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Purpose: The ICRU/GEC-ESTRO released the ICRU Report No. 89, which introduced
the concept of four-dimensional brachytherapy and ushered in a new era of brachytherapy
for cervical cancer. The purpose of this study was to evaluate the local control and late
toxicity of four-dimensional brachytherapy in cervical cancer through a systematic review
and to reveal the dose-response relationship between the volumetric dose paraments and
the local control rate via a probit model.

Material and Methods: We identified studies that reported the HR-CTV D90 and local
control probabilities by searching the PubMed Database, the Web of Science Core
Collection and the Cochrane Library Database through February 1st, 2022. Regression
analyses were performed between the HR-CTV D90 and the local control probability using
a probit model.

Results: Nineteen studies enrolling 3,616 patients were included. The probit model
showed a significant relationship between the HR-CTV D90 value and IR-CTV D90 Vs.
the local control probability, P < 0.001 and P = 0.003, respectively. The D90 for HR-CTV
and IR-CTV corresponding to a probability of 90% local control was 79.1 GyEQD2,10 (95%
CI:69.8 – 83.7 GyEQD2,10) and 66.5 GyEQD2,10 (95% CI: 62.8 - 67.9 GyEQD2,10),
respectively. The limits for the prescribed dose of 85 GyEQD2,10 for HR-CTV D90
theoretically warranted a 92.1% (95% CI: 90.2% - 95.3%) local control rate, and 87.2%
(95% CI: 82.4% - 91.8%) local control probability was expected for 65 GyEQD2,10 to IR-
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CTV D90. The probit model showed no significant relationship between the D2cc to organs
at risk and the probability of grade 3 and above gastrointestinal or genitourinary toxicity.

Conclusions: Four-dimensional brachytherapy takes into account uncertain factors such
as tumour regression, internal organ motion and organ filling, and provides a more
accurate and more therapeutic ratio delivery through adaptive delineation and replanning,
replacement of the applicator, and the addition of interstitial needles. The dose volume
effect relationship of four-dimensional brachytherapy between the HR-CTV D90 and the
local control rate provides an objective planning aim dose.
Keywords: cervical cancer, image-guided adaptive brachytherapy, systematic review, dose-effect
relationship, brachytherapy
PURPOSE

The use of brachytherapy in the treatment of cervical cancer has
increased worldwide since its initial introduction over 110 years
ago. Brachytherapy can provide a high dose to the tumor with
excellent sparing to the organs at risk (OARs) due to the steep
dose gradient. Before the development of external beam
radiation therapy (EBRT), brachytherapy played an important
role in the local treatment of cervical cancer. With the
development of new EBRT technologies, such as intensity-
modulated radiation therapy and stereotactic body
radiotherapy, highly conformal doses can be provided.
However, brachytherapy is still an irreplaceably important part
of radiotherapy for cervical cancer, which improves the overall
survival rate and disease-related survival rate (1). Concomitant
chemoradiation followed by brachytherapy is the standard
treatment for locally advanced cervical cancers. Compared
with conventional brachytherapy, three-dimensional image-
guided brachytherapy (3D-IGBT) improves the survival of
patients with cervical cancer with similar or lower incidences
of side effects (2–6).

Based on the wide application of 3D-IGBT for cervical cancer,
the ICRU/GEC-ESTRO released ICRU Report No. 89, which
focused on adaptive brachytherapy. It introduced the concept of
four-dimensional (4D) image-guided adaptive brachytherapy
(IGABT). 4D is three spatial dimensions and time. 4D-IGABT
aims to improve the efficacy-to-toxicity ratio by exploiting the
tumor-volume regression often seen in cervical cancer after the first
phase of treatment. The introduction of the concept of 4D-IGABT
is ushering in a new era of brachytherapy for cervical cancer (7).

Our previous systematic review and probit model analysis
focused on intracavitary combined interstitial brachytherapy (8).
Although the adaptive method was adopted to some extent in the
enrollment study of reference 8, their focus was not 4D-IGABT.
Therefore, most studies (27 of 33) had neither “adaptive” nor
“IGABT” in the title, abstract, or keywords of the article. This
study is a data update for reference (8) and focuses on the 4D-
IGABT. The purpose of this study was to evaluate the local
control of 4D-IGABT in cervical cancer through a systematic
review. A regression analysis between the dose-volume
histogram parameters and the local control rate was carried
out via a probit model.
2

MATERIAL AND METHODS

We performed a comprehensive literature search using the
PubMed database, the Web of Science Core Collection, and
the Cochrane Library to identify full-text articles that reported
the minimum dose delivered to 90% (D90) of the high-risk
clinical target volume (HR-CTV) and the local tumor control
rate for cervical cancer patients treated with adaptive
brachytherapy. We searched the MeSH terms “Uterine Cervical
Neoplasms” and all entry terms in the title or abstract to find
articles about cervical cancer, constituting article set 1. Then, we
searched all articles with “adaptive” or “IGABT” in the titles or
abstracts to obtain article set 2 and those with “brachytherapy” in
the titles or abstracts to obtain article set 3. Finally, we took the
intersection of these three sets of articles. The search results were
restricted to the English language (Supplementary Table 1). The
last search of this systematic review was performed on February
1, 2022. We contacted the corresponding authors when full-text
articles were not available.

The Inclusion Criteria Were as Follows
Populations: patients with cervical cancer.

Interventions: EBRT with or without concurrent
chemotherapy followed by 4D-IGABT.

Outcomes: the sample size, the equivalent dose in 2 Gy per
fraction (EQD2) for a HR-CTV D90 and the local control rate.

The Exclusion Criteria Were as Follows
1. Review articles and meeting abstracts.
2. Literature that focused on techniques (applicators,

magnetic resonance, treatment plans, etc.), other treatment
modalities (EBRT, surgery, chemotherapy, etc.), physics, case
reports, etc.

3. Articles that used combinations of other therapy
modalities, such as hysterectomy.

4. According to the affiliation of the study and the period of
patients treated, the most recent and comprehensive data were
included when the data originated from overlapping
study samples.

The literature screening, data extraction, and dispute
resolution processes have been described in detail in previous
studies (8, 9). Regression analysis between HR-CTV D90 and
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local control was performed using a probit model in XLSTAT
2016 (Addinsoft, Paris, France). Furthermore, the studies that
reported intermediate-risk clinical target volume (IR-CTV) were
screened out from the included studies. A probit model analysis
between IR-CTV D90 and local control was also performed. The
use of the probit model in the XLSTAT software has been
described in previous studies (8, 9). The statistical significance
was set at the p < 0.05 level.
RESULTS

Description of the Included Studies
The search of PubMed, Web of Science Core Collection, and
Cochrane Library resulted in 232, 172, and 11 records,
respectively. After a systematic literature search, title and
Frontiers in Oncology | www.frontiersin.org 3
abstract screening, and full-text screening, 19 studies involving
3,616 patients with IGABT met the inclusion criteria and were
included in this systematic review and meta-regression analysis
(Supplementary Figure 1). The main characteristics of the
included studies are presented in Tables 1, 2.

Probit Model Analysis
Among the 19 included studies, the sample sizes ranged from 18 to
1,416, with a total of 3,616 patients. Some studies reported HR-
CTV D90 and local control rate for subgroups; therefore, the
subgroup data were input into the probit model. The mean or
median HR-CTV D90 for subgroups reported ranged from 66.1 to
98.4 GyEQD2,10, and actuarial or crude local control rates from
75.9% to 100.0% were reported. The probit model showed a
significant relationship between the HR-CTV D90 and the local
control probability, p < 0.001. According to this model, the HR-
TABLE 1 | Main characteristics of the included studies: study and concurrent chemoradiotherapy.

Study (Ref.) Country DR N WP EBRT
dose (Gy)

CCRT
(%)

IC/IS
BT

Image guidance
modality

Applicator
optimization

HR-CTV size at BT

Pötter, R 2011 (10) Austria HDR 156 45–50.4 73.0% 44% MRI Positive >5 cm (66.0%)
Lindegaard, JC
2013 (11)

Denmark PDR 140 46 ± 2 79.0% Yes MRI 97.9%, CT 2.1% Negative 6 (2–11) cm

Nomden, CN 2013
(12)

The Netherlands Mixed* 46 45 (39.6–
50.4)

74.0% Yes MRI Negative BT 1: (57 ± 37) cc

Kharofa, J 2014 (13) USA HDR 18 45–50.4 94.4% 0.0% MRI Positive BT 1: 27 (17-72) cc; BT
5: 24 (12–60) cc

Castelnau-
Marchand, P 2015
(14)

France PDR 225 45–50.4 94.5% 2.2% MRI 89.3%, CT 10.7% Negative (32.6 ± 21.8) cc

Lakosi, F 2015 (15) Belgium PDR 85 45–50.4** 100.0% 11.7% MRI Positive (38.1 ± 27.6) cc
Ribeiro, I 2016 (16) Belgium PDR 170 45–50.4 90.0% 16.0% MRI 85.3%, x-ray

9.4%, CT 5.3%
Negative (35.7 ± 21) cc

Mahantshetty, U
2017 (17)

India HDR 94 45 100.0% Yes MRI Positive (46.9 ± 24.6) cc

Simha, V 2018 (18) India HDR 60 46 100.0% Yea BT1,3: MRI***, BT2,4:
CT

Negative (27.5 ± 11.37) cc

Horeweg, N 2019
(19)

The Netherlands HDR 155 45–48.6 100.0% 55.5% MRI 72.3%, CT 3.9%,
CT+MRI 23.9%

Negative (4.6 ± 1.6) cm

Wu, PY 2019 (20) Hong Kong, China HDR 42 45 90.5% 62.9% BT1,3: MR; BT2,4: CT Positive 34.7 (12.3–155.1) cc
Möller S 2020 (21) Sweden 138 51.9 (45–

68.4)
94.2% 62.3% MRI/CT Negative (54.5 ± 25.4) cc

Sundset, M 2021
(22)

Norway HDR 65 45/50 75% 0.0% CT Negative (38.3 ± 16.3) cc

Mahantshetty, U
2021 (23)

India HDR 41 50 97.4% 100.0% MRI (CT for day 2) Positive 41 ± 21 cc

Murakami, N 2021
(24)

Japan, Thailand,
Republic of Korea

HDR 162
307

30.6 (20–
50.4)

30.6 (26–54)

90.7%
90.6%

31.5%
45.0%

CT 93.8%; MRI 6.2% NR 36.3 ± 19.1 cc
4.5 (0–10.3) cm

Pötter, R 2021 (25) Multicenter**** 1416 45–50 94.3% 43.0% MRI Positive 28 (20–40) cc
Tharavichitkul, E
2021 (26)

Thailand HDR 92 45–50.4 92.4% 15.2% CT Positive 5.3 (IQR:1.8) cm

le Guyader, M 2022
(27)

France HDR 29/
49/
91

46 (43–50) 100.0% 100.0% CT/CT + MRI Positive 38 (29–40) cc
45 (29–82) cc
31 (13–69) cc

Vojtıš́ek R 2022 (28) Czech Republic HDR 131 45 79.4% 5.3% CT and MRI Negative ≥30 cc: 56.6%
July 2022 | Vo
*HDR (10.9%), PDR (84.8%), PDR+HDR (4.3%).
**10 Gy/5 fraction boost to primary disease for 18 (21.2%) patients.
***A non-contrast CT was acquired to facilitate the reconstruction of the applicator.
**** EMBRACE-I study done at 24 centers in Europe, Asia, and North America.
Ref., reference; DR, dose rate; N, number of patients; WP, whole pelvis; EBRT, external beam radiotherapy; CCRT, concurrent chemoradiotherapy; HDR, high dose rate; MRI, magnetic
resonance imaging; PDR, pulse dose rate; CT, computed tomography; USA, United States of America; l TAUS, transabdominal ultrasound.
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CTV D90 corresponding to probabilities of 90% local control was
79.1 GyEQD2,10 [95% confidence interval (CI): 69.8–83.7
GyEQD2,10] (Figure 1). The limits for the prescribed dose of 85
GyEQD2,10 theoretically warranted a 92.1% (95% CI: 90.2%–95.3%)
local control rate. The planning aim dose of 90 GyEQD2,10 for HR-
CTV D90 recommended in the EMBRACE II study (29)
corresponded to a 93.8% (95% CI: 91.2%–97.0%) local
control probability.

Of the 19 studies included in our analysis, seven studies,
including 881 patients, reported the mean or median value of the
IR-CTV D90, ranging from 65.0 to 76.4 GyEQD2,10. The local
Frontiers in Oncology | www.frontiersin.org 4
control rate was reported to range from 86.4% to 100.0%. The
probit model showed a significant relationship between the IR-
CTV D90 and the local control probability, p = 0.003. The IR-
CTV D90 corresponding to probabilities of 90% and 95% local
control was 66.5 GyEQD2,10 (95% CI: 62.8–67.9 GyEQD2,10) and
70.8 GyEQD2,10 (95% CI: 69.0–79.9 GyEQD2,10), respectively
(Figure 2). The planning aim dose of 65 GyEQD2,10 for IR-CTV
D90 corresponded to an 87.2% (95% CI: 82.4%–91.8%) local
control probability.

Of the 19 studies included in our analysis, the probability of
grade 3 and above late gastrointestinal, genitourinary, and
TABLE 2 | Main characteristics of the included studies: dose volume parameters and tumor control.

Study (Ref.) HR-CTV D90
(GyEQD2,10)

IR-CTV D90
(GyEQD2,10)

LCR
(time)

D2cc to OARs (GyEQD2,3) Toxicity (time)

Pötter, R 2011
(10)

93 ± 13 NR 95.0%
(3 y)

Bladder: 86 ± 17; rectum: 65 ± 9; sigmoid: 64 ± 9 Bladder G3+: 2%; rectum G3+: 4%; bowel
G3+: 0%; vaginal G3+: 1% (3 y)

Lindegaard, JC
2013 (11)

91 (69–102) 68 (60-78) 91.0%
(3 y)

Bladder: 71 (52–89); rectum: 64 (51–77); sigmoid: 65.5
(49–78)

GU G3+: 1%; GI G3+: 3%; vaginal G3+:
4% (3 y)

Nomden, CN
2013 (12)

84 ± 9 65 ± 5 93.0%
(3 y)

Bladder: 83 ± 7; rectum: 66 ± 6; sigmoid: 61 ± 6; bowel:
64 ± 9

GU G3+: 2.2; GI G3+: 8.7%; vaginal G3+:
6.5% (41 m)

Kharofa, J 2014
(13)

88 (77–106) NR 100.0%
(2 y)

Bladder: 81 (72–90); rectum: 61 (54–69); sigmoid: 69
(61–75)

No G3+ toxicities (20 m)

Castelnau-
Marchand, P 2015
(14)

80.4 ± 10.3 67.7 ± 6.1 86.4%
(3 y)

Bladder: 71.1 ± 8.7; rectum: 62.1 ± 6.7; sigmoid:
60.0 ± 5.7

GU G3+: 4%; GI G3+: 4%; vaginal G3+:
2.7% (39 m)

Lakosi, F 2015
(15)

84.4 ± 9 69.1 ± 4.3 94.0%
(3 y)

Bladder: 77.3 ± 10.5; rectum: 65 ± 6.8; sigmoid: 63 ± 7.9;
bowel: 64 ± 9.1

GU G3+: 5%; GI G3+: 8%; vaginal G3+:
8% (3 y)

Ribeiro, I 2016
(16)

84.8 ± 8.36 68.7 ± 5.5 96.0%
(37 m)

Bladder: 86.1 ± 8.6; rectum: 61.7 ± 7.8; sigmoid:
62.5 ± 9.2

GU G3+: 6%; rectal G3+: 5%; sigmoid G3
+: 2%; vaginal G3+: 5% (37 m)

Mahantshetty, U
2017 (17)

88.3 ± 4.4 NR 90.1%
(39 m)

Bladder: 85.7 ± 9.8; rectum: 65.5 ± 7.2; sigmoid: 67 ± 8.8 GU G3+: 11.6%; GI G3+: 8.7%; vaginal
G3+: 4.3% (39 m)

Simha, V 2018
(18)

98.4 ± 9.6 76.4 ± 2.7 100.0%
(50 m)

Bladder: 90.6 (mean); rectum: 70.2 (mean); sigmoid: 74.2
(mean)

GU G3+: 1.7%; GI G3+: 10.0% (50 m)

Horeweg, N 2019
(19)

83.8 (80.3–
86.6)

65.0 (62.8–
67.1)

90.4%
(5 y)

Bladder: 78.6 (73–82.1); rectum: 67.7 (61.2–71.6);
sigmoid: 62.5 (56.2–67); bowel: 55.1 (49.9–62.1)

GU G3+: 0.8%; rectal G3+: 3.3%; bowel
G3+: 3.6%; vaginal G3+: 1.4% (5 y)

Wu, PY 2019 (20) 88.5 (63.4-
113.4)

NR 90.0%
(2 y)

Bladder: 83.1 (60.4–127.9); rectum: 67.5 (55.8–77.7);
sigmoid: 69.0 (48.1–78.6); bowel: 68.9 (45.9–85.5)

No severe late toxicity (20 m)

Möller S 2020 (21) 88.4 ± 9.4 NR 97.1%
(44 m)

BRS: 73.9 ± 7.4, 65.5 ± 7.2, 67.4 ± 7.7 GU G3+: 2.2%; bowel G3+: 0.7%; vaginal
G3+: 0.0% (44 m)

Sundset, M 2021
(22)

80.2 ± 7.3 NR 90.8%
(7.2 y)

NR* GU G3+: 4; UI G3+: 5 (7.2 y)

Mahantshetty, U
2021 (23)

87.2 ± 3.6 NR 90.1%
(2 y)

Bladder: 84.6 ± 6.9; rectum: 68.3 ± 5.7; sigmoid:
69.5 ± 5.9

Rectum G3+: 4.9% (22 m)

Murakami, N 2021
(24)

66.1(51.0–
102.0)

67.5(41.3–
97.3)

NR 94.4%
(4 y)

85.0%
(4 y)

64.8 (40.7–99.5) 51.1 (35.1–88.1)
67.6 (36.5–113.4) 57.3 (33.6–91.5)

GU G1+: 18.5%; GI G1+: 22.8%; vaginal
G1+: 8.6% (4 y)
GU G1+: 18.5%; GI G1+: 22.8%; vaginal
G1+: 8.6% (4 y)

Pötter, R 2021
(25)

90 (85-94) NR 92.0%
(5 y)

Bladder: 76 (69–83); rectum: 62 (57–68); sigmoid: 64
(59–69); bowel: 58 (49–67)

GU G3+: 6.8%; GI G3+: 8.5%; vaginal G3
+: 3.2% (5 y)

Tharavichitkul, E
2021 (26)

87.2 ± 3.2 NR 90.0%
(2 y)

BRS: 84.0 ± 8.2; 68.8 ± 6.8; 69.8 ± 6.0 GI G3+: 2.2%; vaginal G3+: 2.2% (32 m)

le Guyader, M
2022 (27)

84 (82–90)
82 (72–89)
90 (77–98)

NR 75.9%
(5 y)

83.7%
(5 y)

91.2%
(5 y)

BRS: 71 (66–81); 61 (55–69); 59 (54–67)
BRS: 73 (61–79); 62 (54–78); 60 (49–76)
BRS: 76 (58–85); 61 (47–79); 66 (50–79)

GU G3+: 10%; vaginal G3+: 21% (5 y)
GU G3+: 6%; GI G3+: 10%; vaginal G3+:
4% (5 y)
GU G3+: 7%; GI G3+: 5%; vaginal G3+:
10% (5 y)

Vojtıš́ek, R 2022
(28)

86.8 ± 5.5 NR 88.3%
(3 y)

BRS: 75.3 ± 8.1; 60.2 ± 6.9; 63.9 ± 7.7 GU G3+: 6.9%; GI G3+: 5.3% (43 m)
*Shown as diagram, could not be accurately converted to numerical value.
Ref., reference; HR-CTV, high-risk clinical target volume; BT, brachytherapy; D90, the minimum dose delivered to 90% (of the target volume); LCR, local control rate; D2cc, the minimum
dose delivered to the 2-cm3 volumes of the OARs that received the maximum dose; OARs, organs at risk; NR, not reported; y, years; m, months; GU, genitourinary; GI, gastrointestinal;
BRS, bladder rectum sigmoid; IQR, interquartile range.
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vaginal toxicity was reported from 0.0% to 10.0%, 0.0% to 11.6%,
and 0.0% to 21.0%, respectively. The probit model showed no
significant relationship between the bladder D2cc and the
probability of grade 3 and above gastrointestinal toxicity,
p = 0.245. There was also no significant relationship between
the maximum D2cc of rectum, sigmoid, and small bowel
and the probability of grade 3 and above gastrointestinal
toxicity, p = 0.767. The scatter plot of late gastrointestinal and
genitourinary toxicity versus maximum D2cc of rectum,
sigmoid, and small bowel and D2cc of bladder is shown in
Figure 3. We did not conduct probit model analysis between
vaginal dose and vaginal toxicity due to the lack of sufficient data.
DISCUSSION

The concept of adaptive radiotherapy (ART) was first proposed
by Yan Di et al. in 1997 (30). ART is a dynamic closed-loop
feedback system with self-response and self-correction. It aims to
provide more accurate targeting of disease by addressing the
continuous changes in anatomy and/or physiology during
treatment. The idea is to use imaging information to update
the treatment plan daily rather than maintaining a static plan
Frontiers in Oncology | www.frontiersin.org 5
throughout the treatment course. In this way, ART offers the
potential to improve delivery accuracy and adapt to anatomical
and/or functional changes. The concept of ART was applied to
image-guided brachytherapy to form IGABT (31).

Why Do We Perform 4D Brachytherapy?
The implementation of adaptive brachytherapy is a more
accurate treatment strategy with clinical requirements due to
the very high doses per fraction, tumor regression, internal organ
motion, and changes in organ filling.

In high-dose-rate (HDR) brachytherapy, the HR-CTV D90
per fraction is usually as high as 5 to 7 Gy (13, 20). Furthermore,
the mean dose to the gross target volume (GTV) closer to the
applicator is more than 100 Gy in total in combined EBRT and
brachytherapy (32). For pulse-dose-rate (PDR) brachytherapy,
its prescription dose per fraction is usually higher than that of
HDR, approximately 10–15 Gy per fraction (11, 14). With such a
high physical dose, the EQD2 is higher; thus, tumor regression is
quite obvious even after only one fraction of brachytherapy. In
our included studies, Kharofa et al. reported significant target
volume reduction during brachytherapy (13). The median HR-
CTV volume was 27 cc (range, 17–72 cc) at the first
FIGURE 1 | The probit model for the relationship between the HR-CTV D90
and local control probability. The blue active point represents the values of
the HR-CTV D90 and the local control probability for each study. The HR-
CTV D90 corresponding to a probability of 90% local control was 79.1
GyEQD2,10 (95% confidence interval: 69.8–83.7 GyEQD2,10), p < 0.001.
FIGURE 2 | The probit model for the relationship between the IR-CTV D90
and the local control probability. The blue active point represents the values
of the HR-CTV D90 and the local control probability for each study. The IR-
CTV D90 corresponding to a probability of 90% local control was 66.5
GyEQD2,10 (95% confidence interval: 62.8–67.9 GyEQD2,10), p = 0.003.
July 2022 | Volume 12 | Article 870570
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brachytherapy fraction and 24 cc (range, 12–60 cc) at the fifth
brachytherapy insertion. The median volume reduction in HR-
CTV from the first to last fraction of brachytherapy was 17%
(range, 0%–41%). Target volume reduction is one of the
important factors for adaptive strategy in brachytherapy.
Similar target volume reduction has also been reported by
other researchers. Christian et al. reported significant tumor
regression in HDR brachytherapy (33). The mean volume of
HR-CTV started at 43 cc in the first fraction and decreased to 29
cc in the last fraction, while the GTV decreased from 17 cc to
9 cc.

In addition to the changes in tumor size, there are also
significant differences in the volume of OARs between
fractions. Hellebust et al. evaluated the coefficient of variance
(CV) of the bladder and rectum volume by using 3–6 CT scans in
14 patients who received HDR brachytherapy (34). The mean
CVs of the bladder and rectum were 44.1% and 23.3%,
respectively. Therefore, the mean CVs of doses for the bladder
and rectum were also high, 17.5% and 15.0%, respectively.

In general, not only the volumes of the targets and OARs, but
also the topography change. Meerschaert et al. evaluated the
similarity between fraction 1 and fractions 2–5 for HR-CTV and
OARs in 22 cervical cancer patients who received 5 fractions of
HDR brachytherapy (35). The results showed that the mean Dice
similarity coefficient values of the HR-CTV, bladder, rectum, and
sigmoid were 0.4–0.5, 0.6–0.7, 0.5, and 0.3–0.4, respectively.

How Do We Perform 4D Brachytherapy?
Based on the low similarity of the target and OARs, Meerschaert
et al. objectively evaluated the difference between a single plan
and an adaptive daily plan by defining a sparing factor, the ratio
of the D2cc to the HR-CTV D90. Compared to the single plan,
the sparing factors were lower for all OARs in the adaptive daily
plan. This revealed the importance of replanning, which is one of
the most common interventions for IGABT. Kirisits et al.
compared individual treatment planning for each fraction and
Frontiers in Oncology | www.frontiersin.org 6
the use of only one treatment plan (36). The “single planning
procedure” was simulated by matching the dose distribution of
the first plan to the MRI dataset of each subsequent
implantation. The use of only one treatment plan for several
applications results in a higher dose to the target and OAR
structures. Based on an analysis of 14 patients, the use of only
one treatment plan for several applications results in a higher
dose to the target and OAR structures. For some special cases, a
lateral shift of the rectum and pronounced rotation of the ring
applicator or a sigmoid nearer to the applicator due to tumor
regression, a single plan will lead to severe dose underestimation.

The choice of applicator type depends on the individual
anatomy and tumor spread at the time of brachytherapy. If the
applicator in the previous brachytherapy session is not optimal, a
different applicator has to be used in the subsequent fraction(s).
Cheng et al. reported 119 cervical cancer patients with IGABT,
and 38 patients (31.9%) changed the applicator during the course
of HDR brachytherapy (37).

In the case of large tumors or unfavorable topography
between the HR-CTV and OARs, the HR-CTV dose coverage
may be compromised when using intracavitary (IC)
brachytherapy (38). Skliarenko et al. analyzed the data of 20
patients with cervical cancer who received 4 fractions of HDR
within two insertions using the tandem/ring with and without an
interstitial applicator (39). The treatment plan geometry was
adapted at the second insertion in 7 patients with suboptimal
HR-CTV D90 and in three others with unsatisfactory OAR
sparing. Interstitial needles were added in eight cases with IC
brachytherapy, and additional needles were added in two cases
with IC/IS brachytherapy. The HR-CTV D90 of the second
insertion was significantly increased in 10 patients with the aid
of interstitial needles. Seven of ten patients achieved the planning
aim dose of 85 Gy due to adaptive intervention, and three others
achieved a suboptimal dose of 80 Gy. The analysis from
retroEMBRACE showed that combined intracavitary and
interstitial (IC/IS) brachytherapy improved the local control
FIGURE 3 | The scatter plot of late gastrointestinal (blue) and genitourinary (yellow) toxicity versus maximum D2cc of rectum, sigmoid, and small bowel and D2cc of bladder.
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rate by 10% at 3 years and 7% at 5 years for larger tumors (≥30
cc) (40). In the ambitious EMBRACE II study, increasing the use
of IC/IS to improve the high-dose coverage of HR-CTV was one
of the seven important interventions for patients with large
tumors (29).

Several studies have shown that bladder fullness significantly
affects the dose to the small bowel and bladder (41–44).
Mahantshetty et al. compared the doses to OARs under
different degrees of bladder filling (42). The results
demonstrated that compared with an empty bladder, a
significant decrease in the small bowel dose in full bladder
filling was noted, and the bladder dose was higher. Yamashita
et al. also quantified the effect of bladder volume on the dose
distribution of IC brachytherapy for cervical cancer and a similar
conclusion was obtained (41).

Benefits of 4D Brachytherapy
IGABT takes into account various uncertain factors in the course
of brachytherapy, such as tumor regression, internal organ
motion, and bladder filling status, and achieves a more
accurate treatment modality, so patients can benefit from 4D
brachytherapy. Analysis from the retroEMBRACE study indeed
showed that IGABT with IC/IS increased the therapeutic ratio of
locally advanced cervical cancer (40).

Compared to the historical Vienna series, there is a relative
reduction in pelvic recurrence of 65%–70% and a reduction in
major morbidity, and the local control improvement seems to
have an impact on cancer-specific survival and overall survival
(10). An analysis of two studies from the University of Aarhus
Denmark showed that compared with radiography-based
brachytherapy, IGABT improved the 3-year overall survival
rate from 63% to 79%, p = 0.005 (11). The EMBRACE-I study
was internationally recognized as the most ambitious study
worldwide to evaluate and benchmark image-guided adaptive
brachytherapy. It resulted in effective and stable long-term local
control across all stages of locally advanced cervical cancer, with
a limited severe morbidity per organ (25).

Dose-Effect Response
To our knowledge, before our probit model analysis in the
present study, there were four other studies that used
regression analysis to estimate the local control rate: one for
HDR brachytherapy, based on the data of 156 patients (45), one
for PDR with 225 patients (46), one for a meta-regression of
thirteen studies enrolling 1,299 patients (47), and one for a meta-
regression of thirty-three studies including 2,893 patients
(8) (Figure 4).

These estimates were based on independent individual
patients or meta-regression analysis. However, individual
patients and patients enrolled in meta-analysis studies had
high heterogeneity, which was analyzed in our previous studies
(8). At the same time, high-dose gradients in brachytherapy
should be given more attention. Therefore, these conclusions
should refer to each other, and take into account the current
situation of the patient to determine the planning aim dose.
Frontiers in Oncology | www.frontiersin.org 7
In our study, for the dose range from 65 to 80 GyEQD2,3, the
local control rate predicted by the probit model was higher than
those in other previous studies. This is because there are some
low-risk patient cohorts in the 19 studies included in this study.
In particular, Murakami et al. (24) reported a multicenter study
aimed at identifying a group of patients who can safely be treated
by de-escalated treatment intensity. For the low-risk patient
group (squamous cell carcinoma, tumor reduction ratio ≥29%,
tumor size before brachytherapy ≤4 cm assessed by MRI, and
total treatment time <9 weeks), a 4-year 94.4% local tumor
control was achieved only by giving the mean dose to HR-
CTV D90 66.1 (51.0–102.0) Gy. This result provided us with a
reference, that is, strictly selected low-risk patients will achieve
favorable local control with CTVHR D90 <80 Gy. In general, a
higher local control rate was expected for a higher HR-CTV D90,
especially for patients with larger tumor volumes or unfavorable
stages (29, 48).

In the probit model analysis of this study, the 95% CIs of the
HR-CTV D90 and IR-CTV D90 for predicting the 90% local
control rate were small. This can be explained by the fact that the
dose in 4D brachytherapy is more accurate and reliable. This
benefits from the optimization of the applicator, the adjustment
FIGURE 4 | Comparison of the probit model results between the HR-CTV
D90 and local control rate. HR-CTV = high-risk clinical target volume, D90 =
the minimum dose delivered to 90% (of the target volume). *The data points
of the probit models were manually extracted from the published figures.
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of the implant needles and bladder filling, and the balance of the
cumulative dose between the applications.

The probit model showed no significant relationship between
the severe late toxicity of OARs and the doses to OARs. This
result is unexpected, but the conclusion does follow the data
presented. The reasons for this result may include the following
aspects. Firstly, when evaluating the total equivalent doses from
external beam radiotherapy and from brachytherapy, we should
pay more attention to the uncertainty caused by simplifications
and assumptions. They include the following: (a) it is assumed
that the organ walls adjacent to the applicator receiving a high
brachytherapy absorbed dose (such as D0.1cc and D2cc) are
irradiated with the full absorbed dose of external beam
radiotherapy; (b) when adding doses for absolute OAR
volumes (e.g., D2cc), it is assumed that the location of the
given high-absorbed-dose volumes is identical for each
brachytherapy fraction. Such assumptions are not necessarily
valid for specific conditions. For assumption (a) techniques such
as intensity-modulated radiation therapy or volumetric-
modulated arc therapy that can produce more-pronounced
absorbed-dose gradients in those regions of OARs irradiated to
high absorbed dose during brachytherapy, such that the doses in
these regions are extremely nonhomogeneous. The midline block
or parametrial boost nearby will also bring a high-dose gradient,
which makes it difficult to evaluate the D2cc of OARs from
external beam radiotherapy. Assumption (b) overestimates the
D2cc results to some extent. The degree of overestimation varies
from patient to patient under different circumstances, which
depends on the significance of organ movement and the
difference of the change of applicator and interstitial needle
between fractions. For organ movement, the peristalsis of the
small bowel is relatively large, and it is affected by the bladder
volume. For different bladder volumes, it varies greatly in D2cc of
the small bowel, even in the area receiving D2cc. This is the
reason why the doses of the bladder and the small bowel can be
balanced by adjusting the volume of the bladder. At present,
there are some methods of dose accumulation based on
deformable image registration (49, 50). In theory, these
methods can obtain better cumulative dose results, but they are
also limited by the accuracy of deformable image registration.
Unfortunately, for the studies included in this review,
deformable image registration was not used. Secondly, in the
probit model of OARs, the maximum D2cc of rectum, sigmoid,
and small bowel is selected as the model input data, which has
the problem of the accuracy of model input data. However, this is
a compromise approach, because in many studies ,
gastrointestinal side effects from the rectum, colon, or small
intestine are not reported in detail. In fact, some side effects, such
as diarrhea, are difficult to distinguish from which organ,
especially without colorectal endoscopic support. Finally, the
heterogeneity of included patients limits the accuracy of
the probit model to a certain extent. This has been mentioned
in the limitations of the manuscript and a previous study.
Although there is a lack of significant relationship, it is still
necessary to strictly follow the dose constraints to OARs in
IGABT. A new and more reliable method of dose accumulation
Frontiers in Oncology | www.frontiersin.org 8
for absolute OAR volumes needs to be broken through to obtain
less uncertainty, so as to establish a more significant relationship
between OAR dose and OAR toxicity.

Limitations
The main limitation of this paper is the heterogeneity of the data,
which has been described in detail in previous studies (8, 9). The
local control rate of tumor is not only related to the dose to
targets, but also directly related to the HR-CTV, the initial stage
of the disease, the overall treatment time, and tumor width at
diagnosis. Due to the few included literatures in this study, the
local control rate was not reported according to the initial stage
of the disease and the volume of HR-CTV; thus, the subgroup
analysis could not be carried out. In addition, the incompleteness
of paper retrieval is a limitation of this paper, as the keywords of
the papers cannot be quickly retrieved in full text. Some studies
using adaptive brachytherapy strategies were not included in our
literature screening because the concepts “adaptive” and
“IGABT” were not mentioned in the title or abstract.
CONCLUSION

In conclusion, 4D brachytherapy takes into account uncertain
factors such as tumor regression, internal organ motion, and
organ filling, and it provides more accurate and more therapeutic
ratio delivery through adaptive delineation and replanning,
replacement of applicators, and the addition of interstitial
needles. The dose volume effect relationship of 4D
brachytherapy between the HR-CTV D90 and the local control
rate provides an objective planning aim dose. A new and more
reliable method of dose accumulation for absolute OAR volumes
needs to be discovered to obtain less uncertainty.
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