation of effect sizes [50–52]. By framing implementation within a decision-based structural

system, we aim to answer complex counterfactual questions about hypothetical states in the

system [34] that generally cannot be evaluated through statistical conditioning [21,28]. Taking

these differences between predictive, descriptive and structural models into consideration, it

becomes evident that only theory-driven models facilitate the identification of causal pathways

through the system, reveal optimal leverage points for interventions and CQI efforts, and esti-

mate their expected impacts.

Facilitating implementation research in real world contexts

Framing implementation systems as sequential chains of decisions emphasizes collaboration

between researchers, practitioners and patients during model development and improvement.

This is because the models and decision processes have to be made explicit and this requires

input from everyone involved in service delivery and receipt.

The structural causal approach also offers some practical advantages for analysts engaged in

evaluation research as it consolidates the knowledge about systems in structural models,

enabling the estimation of intervention and implementation effects from observational data

[21]. For example, the CIFR [8] prescribes five domains with 39 constructs that are critical for

the success of implementation. Rather than controlling for all potential variables in every equa-

tion, structural models provide guidance in variable selection [30,43]. This emphasizes a focus

on parsimonious models [34] and prevents the inclusion of inadequate variables in analytical

models [53,54]. Hence, structural causal models provide a guide to efficient data collection

and estimation, thus reducing the burden on stakeholders and research budgets [43]. Recent

developments in the econometric literature also integrate flexible machine learning

approaches with causal models for cases where the number of confounding variables is large,
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functional specifications are questionable, or the interest lies in heterogeneous treatment

effects [52].

The ability to employ data collected by administrative database systems and surveys pro-

vides new avenues of causal investigations for implementation research. Administrative data-

sets provide large sample sizes and often have longer observation periods than data collected

specifically for research purposes. Employing high-quality observational data in combination

with structural models allows researchers to learn about long-term dynamic effects of inter-

ventions and their relation to stakeholders’ choices [32]. Because structural models focus on

the selection mechanisms in systems, they may, under certain conditions, also be used to pre-

dict impacts of existing interventions in new settings or new interventions in existing settings

[33], which is a major goal of implementation research [1].

In order for the causal approach to be successful, it is important that relevant data are col-

lected in sufficient quality [55]. Integrating implementation with CQI and research may pro-

vide the impetus to rethink data collection to include measures of implementation elements

[8,56] in order to support structural analysis [55].

Our approach emphasizes the iterative nature of implementation, with sustainment por-

trayed as a quality improvement process where previous experiences provide feedback to the

system between cycles of evaluation as a form of CQI. By extending structural models to

include dynamic feedback, sustainment can be directly modelled, providing a framework to

facilitate ongoing practice improvement and assess implementation success in complex service

systems.

Limitations of the current study

While our approach has a number of advantages, as discussed above, it also has some limita-

tions. As outlined in the previous paragraphs, the multilevel decision juncture model is

informed by scientific theories and existing evidence. Such models assume completeness, with

no causal pathways unaccounted for. In other words, the absence of a path between two vari-

ables in a DAG implies the absence of a causal relationship [21]. Much of the criticism of non-

experimental studies is motivated by such assumptions since the number of confounding

paths can be substantial in social and health research and ignorability or unconfoundedness

can generally not be tested [57]. However, we argue that this critique does not by itself invali-

date the significant contribution that structural causal models can make to implementation

research. With a focus on CQI and sustainment in complex systems, it is important to identify

not only which implementation strategies may be effective but also how these strategies work

within the system. Hence, causal explanation [58] is the key to identification of leverage points

and feedback loops in the system. This is the strength of theory-driven causal models.

It is also important to note that the described approach does not depend on a particular

study design. Tasks 1 and 2 are independent of the statistical approach to estimate parameters

but are concerned with the formulation of a model and theoretical identification of effects

[33]. Only during Task 3 will the study design matter. As such, the multilevel decision juncture

model can be applied to inform both experimental and non-experimental studies. With a

focus on CQI and sustainment, we have restricted our discussion to routine data collection set-

tings based on observational data. Consequently, this approach requires careful validation of

the models employed for analysis, including theoretical justification and sensitivity testing

[48,59,60], which should be conducted in any rigorous scientific investigation.

Another limitation of the current study is the assumed availability of measures for all vari-

ables in the model. Despite an abundance of measurement instruments [56], few studies have

focused on measuring implementation in practice settings. Theoretical models facilitate data
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collection by highlighting confounding factors that should be measured. Recent efforts in

implementation research focus on the development of flexible data collection platforms that

facilitate the use of structural models in real-world practice environments [55].

In situations where not all required data is available to block confounding pathways, alter-

native techniques such as instrumental variable estimation [38,61] must be used during Task

3. Theory-based models can justify the use of these techniques by explicating underlying

assumptions.

Addressing practitioners and researchers interested in the implementation of evidence-

based practices alike, the current study has also postponed a detailed treatment of the analysis

of dynamic models. However, the applied example in this study can be extended to capture

dynamic processes, including feedback of implementation and intervention outcomes on latter

implementation cycles. In real-world implementation contexts, dynamic processes are of par-

ticular interest as they are at the core of sustainment and CQI efforts. However, treatment of

these analytical extensions is technically involved and beyond the scope of this study and we

refer the interested reader to the relevant literature [21,31,62].

Conclusions

Implementation is ultimately an optimization process in the use of interventions to maximize

patient outcomes. The systems decision perspective described in this paper provides a starting

point towards retrieving parameters of causal mechanisms throughout the process of imple-

mentation as an integrated system. At any phase or stage of the implementation process,

parameters can be estimated, with causal mechanisms modelled and studied to learn about

decision making processes in the system. The effects of implementation on patient outcomes

are clearly specified through an explicitly described causal chain, with pathways effected by

branches based on choices at decision junctures. Such an approach focuses on the pathways

through which policies and strategies work in the system, and this has the potential to speed

up the translation of research knowledge into practice. From such a perspective, causal expla-

nation [58] is of central interest and this is where decision-based structural models will be

indispensable for future implementation research in complex systems of healthcare.
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