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A clustering-independent method for finding
differentially expressed genes in single-cell
transcriptome data

Alexis Vandenbon® 2™ & Diego Diez® 3

A common analysis of single-cell sequencing data includes clustering of cells and identifying
differentially expressed genes (DEGs). How cell clusters are defined has important con-
sequences for downstream analyses and the interpretation of results, but is often not
straightforward. To address this difficulty, we present singleCellHaystack, a method that
enables the prediction of DEGs without relying on explicit clustering of cells. Our method
uses Kullback-Leibler divergence to find genes that are expressed in subsets of cells that are
non-randomly positioned in a multidimensional space. Comparisons with existing DEG pre-
diction approaches on artificial datasets show that singleCellHaystack has higher accuracy.
We illustrate the usage of singleCellHaystack through applications on 136 real transcriptome
datasets and a spatial transcriptomics dataset. We demonstrate that our method is a fast and
accurate approach for DEG prediction in single-cell data. singleCellHaystack is implemented
as an R package and is available from CRAN and GitHub.
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ecent advances in single-cell technologies enable us to

assess the state of cells by measuring different modalities

like RNA and protein expression with single-cell resolu-
tion!~>. Hundreds of bioinformatics tools have been developed to
process, analyze, and interpret the results from single-cell geno-
mics data®, such as monocle 2 and Seurat”8.

A standard protocol for analyzing single-cell data includes
dimensionality reduction methods, such as principal component
analysis (PCA), t-distributed stochastic neighbor embedding (t-
SNE), and uniform manifold approximation and projection
(UMAP) to visualize the data in fewer (typically 2)
dimensions®10. In addition, cells are often clustered, and differ-
entially expressed genes (DEGs) are identified between the dif-
ferent clusters. This approach for finding DEGs by comparing
between clusters is widely used in existing methods®!1:12, and
enables finding cluster-specific marker genes that facilitate
labeling different cell populations. However, recent comparisons
found that DEG prediction approaches for bulk RNA-seq do not
generally perform worse than methods designed specifically for
single-cell RNA-seq (scRNA-seq), and that agreement between
existing methods is low!3!4. Defining more flexible statistical
frameworks for predicting complex patterns of differential
expression is one of the grand challenges in single-cell data
analysis!>.

A major problem with clustering-based approaches for DEG
prediction is that the definition of cell clusters is often not
straightforward. The number of biologically relevant clusters in a
dataset is often not obvious. The high dimensionality of the data
makes it hard to evaluate if the number of clusters and their
borders make biological sense or if they are arbitrary. Further-
more, some cell sub-populations may not cluster independently
and their defining signature may end up being obscured within a
larger cluster. This can be critically important for low abundance
populations in experiments using unsorted cells from tissue,
where only a few representative cells may be present. Thus, the
clustering of cells has important consequences in the interpreta-
tion of results and downstream analyses.

To address this problem we present singleCellHaystack, a
methodology that uses Kullback-Leibler Divergence (Dgp; also
called relative entropy) to find genes that are expressed in subsets
of cells that are non-randomly positioned in a multidimensional
(>2D) spacel®. In our approach, the distribution in the input
space of cells expressing or not expressing each gene is compared
to a reference distribution of all cells. From this, the Dy of each
gene is calculated and compared with randomized data to eval-
uate its significance. Thus, singleCellHaystack does not rely on
clustering of cells, and can identify differentially expressed genes
in an unbiased way. singleCellHaystack is implemented as an R
package and is available from CRAN and GitHub.

Results
DEG prediction based on the expression distribution of genes.
We focus on the Tabula Muris bone marrow dataset to illustrate
the principle of DEG prediction using the expression distribution
of a gene (i.e, the distribution in the input space of cells that
express a gene). Figure 1 shows t-SNE plots based on the 50 first
principal components (PCs) of this dataset. Panels on the left
show the detection of four genes (Fcrla—marker for B cells
progenitors, Fcnb—marker for granulocytopoietic cells, Lyzl—
marker for monocytes and granulocytes, Ccl5—marker for nat-
ural killer cells) in each cell. Each gene is expressed in a subset of
cells occupying a subspace of the 50-dimensional input space.
Genes with a non-uniform expression distribution are DEGs.
While estimating the distribution of cells in high-dimensional
spaces is not straightforward, singleCellHaystack uses the local

density of cells around several grid points as an approximation.
Panels on the right in Fig. 1 show the grid points used by
singleCellHaystack (100 by default; here coordinates of grid
points in the 50 PC space were mapped to their approximate
location in the t-SNE space), colored by the relative density of
cells expressing each gene (P(G = T)/Q; see “Methods”). single-
CellHaystack converts these distributions to Dy values and p-
values reflecting the differential expression of each gene. As can
be seen in Fig. 1, the four marker genes are DEGs (they are
expressed only in subsets of cells) and they have a non-uniform
expression distribution.

Our method contains two main functions: haystack
highD and haystack 2D, for multidimensional (=2D) and
two-dimensional (2D) input spaces, respectively. Input spaces
could consist of principal components (PCs), t-SNE or UMAP
coordinates, or the coordinates of cells in 2D or three-
dimensional space for spatial transcriptomics data. The concept
behind these two functions is the same (for an overview of the
singleCellHaytack methodology we refer to the “Methods” section
and Supplementary Fig. 1). Unless stated otherwise, results
presented here were obtained using the haystack highD
function.

Comparison with other methods using artificial datasets. To
evaluate the accuracy of our approach, we applied single-
CellHaystack on 200 artificial datasets of varying size and com-
plexity made using Splatter in which true DEGs are known (see
“Methods™)!7. We also applied existing methods (DEsingle,
EMDonmics, scDD, edgeR, monocle 2 and approaches available
through the FindAllMarkers function of the Seurat toolkit;
see Supplementary Table 1) on the same datasets and compared
their accuracy and runtimes”$1218-21 The accuracy of each
method was estimated using the area under the receiver operating
characteristic (ROC) curve (AUC). To make a fair comparison,
we applied Seurat’s FindAl1Markers function both with and
without its default filter, which is typically only passed by a small
subset of genes.

Figure 2 shows the results for a selection of methods (see
Supplementary Fig. 2 and Supplementary Tables 2 and 3 for all
evaluated methods). Except for the smallest dataset size (1000
cells), singleCellHaystack shows comparatively high performance
(Fig. 2a). In general, the accuracy of methods decreases with the
complexity of the dataset, but the reduction was stronger for most
of the cluster-based approaches (especially EMDomics, scDD,
monocle 2, and the Wilcoxon rank-sum test without filter). One
cause of the decreasing accuracy is the inaccurate clustering of
cells in the larger datasets. Of note, scDD consistently failed to
run successfully and returned errors on 2 and 9 of the datasets of
9000 cells and 10,000 cells, respectively.

Among the cluster-based methods, DEsingle and scDD have
relatively high accuracy, but also have by far the longest runtimes
(Fig. 2b and Supplementary Table 3). For example, median
runtimes on 8000 cells for DEsingle and scDD were 123 and 81 h
(1) respectively. In contrast, singleCellHaystack and the Wilcoxon
rank-sum test implemented in Seurat (with default filter) are the
fastest methods, taking about 5 min even on datasets of 10,000
cells. Removing the default filter of Seurat’s Wilcoxon rank-sum
test leads to higher accuracy (Fig. 2a) but longer runtimes
(Fig. 2b).

These results show that singleCellHaystack has relatively high
accuracy on artificial datasets and short runtimes, making it an
attractive method for exploring single-cell datasets. Moreover, we
stress that the artificial datasets made by Splatter are expected to
give an advantage to cluster-based methods, since the underlying
model of Splatter is based on generating clusters of cells. In
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Fig. 1 lllustration of the expression distribution approach for DEG prediction. a-d For four example genes in the Tabula Muris bone marrow tissue
dataset, t-SNE plots are shown, with the detection of the gene (left) and the expression distribution of the gene (right). In the expression distribution plots,
colored circles represent the 100 grid points decided by singleCellHaystack, their color reflecting P(G = T)/Q. t-SNE coordinates of grid points are
approximate: grid points were projected to the t-SNE coordinates of their most proximal cell in the 50 PC space.
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Fig. 2 Comparison of DEG prediction methods applied on artificial datasets. For a selection of DEG prediction methods the median AUC values (a) and
median runtimes (b) are shown in function of dataset size. Medians are based on 20 datasets, except for scDD on datasets of size 9,000 (18 datasets) and
10,000 (11 datasets). In a the red dotted line shows the expected AUC for a random classifier. In b the gray dotted lines indicate 1min, Th, 1, 2 and 4 days,
and 1 week to improve the readability of the plot. Supplementary Fig. 2 shows similar plots for all evaluated methods.

addition, Splatter is based on a negative binomial model, giving
an advantage to DEG prediction approaches that are based on a
similar model. Indeed, DEsingle is based on a negative binomial
model and performed comparatively well in our comparison.
Nevertheless, singleCellHaystack had the highest performance,
despite not being based on clusters nor on a negative
binomial model.

Application to 136 real single-cell datasets. Next, we applied
singleCellHaystack on 136 real scRNA-seq datasets of varying

sizes (149 to 19,693 cells). Median runtimes of haystack
highD using 50 PCs as input were 102 and 115s using the
simple and advanced mode (see “Methods” section), respectively.
Runtimes followed an approximately linear function of the
number of cells in each dataset (Supplementary Fig. 3A, B).
Median runtimes for haystack 2D on 2D t-SNE coordinates
were 75 and 84 s using the simple and advanced mode, respec-
tively (Supplementary Fig. 3C, D).

In all datasets, large numbers of statistically significant DEGs
were found. This observation is not surprising, since samples
typically include a variety of different cell types. Rather than
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Fig. 3 Application of singleCellHaystack on bone marrow tissue dataset. a t-SNE plot of the 5250 cells. The color scale shows the number of genes
detected in each cell. b-f Expression patterns of five high-scoring DEGs, representative of the five groups in which the genes were clustered.

interpreting singleCellHaystack p-values in the conventional
definition, the ranking of genes is more relevant.

As an illustration of the usage of singleCellHaystack, we here
present results of three example datasets based on different
sequencing technologies. In all three cases, the coordinates of cells
in the first 50 PCs were used as input, along with the detection
levels of all genes in all cells.

Figure 3 summarizes the result of the Tabula Muris bone
marrow tissue dataset (FACS-sorted cells). Five-thousand two-
hundred fifty cells and 13,756 genes were used as input, and
singleCellHaystack took 225s in the default mode. The t-SNE
plot shows a typical mixture of clearly separated as well as loosely
connected groups of cells, with considerable variety in the total
number of detected genes (Fig. 3a). The most significant DEG was
Rampl, which is detected only in a subset of cells (Fig. 3b). To
illustrate the variety in expression patterns, we grouped DEGs
into five clusters based on hierarchical clustering of their
expression in the 50 PC input space (Supplementary Fig. 4).
Figure 3c—f show the most significant DEGs of the other 4 groups.
Results for two other example datasets are shown in Supplemen-
tary Figs. 5 (trachea) and 6 (testis).

To evaluate the dependency of singleCellHaystack on input
coordinates and hyperparameter settings (see also discussion
in Supplementary Notes), we applied our method using (1)
different input spaces (Supplementary Fig. 7A), (2) different
bandwidths (Supplementary Fig. 7B), (3) different numbers of
grid points (Supplementary Fig. 7C), and different coordinates of

grid points (Supplementary Fig. 7D). We focused here on the
three datasets shown in Fig. 3 (bone marrow tissue), Supple-
mentary Fig. 5 (trachea) and Supplementary Fig. 6 (testis). As a
reference, we also checked the dependency of a clustering-based
method on the number of clusters predicted in a dataset
(Supplementary Fig. 7E). Compared with the dependency of
cluster-based approaches on the number of predicted clusters,
singleCellHaystack is relatively stable w.r.t. bandwidth and the
number and coordinates of grid points. In general, similar input
spaces (e.g., t-SNE vs. UMAP, or 5 PCs vs. 10 PCs) resulted in
similar top-scoring DEGs. However, different input spaces (e.g., 5
PCs vs. 50 PCs) did lead to larger discrepancies in some datasets.
For example, the first 50 PCs of the Testis 1 dataset returned
different top-scoring DEGs compared to other input spaces
(Supplementary Fig. 7A; bottom). For more complex datasets a
lower-dimensional input space might not be able to sufficiently
capture the variance of the dataset, and a higher dimensional
input space might be preferable.

Comparison with Seurat’s FindAl1lMarkers function. Here,
we compare our method with the default test used in Seurat’s
FindAllMarkers function (i.e., the Wilcoxon rank-sum test),
arguably the most widely used approach. As a representative case,
we show the comparison between singleCellHaystack and Fin-
dAllMarkers on the Tabula Muris bone marrow dataset
(Fig. 4). In general, the agreement between both methods was low
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Fig. 4 Comparison between singleCellHaystack and Seurat. A comparison between singleCellHaystack and Seurat's FindAl1Markers function applied
on the Tabula Muris bone marrow tissue dataset. a Scatterplot of the p-values estimated by FindAl1Markers (x-axis) and singleCellHaystack (y-axis)
for all 13,756 genes in the dataset. One-hundred seventy-six genes were given a p-value of O by FindAl1lMarkers, and are shown as p-value 1e-320.
Genes highlighted in c-i are indicated. b Summary of selected genes indicated in a are shown. c-i Expression patterns of indicated genes.

(Fig. 4a, b and Supplementary Fig. 8). The top 100 high-scoring
genes of both approaches have only 3 genes in common (Sup-
plementary Fig. 8). To gain understanding into the difference
between a clustering-based approach (FindAllMarkers) and
the clustering-independent singleCellHaystack, we focus on seven
example genes. For the gene Ctla2a (Fig. 4c) both methods are in
agreement; Ctla2a has very high expression in a subset of cells
and is not detected in most other subsets.

Some genes are judged to have significant differential
expression by FindAllMarkers but less so by singleCellHay-
stack. One such gene is II2rb (Fig. 4d). The expression of this
gene closely fits one of the clusters that were used by

FindAllMarkers to predict DEGs (Supplementary Fig. 9).
This trend continues with Grm8 and Tnnil, which have high
expression in a handful of cells within a single cluster (Fig. 4e, {
and Supplementary Fig. 9).

On the other hand, other genes are picked up by singleCell-
Haystack, but are not among the top-ranking genes according to
FindAllMarkers (Fig. 4g-i). The most significant DEG
according to singleCellHaystack is Rampl (Fig. 4g, also shown
in Fig. 3b). This gene is expressed across roughly half of the
clusters as decided by FindClusters (Supplementary Fig. 9),
lowering its significance: Rampl is ranked 570t while Tnnil is
ranked 358th according to FindAllMarkers. A similar trend
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continues with Fbl and Nrgn, which have clear differential
expression patterns but are not among the top-scoring genes of
FindAllMarkers.

These representative examples show that clustering-based
approaches are likely to overestimate the significance of DEGs
whose expression pattern fits very closely with a single cluster (ex:
Tnni). These approaches are likely to miss DEGs whose
expression is spread out over several clusters. On the other hand,
singleCellHaystack can detect any pattern of differential expres-
sion, independently of the clustering of cells. However, DEGs that
are expressed in only a small number of cells (ex: Grm8) might be
missed.

Top-scoring DEGs are often known cell type marker genes.
Focusing on results of haystack highD applied on the first 50
PCs of each real dataset, we investigated whether top-scoring
DEGs are often known cell type marker genes. For each dataset,
we ranked genes by their p-value, and counted how often the
genes at each rank were high-confidence markers, low-confidence
markers, or non-marker genes (see “Methods”). High-confidence
marker genes (such as Cd45 and Kit) were strongly enriched
among top-scoring DEGs: although they comprise only 2.2% of
all genes, on average 32.4% of the top 50 ranked genes were high-
confidence cell type markers (Fig. 5).

The advanced mode considers general gene detection levels. In
scRNA-seq data there can be considerable variation in the
number of detected genes between cells. In some datasets this
results in clusters of cells with higher or lower general detection
levels. The advanced mode of singleCellHaystack can be used to
find genes that have expression distributions that are contrary to
the general pattern of detected genes (see Methods section).
Figure 6 shows three examples, comparing the advanced mode
with the default mode. The top-scoring DEGs in the advanced
mode are often expressed in cells that have in general fewer
detected genes.
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Application on spatial transcriptomics data. To show that
singleCellHaystack can identify DEGs in spatial transcriptomics
data we used publicly available data from the 10x Visium plat-
form. We used the mouse brain anteriorl slice dataset, which
contains gene expression information for 2696 spots (each cor-
responding to several cells) together with their 2D spatial coor-
dinates within the tissue. We ran haystack 2D using the gene
expression and spatial coordinates data. Figure 7 shows the
expression of the 6 top-scoring genes returned by haystack
2D. The expression distribution of these genes is correlated with
brain structures: Gpr88, PdelOa, and Rgs9 are expressed in the
caudate putamen; Slc17a7 and Nptxr are mainly restricted to the
cerebral cortex; Pcp4ll is expressed in the olfactory bulb and to a
lesser extent in the caudate putamen. This shows that single-
CellHaystack can be used on spatial transcriptomics data to
identify spatially regulated genes.

Discussion

singleCellHaystack is a generally applicable method for finding
genes with non-uniform expression distributions in multi-
dimensional spaces. Here, we have focused on single-cell tran-
scriptome data analysis, but our approach is also applicable on
large numbers of bulk assay samples. We also demonstrated an
application on spatial transcriptomics data using the spatial
coordinates of cells as input space. singleCellHaystack does not
rely on clustering, thus, avoiding biases caused by the arbitrary
clustering of cells. It can detect any non-random pattern of
expression and can be a useful tool for finding new marker genes.
The singleCellHaystack R package includes additional functions
for clustering and visualization of genes.

As noted in the Results section, singleCellHaystack found large
numbers of statistically significant DEGs in all datasets. The same
was true for many of the clustering-based DEG prediction
methods. DEG prediction methods often return inflated p-values
because of the double use of gene expression data (for defining
clusters and for DEG prediction)!314. singleCellHaystack suffers
from the same issue, because the input coordinates (PCs, t-SNE,
or UMAP coordinates) are dimensions containing a large
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Fig. 5 Frequencies of cell type marker genes among DEGs. The frequencies of high-confidence (blue), low-confidence (orange), and non-marker genes
(gray) among predicted DEGs in the 136 single-cell datasets are shown. The x-axis shows genes ranked by increasing p-value in bins of 50 (ranks 1to 50,

ranks 51 to 100, ..., up to rank 2000).
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Fig. 6 Example results of default versus advanced mode of singleCellHaystack. A t-SNE plot (left), the expression of top-scoring DEGs in the default
mode (center) and advanced mode (right) are shown for a the Tabula Muris pancreas (FACS-sorted data), b the Tabula Muris lung (P8 12; Microfluidic
droplet), and ¢ the Mouse Cell Atlas small intestine 2 dataset. The color scale for gene expression (center and right panels) is as in Fig. 3.

proportion of the variability in the original data. In future updates
we hope to address this issue.

The current implementation of our method requires binary
detection data as input (i.e., a gene is either detected or not in
each cell). The definition of detection is left to the user and could
be modified according to the characteristics of each dataset.
When counts >0 is used to define detection, it should be taken
into consideration that many zero counts in single-cell data

reflect dropout events due to lack of sensitivity in single-cell
techniques. This issue could be partly addressed by applying
imputation approaches. However, we are aware that the use of a
hard threshold for detection is a weak point of our method. For
example, two genes might be detected in the same subset of cells,
but one might have ten-fold higher read counts than the other.
Since the current implementation of our method is using a hard
threshold for detection, it would give both genes the same Dy,
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Fig. 7 Application of singleCellHaystack on spatial transcriptomics data. a-f Expression levels (normalized counts) per bead in the anterior1 slice of the
mouse brain are shown for the top 6 high-scoring genes returned by haystack 2D. Each figure shows circles representing the 2696 beads superimposed
on a slice of the anterior mouse brain. The locations of the circles correspond to the 2D coordinates of the beads and their colors reflect the expression of

each gene.

and p-value. In future updates, we will explore ways for using
continuous measures of gene expression (such as normalized read
counts) as a basis for estimating expression distributions, instead
of using binary detection data.

Methods

singleCellHaystack methodology. singleCellHaystack uses the distribution of
cells in an input space to predict DEGs. First, it infers a reference distribution of
cells in the space (distribution Q). It does so by estimating the local density of cells
around a set of fixed grid points in the space using a Gaussian kernel. For 2D
spaces (such as t-SNE or UMAP plots, and 2D spatial transcriptomics data),
haystack 2D divides the 2D space into a grid along both axes, and the inter-
section points serve as grid points. For multidimensional spaces (such as the first
several PCs), haystack_ highD defines a set of grid points covering the subspace
in which the cells are located (see Supplementary Methods).

Next, singleCellHaystack estimates the distribution of cells in which a gene G is
detected (distribution P(G = T)) and not detected (distribution P(G = F)). It does
this using the same grid points and Gaussian kernel as used for estimating Q. Each
distribution is normalized to sum to 1. The definition of detection could depend on
the characteristics of the dataset. For the results presented in this paper we used the
median read count of each gene as the threshold for defining detection, except for
the analysis of the spatial transcriptomics. Alternatively, genes with read counts >0
or exceeding an otherwise defined threshold could be regarded as detected. As an
example, we used a fixed threshold of 1 read for the spatial transcriptomics data
analysis.

The divergence of gene G, Dy (G), is calculated as follows:

Dy (G) = Z Z P(G =5, x)log(%) (1)

se{T,F} xegrid points

where P(G = s,x) and Q(x) are the values of P(G=s) and Q at grid point x,
respectively.

Finally, the significance of D (G) is evaluated using randomizations, in which
the expression levels of G are randomly shuffled over all cells. The mean and
standard deviation of Dk (G) in randomized datasets follow a clear pattern in
function of the number of cells in which a gene was detected (see Supplementary
Fig. 10 for examples), which is modeled using B-splines?2. p-values are calculated
by comparing the observed Dy (G) to the predicted mean and standard deviation
(log values).

singleCellHaystack advanced options. The distribution Q and the randomiza-
tions described above ignore the fact that some cells have in total more detected
genes than others. singleCellHaystack can be run in an advanced mode, in which

both the calculation of Q and the randomizations are done by weighting cells by

their number of detected genes (see Supplementary Methods for more details).
In addition, singleCellHaystack includes functions for visualization and for

clustering genes by their expression distribution in the multidimensional space.

Application of DEG prediction methods on artificial datasets. We used Splatter
to generate artificial datasets in a range of sizes and complexities, as follows!”.
First, we made datasets containing 1000 cells in 2 clusters; 2000 cells in 3
clusters; 3000 cells in 4 clusters; 4000 cells in 5 clusters; 5000 cells in 6 clusters;
6000 cells in 8 clusters; 7000 cells in 10 clusters; 8000 cells in 15 clusters; 9000
cells in 20 clusters; or 10,000 cells in 25 clusters. For each of these ten settings we
generated ten datasets. Secondly, for the same settings of clusters and cell counts
we also generated ten datasets each containing randomly determined paths
between the clusters (parameter path.from in Splatter’s splatSimulate
function). This gave us a total of 200 datasets (100 with clusters and 100 with
paths).

The output of Splatter contains differential expression factors (DEFac[Group]),
showing whether a gene has differential expression (factor different from 1) or not
(factor = 1) in each group (=cluster). We defined a differential expression score for
each gene as the sum of the absolute values of these log,-transformed factors. We
regarded the 100 genes with the highest score as true DEGs.

On these artificial datasets we applied DEsingle, EMDomics, scDD, edgeR,
monocle 2, MAST, and the FindAl1lMarkers function of Seurat (see
Supplementary Table 1)7:8:12:18-21 For a brief description of these methods we
refer to Wang et al.14. We also tried to apply SCDE and DESeq2 but these had
excessively long runtimes even on the smallest datasets, and were, therefore,
excluded from this comparison!!:23. The cell clusters given as input to the DEG
prediction methods were detected by running the FindNeighbors function of
Seurat using the first 15 PCs of each dataset as input followed by the
FindClusters function using the default resolution and the Smart Local
Moving (SLM) algorithm. The same cell clusters were used for all methods. For
methods that are implemented in Seurat we used the FindAllMarkers
function to predict DEGs by comparing each cluster versus all other clusters. For
other methods, we implemented this comprehensive comparison (each cluster
versus all others). Furthermore, for methods that are implemented in Seurat, we
ran FindAllMarkers with default options, except for options only.pos =
FALSE and return.thresh = 1, and with and without the default filtering (default
options logfc.threshold = 0.25 and min.pct =0.1).

All evaluated methods assign p-values and/or scores to genes reflecting their
degree of differential expression. We turned these p-values and scores into a
ranking of genes, from more significant DEGs to less significant DEGs. The
ranking was based on p-values where possible, using scores to break ties. The ROC
method in Seurat does not return p-values, so we based its ranking of genes on the
predictive power score returned by this method.
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Finally, for each DEG prediction method, we calculated the AUC under the
ROC curve for every artificial dataset using the ROCR package (version 1.0-7)
in R,

scRNA-seq datasets and processing. For a detailed description we refer to
Supplementary Methods. In brief, we downloaded processed data (read counts
or unique molecular identifiers) of the Tabula Muris project (FACS-sorted cells:
20 sets; Microfluidic droplets: 28 sets), the Mouse Cell Atlas (Microwell-seq:
87 sets) and a dataset of several hematopoietic progenitor cell types>2>26, PCA
was conducted using the 1000 most variable genes. Subsequently, the first 50 PCs
were used as input for t-SNE and UMAP analysis, following the recommenda-
tions by Kobak and Berens?’. Finally, singleCellHaystack was run on both 2D
(2D t-SNE and UMAP coordinates) and multidimensional (50 PCs) repre-
sentations of each dataset to predict DEGs. For analyzing runtimes and
dependency on input parameters we ran additional runs using 5, 10, 15, and
25 PCs.

Known cell type marker genes. We downloaded marker gene data from the
CellMarker database?8. A total of 7852 unique mouse genes are reported as mar-
kers in CellMarker, which we split into 630 high-confidence markers (reported in
>5 publications), and 7222 low-confidence markers (reported in one to four
publications). Other genes we regarded as non-marker genes.

Analysis of dependency on parameters. We ran singleCellHaystack using dif-
ferent parameter settings as follows:

1. with default parameter settings on different input spaces: t-SNE, UMAP,
and the first 5, 10, or 50 PCs.

2. with the default number of grid points on the 50 PC input space
using different bandwidths: bandwidth h (default), 2 x h, 1.5 x h, h/1.5, and
hi2.

3. with the default bandwidth on the 50 PC input space using different number
of grid points: 25, 50, 100 (default), 150, and 200.

4. with the default bandwidth on the 50 PC input space with 100 grid points
but using 5 different seed values for R’s random number generator. This
results in different coordinates for the grid points.

The Spearman correlation of p-values was used to evaluate the consistency of
results of different runs. We also ran Seurat’s FindAl1lMarkers function with
the default DEG prediction method (Wilcoxon rank-sum test), changing the
number of clusters detected in each dataset. First, we ran Seurat’s FindClusters
function with the default resolution parameter setting to obtain the default clusters.
Then, we changed the resolution parameter to obtain more (default+1 and +2)
and fewer (default-1 and -2) clusters. Finally, we applied the FindAl1lMarkers
function on these five different clustering results.

Analysis of spatial transcriptomics data. We used mouse brain data from the
10x Genomics Visium spatial transcriptomics platform (https://
support.10xgenomics.com/spatial-gene-expression/datasets). We obtained the
anteriorl slice with the SeuratData R package for this analysis?. The
anteriorl slice consists of 31,053 genes and 2696 beads distributed in a 2D
lattice. We used Seurat to normalize, obtain the 2D coordinates, and plot the
spatial images. Genes with <10 beads with raw counts >1 were removed,
resulting in 12,382 genes passing filtering. Raw counts were normalized with the
NormalizeData function. Normalized counts and spatial coordinates were
passed to the function haystack 2D to predict spatially differentially
expressed genes, using a detection cutoff of 1.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The artificial single-cell datasets generated using Splatter for the comparison of
singleCellHaystack with other DEG prediction methods are available in figshare with the
identifiers 10.6084/m9.figshare.12319787 and 10.6084/m9.figshare.12319247. Other
single-cell RNA-seq datasets analyzed in this study are available from https://tabula-
muris.ds.czbiohub.org/ (Tabula Muris), https://figshare.com/articless MCA_DGE_Data/
5435866 (Mouse Cell Atlas), GEO accession number GSE81682, and https://
support.10xgenomics.com/spatial-gene-expression/datasets (10x Genomics spatial gene
expression). The cell type marker data was obtained from the CellMarker database and is
available from http://biocc.hrbmu.edu.cn/CellMarker/.

Code availability

singleCellHaystack is implemented as an R package, available from CRAN (https://
CRAN.R-project.org/package=singleCellHaystack) and GitHub (https://github.com/
alexisvdb/singleCellHaystack). The repository includes additional instructions for
installation in R and example applications.
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