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Abstract

Single-cell RNA sequencing has enabled to capture the gene activities at single-cell resolution, thus allowing reconstruction

of cell-type-specific gene regulatory networks (GRNs). The available algorithms for reconstructing GRNs are commonly

designed for bulk RNA-seq data, and few of them are applicable to analyze scRNA-seq data by dealing with the dropout

events and cellular heterogeneity. In this paper, we represent the joint gene expression distribution of a gene pair as an

image and propose a novel supervised deep neural network called DeepDRIM which utilizes the image of the target TF-gene

pair and the ones of the potential neighbors to reconstruct GRN from scRNA-seq data. Due to the consideration of TF-gene

pair’s neighborhood context, DeepDRIM can effectively eliminate the false positives caused by transitive gene–gene

interactions. We compared DeepDRIM with nine GRN reconstruction algorithms designed for either bulk or single-cell

RNA-seq data. It achieves evidently better performance for the scRNA-seq data collected from eight cell lines. The simulated

data show that DeepDRIM is robust to the dropout rate, the cell number and the size of the training data. We further applied

DeepDRIM to the scRNA-seq gene expression of B cells from the bronchoalveolar lavage fluid of the patients with mild and

severe coronavirus disease 2019. We focused on the cell-type-specific GRN alteration and observed targets of TFs that were

differentially expressed between the two statuses to be enriched in lysosome, apoptosis, response to decreased oxygen level

and microtubule, which had been proved to be associated with coronavirus infection.
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Introduction

Reconstruction of gene regulatory networks (GRNs) is critical

to understand the mechanisms of synergic gene effects and

context-specific transcriptional dynamics. High-throughput

technologies such as chromatin immunoprecipitation (ChIP)-

chip and ChIP-seq can directly capture the transcription factor

(TF) binding sites of targeted genes; however, these techniques

are costly and TF-specific, and are therefore unsuitable for use

on a whole-genome scale [1]. As a consequential observation,

the fact that the co-expression of TFs and their target genes

has been adopted to reconstruct GRNs [2–6]. In the last two

decades, microarrays and bulk RNA sequencing (RNA-seq) have

been the two mainstream technologies used to capture gene

expression profiles from diverse tissues. Both techniques have

been widely applied to identify differentially expressed genes

and reconstruct GRNs [7–9]. However, microarrays and RNA-seq

inappropriately assume that gene expression is homogeneous

among cells and ignore cellular heterogeneity. Indeed, tissue

consists of a diverse range of cell types with distinct GRNs

[10] and biological functions [11]. Several studies have sought

to reconstruct GRNs using bulk gene expression data [12, 13],

but the cell-type-specific GRNs remain largely unexplored.

Single-cell RNA sequencing (scRNA-seq) offers an opportunity

to capture cell-specific gene expression, which in turn could

provide deeper insights into the cellular heterogeneity and

cell-type-specific gene activities[14].

Most of the available algorithms for GRN reconstruction

are designed for bulk gene expression, and function by

resolving two computational challenges. In this context, unique

difficulties arise if scRNA-seq data are adopted instead. First,

putative TF-gene interactions are derived by examining their

co-expression. Bulk gene expression data are commonly

normalized to a standard Gaussian distribution, such that the

TF-gene correlation can be quantified by methods such as

mutual information (MI) [15], Pearson correlation coefficient

(PCC) [16, 17]. The scRNA-seq gene expression data are zero-

inflated due to the imbalanced transcript sampling. Although it

is possible to impute zero entries before calculating the TF-

gene co-expression, this may introduce unpredictable noise

and bias [18], given that most of the imputation algorithms

make use of gene–gene co-expression. Second, the TF-gene

pairs with strong co-expression due to transitive interactions

(e.g. those bridged by one or more intermediate genes) should

be eliminated (Supplementary Figure S1). Several strategies

have been designed to remove these transitive interactions

by conditioning on the other confounding genes; examples

include the Gaussian graphical model [19], conditional MI [20],

context-based normalization and edge removal [3] and tree-

based ensemble methods [5]. Unfortunately, these algorithms

were originally developed to analyze bulk gene expression

data, and are unsuitable for modeling scRNA-seq data [21].

Many algorithms have recently been proposed to cater for the

unique characteristics of scRNA-seq for GRN reconstruction.

SCODE [22] infers cell-specific pseudo-time and reconstructs

the GRN by solving ordinary differential equations. PIDC [23]

adopts partial information decomposition to break down the

TF-gene correlation into redundant, synergistic and unique

effects. SINCERITIES [24] utilizes regularized linear regression to

infer GRNs from time-stamped scRNA-seq data by referring to

temporal changes in the gene expression distributions. GENIE3

[5] is a tree-based ensemble method that was initially developed

for bulk gene expression data. Aibar et al. later applied GENIE3

to reconstruct the global GRN for scRNA-seq and developed

AUCell to score the active gene signatures for each cell [25].

Although these dedicated strategies have been designed to deal

with the inherent issues in scRNA-seq data, none of them yield

acceptable results benchmarked by cell-type-specific ChIP-seq

data, and some are even close to random guessing [26].

CNNC [27] is a supervised deep neural network that repre-

sents the joint expression of a gene pair as an image and uses

convolutional neural networks (CNNs) to predict gene–gene co-

expression from scRNA-seq data. CNNC is robust to dropouts

and can infer the interaction causalities using the information

from cell-type-specific ChIP-seq data. We generated synthetic

GRNs and their corresponding gene expression data (Methods

and Figure 1) to examine whether CNNC could effectively dis-

tinguish direct and transitive interactions. We noted that a sub-

stantial number of the false positives obtained with CNNC were

centered in the gene pairs with strong Pearson correlations

(Figure 1A).

Yet considering the image of the target TF-gene pair (pri-

mary image) as the only input for the prediction is insuffi-

cient (Figure 1A). Inspired by an approach named context like-

lihood of relatedness (CLR) [3] which has been used to remove

the transitive interactions by normalizing the MI of the target

TF-gene pairs to z-scores with their corresponding neighbor-

hood, one can in fact consider both the target TF-gene pair

(primary image) and the images from the gene pairs that share

one gene with the target pair (neighbor images) as the input to

the model (Figures 1 and 2).

Here we propose DeepDRIM (deep learning-based direct

regulatory interactionmodel), a supervised deep neural network

that can reconstruct highly accurate cell-type-specific GRNs

from scRNA-seq data by considering both primary and neighbor

images. The rationale and workflow of DeepDRIM are shown in

Figure 2. DeepDRIM first transforms the primary and neighbor

images (Figure 2A and B) into low-dimensional embeddings

usingmultiple convolutional layers,where their embeddings are

then concatenated as the input to a multiple-layer perceptron

to calculate the regulatory confidence scores (Figure 2C). We

compared the effectiveness of DeepDRIM with PCC, MI, GENIE3

and CNNC for the analysis of eight real scRNA-seq datasets.

Our results demonstrated that DeepDRIM yielded the best

performance with respect to both the area under the receiver

operating characteristic curve (AUROC) and the area under the

precision-recall curve (AUPRC), and significantly outperformed

CNNC (Figure 3A-D). We also compared DeepDRIM with six

effective algorithms that were recently highlighted for recon-

structing GRN on scRNA-seq data [26]. The results demonstrated

that DeepDRIM substantially outperformed these algorithms

on the five scRNA-seq datasets with the pseudotime-ordered

cells (Figure 3E-F). Further simulation demonstrated that the

performance of DeepDRIM could be improved by involving more

neighbor images, and was robust to the dropout rate, the cell

number and the size of the training set (Figure 4A–D).

We applied DeepDRIM to the scRNA-seq data collected from

the bronchoalveolar lavage fluid of patients with mild and

severe symptoms of coronavirus disease 2019 (COVID-19) [28]

to discover the changes in B cell-specific GRNs. As a result,

we observed that a large number of differentially expressed

TFs (DETFs) were ‘activated’ in patients with severe disease

(Figure 5A and B). Furthermore, in patients with severe COVID-19

symptoms, the functions of the target genes were enriched in

lysosome, apoptosis, response to decreased oxygen levels and

microtubules (Figure 5C and D, Figure 6A and B), all of which

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab325#supplementary-data
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Figure 1. The effectiveness of neighbor images in reconstructing GRNs on the simulated data. A. The distribution of false positives from CNNC. B. The false positives

of the two models with primary (Prim) and augmented (Aug) images as inputs due to randomness and transitive interactions. C and D. Two examples that demonstrate

both of the models can correctly identify the direct interactions (C: g1 ⇒ g2, D: g1 ⇒ g3). E and F. Two examples that demonstrate the model trained by augmented

images can recognize and eliminate the false positives caused by the transitive edges (E: g2 ⇒ g3,F: g3 ⇒ g4). S(·) denotes the confidence scores fromCNNCwith primary

(S(Prim)) or augmented images (S(Aug)) as inputs. The values in the correlation matrices are Pearson correlation coefficients for the gene pairs in the corresponding

entries. The primary images are highlighted in the red squares.

have been previously shown to be associated with COVID-19 [29,

30] and virus infection [31].

Results

Effectiveness of neighbor images in removing transitive
interactions

We generated simulated data and attempted to train CNNC

using the two types of input, one with only the primary images

and the other with the augmented images (combined primary

and neighbor images, Methods). We observed that the over-

all proportion of false positives and those due to transitive

interactions were remarkably decreased by 40.4% and 55.4%,

when considering the neighbor images in the model (Figure 1B).

The rationale behind this observation can be regarded as taking

a ‘normalization’ on the primary image over their neighborhood

to alleviate the overestimation of the strength of interaction. In

addition, Figure 1C andD clearly illustrate that the consideration

of neighbor images will not undermine the power in predicting

the direct interactions (e.g. gene 1 ⇒ gene 2 in Figure 1C, and

gene 1 ⇒ gene 3 in Figure 1D). In Figure 1E, gene 2 connects to

gene 3 via the indirect edges gene 2 ⇒ gene 4 ⇒ gene 3. Further-

more, we noticed that the correlations of both {gene 2, gene 4}

(|PCC| = 0.81) and {gene 4, gene 3} (|PCC| = 0.83) were stronger

than the target {gene 2, gene 3} (|PCC| = 0.67), which provided
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Figure 2. Overview of DeepDRIM. A. Representation of the joint gene expression of gene a and gene b as a primary image. B. The 2n + 2 neighbor images are

generated from the genes with strong positive covariance with gene a or gene b. C. The network architecture of DeepDRIM, including Network A and Network B,

which are two stacked convolutional embedding structures designed to process the primary and neighbor images, respectively. Detailed network structures are shown

in Supplementary Figure S3. D. An example for the prediction of a cell-type-specific GRN using DeepDRIM.

explicit evidence that {gene 2, gene 3} should be marked as a

false positive. By considering neighbor images, themodel reduce

the predicted confidence score of {gene 2, gene 3} from 0.672

to 0.001, with a similar situation observed in Figure 1F. These

findings consolidate the importance of considering the local

neighborhood in GRN construction to eliminate false positives

due to transitive interactions.

Overview of DeepDRIM

DeepDRIM is proposed to reconstruct cell-type-specific GRNs

from scRNA-seq datawith high precision and a low false positive

rate. Figure 2 illustrates how DeepDRIM can be used to predict

the interaction between gene a and gene b. First, DeepDRIM

converts the joint gene expression of gene a and gene b into a

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab325#supplementary-data
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Figure 3. Comparison of DeepDRIM with the existing algorithms for GRN reconstruction on the scRNA-seq data from eight cell lines. A, B, C and D: P-values

were calculated between CNNC and DeepDRIM. E and F: The P-values were calculated between DeepDRIM (the best performer) and the second best algorithms

(Supplementary Tables S3-S4). We separated the eight datasets into two panels (A-B and C-F) because the three datasets in A and B did not include pseudo-time

information, which was required for the methods PIDC, SCODE and SINCERITIES in E-F.

two-dimensional histogram with 32 by 32 bins (primary image,

Figure 2A), where the intensity of each bin refers to the number

of cells falling within it. Second, DeepDRIM constructs 2n + 2

neighbor images, where the 2n images that refer to the n genes

have top positive covariance with gene a (a, i) or gene b (b, j)

and the two images represent the self-images (a,a) and (b,b).

These neighbor images are given to the model to capture the

neighborhood context of the primary image (Figure 2B), which

provides the key information required to distinguish the direct

and transitive interactions. We organize the neighbor images

as a tensor rather than an augmented image to achieve better

performance on real data (Supplementary Figure S2). Third, two

CNNs were used to process the primary image (Network A)

and the neighbor image tensor (32 by 32 by 2n+2) (Network

B), respectively (Figure 2C, Methods and Supplementary Figure

S3). Network A follows VGGnet [32], which is similar to CNNC.

Network B is a siamese-like neural network which is designed

for processing multiple neighbor images. The neural networks

are trained by known TF-gene interactions taken from publicly

available cell-type-specific ChIP-seq data. Finally, the unknown

interactions are predicted by the directed edges with confidence

scores (between 0 and 1, Figure 2D).

DeepDRIM outperforms the existing algorithms for
reconstructing cell-type-specific GRNs

We collected the scRNA-seq datasets from eight cell lines (see

Methods for the definitions of their abbreviations) and their cor-

responding ChIP-seq data from two sources [26, 27] to compare

DeepDRIM with the existing methods (Table 1) using TF-aware

3fold cross-validation (Methods). We first assessed DeepDRIM

with PCC, MI, CNNC and GENIE3; GENIE3 is one of the best

algorithms for reconstructing GRNs on scRNA-seq [26] and bulk

gene expression data [33, 34].

Our results demonstrate that DeepDRIM outperformed all

four methods in the eight cell types, and was significantly better

than the second best CNNC (Figure 3A–D, Supplementary Tables

S1 and S2) with respect to both AUROC (P-values ∈ [1.46E −

3, 7.63E − 6]) and AUPRC (P-values ∈ [3.42E − 3, 7.63E − 6]). We

also showed that DeepDRIMefficiently eliminated false positives

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab325#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab325#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab325#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab325#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab325#supplementary-data
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Figure 4. Performance of DeepDRIM with a wide range of the qualities of scRNA-seq data (cell numbers and dropout rates), the number of involved neighbor images

and the size of training set.

Table 1. scRNA-seq datasets from the eight cell lines used in the experiments

Cell lines Genes Cells Size of training set Number of TFs Pseudo-time

Bone marrow-derived macrophages [35] 20 463 6283 50 254 13 N

Dendritic cells [35] 20 463 4126 28 046 16 N

mESC(1) [60] 24 175 2717 154 931 38 N

hESC [61] 17 735 758 100 720 18 Y

mESC(2) [62] 18 385 421 94 332 18 Y

mHSC(E) [63] 4762 1071 49 114 18 Y

mHSC(GM) [63] 4762 889 43 712 18 Y

mHSC(L) [63] 4762 847 48 884 18 Y

Abbreviation and sources in footnote1.

from CNNC in all the eight scRNA-seq datasets (Supplementary

Figure S4).

To further evaluate the effectiveness of DeepDRIM, we

collected six algorithms that have been recently identified

with the highest median AUPRC in synthetic networks and

Boolean models from BEELINE [26]. Because some of these

algorithms require pseudotime-ordered cells, we selected five

eligible cell types (Table 1) and found the six algorithms perform

differently for each of them (Supplementary Tables S3 and S4).

We compared the efficiency of DeepDRIM to these algorithms

and found that DeepDRIM significantly outperformed all

six tested algorithms (Figure 3E-F). DeepDRIM achieved an

average median AUROC of 0.789 and an AUPRC of 0.809

across the five cell types, while the second best methods

only achieved an AUROC of 0.591 (Supplementary Table S3)

and an AUPRC of 0.657 (Supplementary Table S4). The TF-

specific AUROC and AUPRC are shown in Supplementary

Tables S5-S7.

DeepDRIM is robust to the quality of scRNA-seq data
and the size of the training set

The performance of DeepDRIM can be affected by the quality of

scRNA-seq data (the dropout rate and cell number), the number

of involved neighbor images and the size of the training set.

To evaluate the robustness of DeepDRIM toward these factors,

we first selected the scRNA-seq data from bone marrow-derived

macrophages [35] as a template and simulated a series of scRNA-

seq data with a range of parameters (Methods). Seven scRNA-

seq gene expression datasets were generated by subsampling

the involved cell numbers (from 20 to 4000 cells), which in turn

changed the resolution of both the primary andneighbor images.

We found DeepDRIM to be robust to the low-resolution images

when the number of cells was greater than 100 (Figure 4A). Next,

we imputed the dropouts in the template using MAGIC [36] and

then randomly masked the entries as dropouts with a range

of dropout rates (Methods). As shown in Figure 4B, DeepDRIM

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab325#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab325#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab325#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab325#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab325#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab325#supplementary-data
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Figure 5. Comparison of B cell-specific GRNs for patients with mild and severe COVID-19. A. The distribution of the confidence scores of the differentially expressed

transcription factors and their target genes. B. The average target numbers of differentially expressed TFs (DETFs) given different confidence score thresholds. C. The

significant GO terms after Benjamini–Hochberg correction. The dot size implies the number of genes of the GO term. The x-axis refers to the GeneRatio, which is the

proportion of genes in the provided list belong to the particular GO terms. D. The GO modules and the involved key transcription factors/genes related to COVID-19

symptoms.

demonstrates stable performance in diverse dropout configu-

rations. Third, we compared the performance of DeepDRIM by

varying the number of neighbor images input into the model.

As a result, we found that the more neighbor images that were

involved, the better the performance of DeepDRIM (Figure 4C). In

practice, involvingmore images would be more computationally

costly. In our study, we chose the top 10 genes with the strongest

positive covariance with the target TF or gene, thus involving

a total of 22 neighbor images (if not specified) to balance the

two factors. In addition, to evaluate the effect of the size of the

training set, we subsampled 20%, 40%, 60%, 80% and 100% of the

benchmarked TF-gene pairs for training. Our results revealed

that the size of the training set did not significantly affect the

performance of DeepDRIM (Figure 4D), and almost reached a

plateau when 40% of the training set (including 20 101 TF-gene

pairs) was applied.

Uncovering the variation of B cell-specific GRNs
between the patients with mild and severe COVID-19

Patients diagnosed with COVID-19 can have mild or severe

acute respiratory distress syndrome, although the underlying

molecularmechanisms responsible for these differences remain

unknown. We performed a case study to elucidate the differ-

ences in B cell-specific GRNs between the patients with mild

and severe COVID-19, because the immune responses have been
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Figure 6. The unique GRNs of DETFs from the patients with severe COVID-19. A. GRNs related to response to a decreased oxygen level (GO:0036293); DNA damage

response (GO:0030330); negative regulation of the mitotic cell cycle (GO:0045930); and the intrinsic apoptotic signaling pathway (GO:0097193). B. GRNs related to the

microtubule organizing center (GO:0005851). The edges are shown if their absolute Pearson correlation coefficients are larger than 0.4. DETFs: differentially expressed

transcription factors.

reported to be distinct between the two situations [37]. To this

end, we downloaded scRNA-seq data from the bronchoalveolar

lavage fluid of six patients with severe symptoms, three patients

with mild symptoms and three healthy controls [28]. The cell

type clusters were obtained by SC3[38] and the one belonged to

B cells was recognized according to the marker genes provided

by the original paper [28]. We extracted validated TF-gene pairs

in B cells from the Gene Transcription Regulation Database [39]

as the positive pairs, and combined themwith the negative pairs

from the same TFs and the gene expression from the healthy

controls as the training set (Methods).

We observed a clear difference in the GRNs between the

two types of patients, and also found that the target genes of

the DETFs were highly correlated with severe acute respiratory
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syndrome coronavirus 2 (SARS-CoV-2) infection. First, we

observed that DETFs had significantly more targets (P-values

= 8.50E− 4, Wilcoxon rank sum test) in the patients with severe

symptoms, suggesting that these DETFs are more ‘active’ in

working with their target genes (Methods and Figure 5A-B).

Indeed, the DETFs in the patients with severe symptoms had

1.9 times more targets with high confidence (confidence scores

∈ [0.967, 1]; the last bar in Figure 5A) than the patients with

mild symptoms. Next, we focused on the GRNs of DETFs that

were unique to the patients with severe symptoms (Figure 5D,

Figure 6A and B). The informative target genes were selected

based on the following two criteria: (1) They should belong

to the top 5000 genes with the highest expression variance

in B cells; (2) they should be ranked in the top 0.1% of the

confidence scores of the patients with severe symptoms.

The eligible genes were annotated with PageRank scores [40]

(Methods and Supplementary Table S8) and gene ontology (GO)

modules by gene set enrichment analysis (GSEA) [41](Methods

and Supplementary Table S9).

We identified the selected 138 genes were significantly

enriched in three GO terms after Benjamini–Hochberg adjust-

ment; they were vesicle (GO:0031982), lysosome (GO:0005764)

and vacuole (GO:0005773) (p.adjust¡0.05) (Figure 5C). The

lysosome and vacuole have been approved to be associated with

SARS-Cov-2 host cell infection [42]. The endosomal entry route

of the virus binds to the hostmembrane and then it can enter the

endocytic pathway, from early endosomes via late endosomes

to endolysosomes, and finally lysosomes,which is accompanied

by vacuolar acidification. In late lysosomes, the protein complex

is cleaved by cathepsin L, resulting in the fusion of the viral

and host cell membrane [42]. Besides lysosomes and vacuole,

vesicles has also been reported to be related to the spread of

COVID-19 by acting in the exosomal pathway and influencing

intercellular communication [43].

In addition, we identified four suggestive GO modules that

were associated with two common symptoms in patients with

COVID-19, hypoxemia and lymphopenia (Figure 5D, Figure 6A):

(1) response to decreased oxygen levels (GO:0036293; PMAIP1,

CASP3, PSMB3, CCNB1, P-values=4.80E − 3); (2) DNA damage

response (GO:0030330; PMAIP1, CCNB1, RPS27L, P-values=1.51E−

2); (3) negative regulation of the mitotic cell cycle (GO:0045930;

PSMB3, CCNB1, RPS27L, P-values=1.22E − 2); and (4) the intrinsic

apoptotic signaling pathway (GO:0097193; PMAIP1, CASP3,

RPS27L, P-values=6.29E − 3). The patients were reported to have

low oxygen levels or hypoxemiawithout dyspnea [44, 45], both of

which were strongly correlated with the GO modules ‘response

to decreased oxygen level’ and associated with ‘the intrinsic

apoptotic signaling pathway’ [46]. Cao et al. [29] reported

that genes related to apoptosis could lead to lymphopenia in

patients with COVID-19. Xiong et al. [30] identified differentially

expressed genes in peripheral blood mononuclear cells of

patients with COVID-19 and healthy controls. These genes were

enriched in apoptosis and p53 signaling pathways, both of which

could lead to lymphopenia. Among the genes in these four

GO modules, PMAIP1 [47, 48], CASP3 [49, 50], PSMB3 [51] and

CCNB1 [30] have been reported to be associated with COVID-19

individually (Supplementary Table S10).

In addition to these main findings, we also noted that there

were four genes with top PageRank scores in the patients with

severe symptoms in which unique GRNs could be related to

SARS-CoV-2 infection. Three of them (DYNLRB1, HNRNPU and

CCNB1) belong to GO:0005815 (microtubule organizing center, P-

values=5.33E − 3), which has been reported to be a major facili-

tator of virus infection [31] due to its ability to provide invading

pathogens with directed transport (Figure 6B). The other gene

DNMT1 is related to ACE2 [52], which is a known co-receptor for

the SARS-CoV-2 [53].

Discussion

Understanding the GRNs is fundamental to the advancement

of molecular biology research. Gene expression profiles from

high-throughput sequencing enable computational algorithms

to reconstruct GRNs by examining TF-gene co-expression. Bulk

RNA-seq hides the gene activities at single-cell resolution and

will be replaced by scRNA-seq in the near future. However, the

gene expression distribution from scRNA-seq data is not consis-

tent with the assumptions made by most of the existing meth-

ods, which leads to their poor performance in reconstructing

GRNs on the scRNA-seq data [54]. In addition, the widely spread

dropouts cause bias in calculating gene–gene co-expression,

even after imputation [55].

In this study, we propose DeepDRIM, a supervised deep

neural network, to reconstruct GRNs on scRNA-seq data.

Comprehensive evaluation of the performance of DeepDRIM

on different cell types demonstrated that it outperformed the

existing algorithms designed for either bulk or scRNA-seq

gene expression data. It is inadvisable to calculate TF-gene

interactions on scRNA-seq data using classical correlation-

based methods due to the ubiquitous cellular heterogeneity and

dropouts (Figure 3A–D). To avoid these limitations, DeepDRIM

converts the numerical representation of TF-gene expression to

an image and applies a CNN to embed it into a lower dimension.

This strategy also avoids data normalization and does not

presume any distribution. DeepDRIM requires validated TF-gene

pairs for use as a training set to highlight the key areas in the

embedding space that can distinguish the direct interactions

and false positives.

We trained and tested DeepDRIM using data from the same

cell type. As there is sometimes an insufficient number of cells

or validated TF-gene pairs in the training set, we were interested

in training the model using one cell type and then applying it

to another. We trained DeepDRIM using bone marrow-derived

macrophages and then applied it tomESC(1) and vice versa (Sup-

plementary Figure S5). The results suggest that it is necessary to

apply DeepDRIM to matched cell types in training and test sets;

thus, ideas such as transfer learning between cell types are not

applicable to this supervised model.

The neighborhood context of the target TF-gene pairs

has been widely applied to remove false positives in GRN

reconstruction from bulk gene expression data via z-score

normalization [3], conditional MI [20, 56] and graphical lasso

[57]. However, these methods commonly assume that the

gene expression profiles follow a Gaussian distribution, which

violates our observation in scRNA-seq data. Most of the existing

algorithms designed for scRNA-seq are unsupervised and

require pseudotime-ordered cells, making them inapplicable to

bonemarrow-derivedmacrophages, dendritic cells andmESC(1),

as illustrated in Table 1. DeepDRIM uses the neighborhood

context with respect to neighbor images, and consists of two

parts: (1) images from the genes that positively correlate with

the TF or gene from the target pair, and (2) two self-images.

In the current model, we adopted covariance to select the

top correlated genes. Although such linear correlation is not

resistant to outliers and dropouts, similar method has shown

its effectiveness in discovering gene–gene co-expression from

scRNA-seq data [58]. The two self-images can highlight the

variance of single gene expression.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab325#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab325#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab325#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab325#supplementary-data
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Because the neighbor images are constructed by selecting the

most ‘relevant’ genes with the target pairs, we compared four

gene selection strategies, positive covariance (current imple-

mentation), PCC, MI and randomness on hESC and mHSC(GM)

(Supplementary Figure S6A-B). We observed that our current

strategy was the best and the worst one is random selection,

suggesting the neighbor images should involve the local context

of the target image asmuch as possible.We also tried to compare

the current strategy to the other three based on selecting (1)top

negative covariance genes, (2) top absolute covariance genes and

(3) randomgenes onhESC,mHSC(GM) andmHSC(L) (Supplemen-

tary Figure S6C-D). We observed the neighbor genes from top

absolute covariance and random genes were always the worst

two, but the best one was not stable. Current strategy outper-

forms the other three in hESC and mHSC(L), but worse than top

negative genes in mHSC(GM). We implemented a function in

DeepDRIM to allow the users to choose the appropriate strategy

for neighbor gene selection.

The running time and memory would be influenced by the

number of neighbor images and the size of the training set.

Taking hESC as an example, DeepDRIM would spend 51.57GB

memory and 11.01 GPU h (2.70GHz 4 x NVIDIA Tesla V100S) if 22

neighbor images were involved (10 neighbor genes). If memory

and time permits, n (number of neighbor genes) can be set to a

larger value to include more neighbor information.

DeepDRIM can not only predict the existence of TF-gene

interactions, but also determine their causalities (edge direc-

tions). This task is not given much attention by the unsuper-

vised algorithms, despite it being an important consideration

if regulatory interactions exist between two TFs. For this par-

ticular task, DeepDRIM does not surpass CNNC, because CNNC

only focuses on the primary image and it is easier to cap-

ture the causalities by learning the regulatory directions from

the validated TF-gene pairs. We generated a combined model

from DeepDRIM and CNNC (Supplementary Notes) and found

that it can effectively reduce the false positives without los-

ing any accuracy in the prediction of causality (Supplementary

Figure S7).

As same as CNNC, DeepDRIM can also make use of the

sequence knowledge and be extended to work on the time-

course data [27, 59]. Supplementary Figure S8 demonstrates the

network structure of DeepDRIM to tackle with themotif position

weight matrix.

Many studies have been proposed with the aim to identify

all of the cell types in the human tissues, with the ultimate

goal of creating a human cell atlas to facilitate interpretation

of the gene activities in individual cell types. DeepDRIM bridges

the gap between cell types and gene functions, and will serve

to increase our understanding of the activities of key TFs. We

believe that as the cell-type-specific ChIP-seq data accumulate,

DeepDRIM will attract increased attention in the scRNA-seq

research community, andwill shed light on drug target discovery

and precision medicine in the future.

Conclusion

We propose DeepDRIM, a supervised deep neural network

model, to predict GRNs from scRNA-seq data. DeepDRIM

converts the joint expression of a TF–gene pair into a primary

image and considers the neighbor images as the neighborhood

context of the primary image to remove false positives due

to transitive interactions. DeepDRIM also utilizes the training

set to capture the key areas in the CNN embeddings that

can recognize the TF-gene interactions and causalities. Our

findings demonstrate that DeepDRIM outperforms nine existing

algorithms on the eight cell types tested and is robust to the

quality of scRNA-seq data. DeepDRIM can also identify the GRNs

of B cells that are different between patients with mild and

severe COVID-19 symptoms. We believe that DeepDRIM can fill

the gaps in reconstructing cell-type-specific GRNs on scRNA-seq

data and contributes to the rapidly growing single-cell research

community.

Methods

Representation of gene pair joint expression

The scRNA-seq gene expression profiles are represented as a

two-dimensionalmatrixM,whereMg,c represents the expression

of gene g in cell c.We added a small pseudo-count toMg,c to avoid

empty entries before applying log-normalization:

logMg,c = log10(Mg,c + 10−2). (1)

The joint histogram of genes i and j (Hi,j) is generated by split-

ting logMi,− and logMj,− (‘-’: across all of the cells) into 32 bins,

respectively. The value of each bin is derived from the number

of cells that falls in the corresponding slot; this value is further

log-normalized to avoid extreme values:

logHi,j = log10(Hi,j/6(Hi,j) + 10−4)/4 + 1 (2)

We generated an image (Ii,j) for genes i and j of 32 by 32 pixels,

where the intensity of each pixel is the corresponding value in

logHi,j. DeepDRIM requires two image sets to predict the direct

interaction between genes i and j, namely (1) the primary image

Ii,j and (2) the neighbor images. The neighbor images consist of

(1) {Ii,p1 , ..., Ii,pn , Ij,q1 , ..., Ij,qn }, where (p1,p2, ....pn) and (q1,q2, ...qn) are

the top n genes that have strong positive covariance with gene

i and gene j, respectively; and (2) two self-images Ii,i and Ij,j. The

default value of n was 10 in the experiments.

Network structure of DeepDRIM

Thenetwork structure of DeepDRIM consists of two components,

Network A andNetwork B,which process the primary and neigh-

bor images, respectively (Figure 2C and Supplementary Figure

S3). Network A is inspired by VGGnet [32], which contains the

stacked convolutional and maxpooling layers, and uses the rec-

tified linear activation function (ReLu) as the activation function.

The structure of Network B is similar to that of Network A, and

is a siamese-like neural network, where the weights are shared

among all of the subnetworks. Each image is embedded into a

vector of size 512, and a total of 2n + 3 images (1 primary image

and 2n + 2 neighbor images) are converted into a vector of size

512 × (2n + 3). This vector is then condensed by two stacked

fully connected layers, and is processed for binary classification

using the sigmoid function. Moreover, the network structure

of DeepDRIM is shown in Supplementary Figure S3 (including

hyperparameter values) and its weights are randomly initial-

ized. DeepDRIMwas trained bymini-batched stochastic gradient

descent with batch size of 32. It runs a maximum of 200 epochs

with an early stop if the validation accuracy does not improve in

10 epochs.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab325#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab325#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab325#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab325#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab325#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab325#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab325#supplementary-data
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Simulation of scRNA-seq data to examine the effect of
neighbor images

Wesimulated 2500 small datasets, eachwith four genes and 1000

cells.The ground truthnetwork for each datasetwas represented

by a sparse precision matrix 2, where each entry had a 50%

chance of being non-zero and drawn from [−1,−0.25] ∪ [0.25, 1],

or otherwise was assigned zero. We simulated the gene

expression profiles from a multivariate normal distribution

N(0,2−1) [64]. Next, we randomly chose two gene pairs from

each dataset, one involving a direct interaction (2i,j 6= 0) as

a positive case, and the other involving an independent pair

(2i,j = 0) as a negative case. For each case, we prepared two

types of images, a primary image of 32 by 32 pixels, and

an augmented image by concatenating the primary and six

neighbor images (Figure 1C–F) of 96 by 96 pixels. We generated

two training setswith 5000 primary and 5000 augmented images,

respectively. These images were used to train CNNC and the

performance was evaluated using the AUROC from the 5-fold

cross-validation.

scRNA-seq data from eight cell lines

We prepared the real scRNA-seq data from eight cell lines

and the corresponding cell-type-specific ChIP-seq data as

the benchmarks (Table 1) to compare DeepDRIM with the

existing algorithms for GRN reconstruction. The eight cell lines

comprised bone marrow-derived macrophages [35], dendritic

cells [35], IB10 mouse embryonic stem cells (mESC(1)) [60],

human embryonic stem cells (hESC) [61] and 5G6GR mouse

embryonic stem cells (mESC(2)) [62], as well as three mouse

hematopoietic stem cell lines [63] of erythroid lineage (mHSC(E)),

granulocyte-macrophage lineage (mHSC(GM)) and lymphoid

lineage (mHSC(L)). All scRNA-seq data were preprocessed and

normalized according to the descriptions in [26, 27]. In practice,

GENIE3 is slow if too many genes or cells are involved; thus, we

removed the less informative cells and genes using the strategies

described in [25].

We extracted the validated TF targets from the ChIP-seq data

as positive cases, and randomly selected the balanced nontarget

genes as negative cases. As training sets that are too large and

are computationally insolvable in terms of generating images,

we randomly selected 18 TFs and their validated targets as

positive cases in the training data for hESC, mESC(2), mHSC(E),

mHSC(GM) and mHSC(L) to alleviate the computational burden

(Table 1).

To improve the performance of the unsupervised methods

in Figure 3E-F, only the overlap between top-varying 500 genes

and the TFs/genes in the training set were selected from the

scRNA-seq data of hESC, mESC(2), mHSC(E), mHSC(GM) and

mHSC(L). In cross-validation (see Supplementary Note), we

trained CNNC and DeepDRIM using 2/3 TF-gene pairs in the

training set and evaluated their performance on the overlap

between the TFs/genes in the remaining 1/3 test set and top-

varying 500 genes. This could guarantee all the supervised

and unsupervised were evaluated on the same TF-gene

pairs.

Comparison of DeepDRIM to existing algorithms for
GRN reconstruction

We comparedDeepDRIMwith the nine existing algorithms using

their default parameters. The nine algorithms were PCC, MI,

CNNC [27], PIDC [23], GENIE3[5], GRNBOOST2 [65], SCODE [22],

PPCOR [66] and SINCERITIES [24]. With the exception of PCC,

MI and CNNC, the other six methods were performed using

the interfaces provided by BEELINE [26]. The AUROC and AUPRC

for each TF were collected to calculate the P-values between

two algorithms using the Wilcoxon signed rank test. Given that

CNNC and DeepDRIM are supervised models, the TFs from the

ChIP-seq data were divided into three independent parts for

cross-validation (Supplementary Note).

Simulation of scRNA-seq data to evaluate robustness

The simulated datasets were transferred from the scRNA-seq of

bone marrow-derived macrophages [35] to preserve the char-

acteristics of scRNA-seq data. We simulated gene expression

profiles with various cell numbers and sizes of training sets via

sub-sampling from the total 6283 cells and 50 254 validated TF-

gene pairs from the ChIP-seq data. We applied MAGIC [36] to

impute the missing values in the raw gene expression matrix,

and subsequently masked the corresponding entries according

to the ‘dropout step’ in BoolODE [26]. BoolODE has two param-

eters, drop − probability and drop − cutoff , which are used to

control the number of entries to be masked. The entries have

a probability of drop − probability to be masked if their gene

expression values are at the bottom drop − cutoff . We set the

drop − probability = 0.3, 0.5 and the drop − cutoff = 0 to 0.9.

Generation of validated TF-gene pairs for B cells in
patients with COVID-19

We extracted the ChIP-seq data with the keyword ‘human B

cell’ in the Gene Transcription Regulation Database [39] and

determined the TF target genes as those with high confidence

peaks (P-value < 1E − 8) in the promoter regions of these genes.

The promoter regions were defined as the 10 kb upstream and 1

kb downstream regions of the transcript start sites. To generate a

balanced training set, we extracted an equal number of negative

pairs by randomly selecting the nontarget genes of the selected

TFs.

Identification of differentially expressed TFs

We applied SCDE [67] to determine the differentially expressed

TFs if the expression fold changes > 2 or < 0.5, and the P-values

to be < 1E − 11 after multiple testing correction.

Gene PageRank score and functional annotation

We calculated gene PageRank scores using ‘networkx’ [40] (Addi-

tional file 5) and applied GSEA to annotate the enriched GO

modules with P-value< 0.05[41]. The genes were ordered by their

PageRank scores in GSEA analysis.

Data availability

DeepDRIM is available at https://github.com/jiaxchen2-c/Dee

pDRIM. Gene expression and ChIP-Seq data of bone marrow-

derived macrophages, dendritic cells, mESC(1) are available

at https://github.com/xiaoyeye/CNNC. Gene expression and

ChIP-Seq data of hESC, mESC(2), mHSC(E), mHSC(GM), mHSC(L)

are available at https://doi.org/10.5281/zenodo.3378975. Gene

expression profiles from the bronchoalveolar lavage fluid

of COVID-19 patients and healthy controls are available at

GSE145926.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab325#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab325#supplementary-data
https://github.com/jiaxchen2-c/DeepDRIM
https://github.com/jiaxchen2-c/DeepDRIM
https://github.com/xiaoyeye/CNNC
https://doi.org/10.5281/zenodo.3378975
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Key Points

• We developed DeepDRIM, a novel supervised deep

neural network that represents the transcription

factor-gene joint expression as an image and consid-

ers both the target pair and the pairs of its potential

neighbors.
• DeepDRIM can efficiently eliminate the false positives

due to transitive interactions by considering neighbor-

hood context and is resistant to the dropout events in

scRNA-seq.
• We compared DeepDRIM with nine existing GRN

reconstruction algorithms designed for either bulk or

single-cell RNA-seq data. It achieves evidently better

performance on the eight cell lines.
• DeepDRIM was applied to B cells scRNA-seq from the

bronchoalveolar lavage fluid of the COVID-19 patients

with mild and severe symptoms. We observed the

differently expressed TFs had significantly more tar-

gets in the data from severe patients. The functions

of their target genes were found to be enriched in

several functional modules, which had been proved to

be associated with SARS-CoV-2 infection.

Supplementary data

Supplementary data are available online at Briefings in Bioin-

formatics.
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