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Multiple sclerosis is a chronic inflammatory disease of the central nervous system, associated with demyelination and neuro-

degeneration. The mechanisms of tissue injury are currently poorly understood, but recent data suggest that mitochondrial injury

may play an important role in this process. Since mitochondrial injury can be triggered by reactive oxygen and nitric oxide

species, we analysed by immunocytochemistry the presence and cellular location of oxidized lipids and oxidized DNA in lesions

and in normal-appearing white matter of 30 patients with multiple sclerosis and 24 control patients without neurological disease

or brain lesions. As reported before in biochemical studies, oxidized lipids and DNA were highly enriched in active multiple

sclerosis plaques, predominantly in areas that are defined as initial or ‘prephagocytic’ lesions. Oxidized DNA was mainly seen in

oligodendrocyte nuclei, which in part showed signs of apoptosis. In addition, a small number of reactive astrocytes revealed

nuclear expression of 8-hydroxy-D-guanosine. Similarly, lipid peroxidation-derived structures (malondialdehyde and oxidized

phospholipid epitopes) were seen in the cytoplasm of oligodendrocytes and some astrocytes. In addition, oxidized phospholipids

were massively accumulated in a fraction of axonal spheroids with disturbed fast axonal transport as well as in neurons within

grey matter lesions. Neurons stained for oxidized phospholipids frequently revealed signs of degeneration with fragmentation of

their dendritic processes. The extent of lipid and DNA oxidation correlated significantly with inflammation, determined by the

number of CD3 positive T cells and human leucocyte antigen-D expressing macrophages and microglia in the lesions. Our data

suggest profound oxidative injury of oligodendrocytes and neurons to be associated with active demyelination and axonal or

neuronal injury in multiple sclerosis.
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Introduction
Multiple sclerosis is a chronic inflammatory disease of the CNS,

leading to focal plaques of primary demyelination with a variable

degree of axonal and neuronal degeneration (Lassmann et al.,

2007). Although different mechanisms may contribute to demye-

lination and neurodegeneration in multiple sclerosis, it recently

became clear that mitochondrial injury and subsequent energy

failure is a major factor driving tissue injury (Lu et al., 2000;

Dutta et al., 2006; Mahad et al., 2008; Trapp and Stys 2009;

Witte et al., 2010). Active multiple sclerosis lesions show profound

alterations of proteins of the mitochondrial respiratory chain

(Mahad et al., 2008, 2009) and mitochondrial DNA deletions

are present in neurons, in particular in the progressive stage of

the disease (Campell et al., 2011). Such mitochondrial changes

may explain characteristic pathological features of multiple scler-

osis lesions, including demyelination and oligodendrocyte apop-

tosis (Veto et al., 2010), preferential destruction of small-calibre

axons (Mahad et al., 2008, 2009), differentiation arrest of oligo-

dendrocyte progenitor cells and remyelination failure (Ziabreva

et al., 2010) and astrocyte dysfunction (Sharma et al., 2010;

Campbell et al., unpublished data). Mitochondrial proteins and

DNA are highly vulnerable to oxidative damage (Higgins et al.,

2010), and it is thus expected that free radical-mediated mechan-

isms may drive mitochondrial injury in multiple sclerosis (Lu et al.,

2000; Kalman and Leist, 2003; Mao and Reddy, 2010; van

Horssen et al., 2011). Oxidized lipids and oxidized DNA have

been detected biochemically in brain tissue from patients with

multiple sclerosis (Vladimirova et al., 1998; Smith et al., 1999;

Bizzozero et al., 2005; Quin et al., 2007) and some studies

have analysed their cellular localization in multiple sclerosis lesions

by immunocytochemistry (Newcombe and Cuzner, 1994; Lu et al.,

2000; Van Horssen et al., 2008). The results of the latter studies,

however, are disappointing, since immunoreactivity was seen in

macrophages and astrocytes, but not in those cells or components

that actually are destroyed in the lesions, such as oligodendro-

cytes, neurons and axons. The aim of this study was a systematic

analysis of the presence and location of oxidized DNA and lipids at

a cellular level in different stages of lesion formation in multiple

sclerosis. We show that oxidized DNA and lipids are concentrated

within active portions of the lesions. We further found that oxi-

dized lipids—both oxidized phospholipids and malondialdehyde

(MDA)—are excellent markers for acute cell injury and degener-

ation of neurons and glia. Furthermore, different oxidized lipids

preferentially accumulate in different cell types or cellular

compartments.

Materials and methods
This study was performed on paraffin-embedded archival autopsy ma-

terial from 30 patients with multiple sclerosis, one patient with neu-

romyelitis optica and 24 controls without neurological disease or brain

lesions (Table 1). Controls included 17 normal controls of different age

and seven patients, who died under septic conditions. The presence of

concomitant vascular (ischaemic) lesions, which could by itself lead to

oxidative damage in human brain tissue, was excluded by detailed

neuropathological studies, performed on multiple tissue blocks from

each patient. The clinical course was defined by retrospective chart

review according to established criteria before and blinded to the

pathological analysis (Lublin and Reingold, 1996). The multiple scler-

osis cohort included seven cases of acute multiple sclerosis (Marburg,

1906), who died within 1 year after disease onset (Table 1). Further,

two cases of relapsing/remitting multiple sclerosis, 12 cases of second-

ary progressive multiple sclerosis and eight cases of primary progres-

sive multiple sclerosis were included. Due to insufficient clinical data

one additional multiple sclerosis case could only be classified as pro-

gressive multiple sclerosis. The study was approved by the Ethik

Kommission of the Medical University of Vienna (EK Nr 535/2004).

Neuropathological techniques and
immunocytochemistry
All cases underwent detailed neuropathological examination on mul-

tiple tissue blocks from various brain regions and lesion activity was

evaluated as described in detail previously (Frischer et al., 2009).

Immunocytochemistry was performed on paraffin sections according

to established techniques (King et al., 1997; Bauer et al., 2007). A

detailed list of primary antibodies, dilutions and corresponding

pretreatment of sections is shown in Table 2. Since immunocytochem-

ical analysis of oxidized molecules in tissue sections may potentially

lead to false-positive results in sections stained with a peroxidase de-

tection system, an additional detection system, based on alkaline phos-

phatase was used, which showed identical results.

Double labelling was performed using primary antibodies from dif-

ferent species. Oxidative markers were first stained using primary anti-

bodies from mouse or goat, followed by respective species-specific

secondary antibodies, labelled with alkaline phosphatase and develop-

ment in fast blue BB reagent (blue reaction product). Then cell-specific

rabbit or rat antibodies were applied (TPPP-p25 for oligodendrocytes,

glial fibrillary acidic protein for astrocytes, synaptophysin for axons

with disturbed axonal transport, Iba-1 for macrophages and microglia

and CD3 for T cells). This was followed by species-specific biotinylated

anti-rabbit or anti-rat immunoglobulin, avidin–peroxidase and devel-

opment in amino ethyl carbazole reagent (red reaction product; for

details see Marik et al., 2007).

Confocal laser fluorescence microscopy
For identifying E06 (oxidized phospholipid)-labelled axonal spheroids,

fluorescence immunohistochemistry was performed on paraffin sec-

tions as described above with few modifications. The primary antibo-

dies, monoclonal anti-E06 and polyclonal anti-synaptophysin, were

applied simultaneously at 4�C in a humid chamber overnight. After

washing with phosphate-buffered saline, secondary antibodies consist-

ing of goat-anti-rabbit Cy3 (Jackson ImmunoResearch, 1 : 200) and

biotinylated anti-mouse (Jackson; 1 : 500) were applied simultaneously

for 1 h at room temperature. The staining was finished by incubation

with streptavidin-Cy2 (Jackson ImmunoResearch; 1 : 75) for 1 h at

room temperature. Fluorescent preparations were examined using a

Leica SP2 confocal laser scan microscope.

Quantitative analysis
For quantification of immunocytochemistry for oxidative markers, two

different approaches were applied. In the first approach, we performed

densitometry of sections stained with the antibody against oxidized

phospholipids. In a second approach, we manually counted different
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Table 1 Clinical data of controls and patients with multiple sclerosis included in this study

Clinical multiple
sclerosis type

Age Gender Disease course Total disease
duration (months)

Lesion types

AMS 1 45 Male Monophasic 0.2 Active (Pattern III); inactive

AMS 2 45 Male Monophasic 0.6 Active (Pattern III), inactive

AMS 3 52 Male Monophasic 1.5 Active (Pattern II), inactive

AMS 4 35 Male Monophasic 2 Active (Pattern II; inactive

AMS 5 78 Male Monophasic 2 Active (Pattern III); inactive

AMS 6 34 Female Monophasic 4 Active (Pattern III); inactive

AMS 7 51 Female Monophasic 5 Active (Pattern II), inactive

RRMS 1 40 Female RRMS 120 Active (Pattern III); inactive

RRMS 2 57 Female RRMS 156 Active (Pattern II); inactive

SPMS 1 66 Female SPMS with attacks 96 Inactive

SPMS 2 34 Male SPMS with attacks 4120 Inactive

SPMS 3 62 Female SPMS without attacks 144 Active (Pattern I)

SPMS 4 84 Female SPMS without attacks 264 Inactive

SPMS 5 61 Female SPMS with attacks 288 Slowly expanding active; inactive

SPMS 6 64 Female SPMS without attacks 336 Inactive

SPMS 7 56 Male SPMS without attacks 372 Active (Pattern I); inactive

SPMS 8 76 Male SPMS without attacks 372 Inactive

SPMS 9 78 Female SPMS without attacks 372 Inactive

SPMS 10 69 Female SPMS without attacks 384 Inactive

SPMS 11 81 Female SPMS without attacks 432 Inactive

SPMS 12 46 Female SPMS with attacks 444 Slowly expanding active; inactive

PPMS 1 55 Female PPMS 60 Slowly expanding active; inactive

PPMS 2 67 Male PPMS 87 Active (Pattern I), inactive

PPMS 3 53 Male PPMS 168 Slowly expanding active; inactive

PPMS 4 77 Female PPMS 168 Slowly expanding active; inactive

PPMS 5 34 Female PPMS 204 Slowly expanding active; inactive

PPMS 6 71 Female PPMS 264 Slowly expanding active; inactive

PPMS 7 83 Female PPMS 360 Inactive

PPMS 8 75 Female PPMS 372 Inactive

ProgMS 68 Female Progressive MS 120 Inactive

NMO 20 Female Relapsing NMO 48 Neuromyelitis optica

WMS 1 85 Female Acute stroke 2 days Initial white matter stroke lesion

WMS 2 65 Female Recurrent stroke 48 Initial and advanced stroke lesions

Control 1 30 Female Normal control – –

Control 2 36 Female Normal control – –

Control 3 37 Male Normal control – –

Control 4 39 Female Normal control – –

Control 5 42 Female Normal control – –

Control 6 45 Female Normal control – –

Control 7 46 Male Normal control – –

Control 8 47 Female Normal control – –

Control 9 48 Male Normal control – –

Control 10 65 Male Normal control – –

Control 11 70 Male Normal control – –

Control 12 71 Female Normal control – –

Control 13 71 Female Normal control – –

Control 14 72 Male Normal control -– –

Control 15 83 Male Normal control – –

Control 16 84 Female Normal control – –

Control 17 97 Female Normal control – –

S-Control 42 Female Septic control – –

S-Control 45 Male Septic control – –

S-Control 51 Female Septic control – –

S-Control 74 Male Septic control – –

S-Control 88 Male Septic control – –

S-Control 89 Female Septic control – –

S-Control 95 Female Septic control – –

AMS = acute multiple sclerosis; MS = multiple sclerosis; NMO = neuromyelitis optica; PPMS = primary progressive multiple sclerosis; RRMS = relapsing/remitting multiple
sclerosis; SPMS = secondary progressive multiple sclerosis; WMS = white matter stroke.
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cell types or dystrophic axons stained selectively with the markers

8-hydroxy-D-guanosine (oxidized DNA), E06 (oxidized phospholipids),

MDA2 (malondialdehyde–lysine), CD3 (T cells), Human leucocyte

antigen-DP, DQ, DR (HLA-D; mainly macrophages and microglia)

and amyloid precursor protein (dystrophic axons with disturbed

axonal transport).

Densitometric analysis
By means of Luxol fast blue Kluver’s staining as well as haematoxylin

eosin staining and proteolipid protein immunocytochemistry, regions of

interest (n = 761, each 0.61 mm � 0.46 mm) were defined and num-

bered, giving each individual region an ID. The locations of these re-

gions were chosen on the basis of multiple sclerosis pathology differing

between types of multiple sclerosis lesions or normal-appearing white

matter. Photomicrographs were taken from the corresponding regions

in the E06-stained slides under standardized conditions (identical set-

tings, controlled by white balance values) with a Reichert Polyvar 2

microscope using Nikon NIS-Elements D3.10. Pictures were captured

with Gain 1.2 at an exposure time of 6 ms. All images were saved as

JPEG files with lowest compression. They were processed with Adobe
�

Photoshop CS2, image size was reduced to a width of 10 cm and

resolution set on 300 pixel/inch and cold filter with 25% was applied.

A threshold level (output level = 128) was set and pixels above this

value were deleted. The images were saved as TIF files and opened

with ImageJ, which measures the per cent area covered by the signal.

The data were structured in order to allow following of each database

value back to the original microscopic image. Averages for individual

densitometric values were calculated per lesion area per case and these

averages were compared between multiple sclerosis samples and white

matter of controls as well as between different lesion areas within the

multiple sclerosis sample.

Manual counting of immunostained
cells or dystrophic axons
Manual counting was performed in the same section areas used for

densitometric analysis. Counting was performed at the microscope in

areas defined by an ocular grid as described previously (Frischer et al.,

2009) for CD3, HLA-D and amyloid precursor protein-stained sections.

For the oxidative markers, counting was performed in 10 microscopic

fields of 0.25 mm2 per lesion area. Average counts per square milli-

metre were calculated for each region of interest (normal-appearing

white matter, active lesions, slowly expanding lesions and inactive le-

sions) per case and compared by statistical analysis.

Statistical analysis
Due to the uneven distribution of our data, statistical analysis was

performed with non-parametric tests. Descriptive analysis included

median value and range. Differences between two groups were as-

sessed with Wilcoxon–Mann–Whitney U-test. Differences between

more than two groups were assessed with Kruskal–Wallis test, fol-

lowed by pair-wise Wilcoxon–Mann–Whitney U-tests. In case of mul-

tiple testing (comparison of more than two groups) significant values

were corrected with Bonferroni procedure. Interdependence of

Table 2 Antibodies used for immunocytochemistry

Antibody Antibody type Target Source Staining

E06 Mouse (mAB) Oxidized phospholipids Palinski et al., 1996 10 mg/ml

E014 Mouse (mAB) Malondialdehyde–lysine Palinski et al., 1996 0.4 mg/ml

MDA2 Mouse (mAB) Malondialdehyde–lysine Palinski et al., 1990 1 : 1000

8-OHdG Goat (polyAB) 8-Hydroxy 2-deoxy Guanosine Abcam, ab10802 1 : 1000; E

CD3 Rabbit (polyAB) T-cell antigen Dako, A0452 Lot128 1 : 2000; E

IBA-1 Rabbit (polyAB) Ionized calcium binding adaptor
molecule 1

Courtesy of Dr Sonja Forss-Petter/
Japan

1 : 3000; E

CD68 Mouse (mAB) CD68 110-kD transmembrane
glycoprotein

Dako, M0814 1 : 100; E

HLA-D Mouse (mAB) Human leucocyte antigen-DP, DQ,
DR

Dako, M0775 1 : 100; C

TPPP/p25 Rat (polyAB) Tubulin polymerization promoting
protein

Produced by Gergö Botond 1 : 3000; E

CNPase Mouse (mAB) 2’,3’-cyclic nucleotide 3’
phosphodiesterase

Sternberger Monoclonals, SMI91 1 : 2000; E

MOG Y10 and Z12 Mouse (mABs) Myelin oligodendrocyte
glycoprotein

Piddlesden et al., 1991 1 : 100; C

PLP Mouse (mAB) Proteolipid protein Serotec, MCA 839 G 1 : 1000; E

APP Mouse (mAB) Alzheimer amyloid precursor
protein

Chemicon, MAB 348 1 : 1000; C

SY Rabbit (polyAB) Synaptophysin Epitomics YE269, Burlingame, CA,
USA

1 : 100; E

SMI 32 Mouse (mAB) Non-phosphorylated 200 kDa
neurofilament

Sternberger Monoclonals SMI32 1 : 1000; E

SMI 311 and 312 Mouse (mAB) Neurofilament Sternberger Monoclonals SMI
311 and 312

1 : 18000; E

GFAP Rabbit (polyAB) Glial fibrillary acidic protein
(intermediate filament of mature
astrocytes)

Dako, Z0334 Lot 096 1 : 3000; E

AB = antibody; C = citrate buffer; E =ethylenedinitrilotetraacetic acid buffer.
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variables was evaluated by Spearman non-parametric correlation test.

The reported P-values are results of two-sided tests. A P-value4 0.05

was considered statistically significant. For all statistical analysis, mean

values per patient for each lesion type and normal-appearing white

matter were used.

Results

Oxidative damage in multiple sclerosis
tissue is related to lesion activity and
inflammation
In a first approach, we analysed the accumulation of oxidized

DNA and oxidized lipids within multiple sclerosis lesions of differ-

ent activity from patients with acute, relapsing, remitting and pro-

gressive disease by immunocytochemistry. As controls, we used

brain tissue from patients without neurological disease, who died

under conditions of systemic inflammation (septic controls) or

non-inflammatory conditions (normal controls). Sections were

stained under identical conditions, scanned and evaluated by

densitometry or by manual counting of immunoreactive cells

within the tissue. In comparison with normal and septic controls,

increased immunocytochemical signals were detected in the global

multiple sclerosis population (Figs 1A and B, 2A–C and Table 3).

This was seen in a similar way for markers for oxidized DNA or

lipids. Within multiple sclerosis sections, the highest signal for oxi-

dative damage was found in active lesion areas, while inactive

lesions showed a low signal. Within active lesions, more intense

staining was present in classical active lesions of acute and relap-

sing multiple sclerosis compared with slowly expanding lesions,

which dominate in the progressive stage of the disease. We also

subtyped lesions according to patterns of demyelination

(Lucchinetti et al., 2000). We found higher expression (on average

8.2-fold) of oxidized lipids and oxidized DNA in lesions following

Pattern III (hypoxia-like tissue injury) compared with Pattern II

(complement-associated demyelination). This was seen for global

staining intensity for oxidized phospholipids, determined by densi-

tometry, as well as by counting the number of cells with nuclear

8-hydroxy-D-guanosine reactivity or with cytoplasmic expression

of MDA2. However, due to the low number of cases analysed,

statistical significance was reached only for MDA2 (P = 0.01) and

a trend (P = 0.072) for 8-hydroxy-D-guanosine. The values in mul-

tiple sclerosis Pattern II lesions were similar to those seen in a case

of neuromyelitis optica, which was included as a control for

antibody-mediated tissue injury. Interestingly, astrocytes, which

are the primary target for destruction in neuromyelitis optica, did

not show 8-hydroxy-D-guanosine-reactive nuclei. This may be due

to their rapid and efficient antibody- and complement-mediated

destruction. Quantification of inflammation regarding T cells

(CD3) and macrophages/microglia (HLA-D) revealed a relative dis-

tribution of values, similar to that seen for markers of oxidative

damage. In addition, we found a weak but significant correlation

between T cells or macrophages/microglia and the presence of

oxidized DNA or lipids within the sections (data not shown).

Within the global multiple sclerosis population, patients dying in

the course of acute multiple sclerosis showed more accumulation

of oxidized lipids and DNA in the lesions as compared with those

dying in the progressive stage of the disease. The difference, how-

ever, did not reach statistical significance. Similarly, we did not see

a significant global age- or gender-dependent effect on the pres-

ence of oxidized lipids and DNA in multiple sclerosis or control

cases.

Cellular localization of oxidized DNA
and lipids and its relation to lesion
activity
Fine mapping of actively demyelinating lesions in multiple sclerosis

revealed several different zones, representing the evolution of the

plaques (Figs 1A–F, 2A–G). The centre of an active plaque is

densely packed with foamy macrophages. Towards the edge of

the lesions, macrophage density is even higher, most of them

containing myelin-degradation products, which still have the stain-

ing properties of intact myelin (including even low-abundance

myelin proteins such as myelin oligodendrocyte glycoprotein;

early active lesion according to Brück et al., 1995). In between

this area and the normal peri-plaque white matter, there is an-

other zone that contains activated microglia, dispersed between

seemingly intact myelin sheaths, but containing oligodendrocytes

with apoptotic-like nuclear changes. This zone is regarded as the

initial demyelinating lesion (Marik et al., 2007) or the ‘prephago-

cytic’ stage of active multiple sclerosis lesions, as defined by

Barnett and Prineas (2004). Immunoreactivity for oxidized DNA

and oxidized lipids was most prominent in this zone of initial

lesion formation, followed by the adjacent peri-plaque white

matter, but being much lower in the zone of early phagocytic

myelin digestion and nearly absent in the centre of the active

lesion (Figs 1A–F, 2A–G).

Oxidized DNA
Immunocytochemistry for 8-hydroxy-D-guanosine revealed select-

ive staining of cell nuclei, reflecting oxidized DNA.

Immunoreactive cell nuclei were most numerous in classical

active lesions (Fig. 1A, B and Table 3), followed by slowly expand-

ing lesions. Low numbers of immunoreactive nuclei were present

in inactive lesions and in the normal-appearing white matter. Only

exceptional nuclei were positive in sections of normal and septic

controls (Fig. 1C). Immunoreactivity for oxidized DNA was mainly

found in areas with profound microglia activation at the lesion

edge (‘initial’ lesion area; Fig. 1A–F). The vast majority of cells

with oxidized DNA were small round cells, morphologically resem-

bling oligodendrocytes (Fig. 1G). Double staining with specific cel-

lular markers showed oxidized DNA in TPPP-p25-positive

oligodendrocytes, which in part revealed nuclear alterations resem-

bling apoptosis (Fig. 1G). Only 3–4% of cells with 8-hydroxy-D-

guanosine-positive nuclei were astrocytes, identified by double

staining with glial fibrillary acidic protein (Fig. 1H), and nuclear

reactivity was occasionally seen in neurons in cortical lesions. In

addition, oxidized DNA was seen in some Iba-1- or CD68-positive
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Figure 1 Oxidized DNA in multiple sclerosis lesions, visualized by immunocytochemistry for 8-hydroxy-D-guanosine (8-OHdG).

(a) Actively demyelinating lesion in a patient with primary progressive multiple sclerosis; the figure shows areas of the normal-appearing

white matter (NAWM) (left), the zone of ongoing demyelinating activity with profound microglia activation and macrophage infiltration

(brown immunoreactivity for the macrophage marker CD68) and the inactive portion of the lesion with low macrophage infiltration.

Oxidized DNA (8-OHdG) reactivity is shown as blue nuclei, which are mainly present in the active lesion edge (�60). EA = early active

demyelination with macrophages containing myelin-reactive degradation products; initial = initial stage of demyelination with profound

microglia activation and oligodendrocyte apoptosis; LA centre = late active stage of demyelination in lesions centre; macrophages with

neutral lipid degradation products. (b) Higher magnification of the ‘initial’ stage of the active plaque in a, shows profound microglia

activation (brown cells; CD68 positive) and many blue nuclei, representing cells with DNA oxidation; the asterisks in a and b indicate the

position of b within the lesion shown in a (�200). (c) Normal white matter of a control patient without neurological disease and brain

lesions; only very few microglia cells show cytoplasmic CD68 reactivity (brown); there are no blue nuclei, suggesting DNA oxidation

(�100). (d) Normal-appearing white matter (NAWM) of a patient with acute multiple sclerosis (Marburg’s type); similar pattern as in the

control white matter, shown in c (�100). (e) Very early active lesion area in a patient with acute multiple sclerosis (Marburg’s type);

profound microglia activation (brown cells; CD68) adjacent to cell nuclei, positive for 8-hydroxy-D-guanosine (blue) (�100). (f) Late

active lesion centre in a patient with Marburg’s type of acute multiple sclerosis; numerous CD68-positive macrophages (brown), but no

nuclei with blue 8-hydroxy-D-guanosine reactivity (�100). (g) Double staining for oxidized DNA (8-hydroxy-D-guanosine; blue) and the

oligodendrocyte marker TPPP-p25 (red) at the lesion edge of an active lesion of acute multiple sclerosis. One of the six oligodendrocytes

shows blue 8-hydroxy-D-guanosine reactivity in a nucleus with nuclear condensation and fragmentation (apoptotic cell) (�900). (h)

Double staining for oxidized DNA (8-hydroxy-D-guanosine, blue) and glial fibrillary acidic protein (GFAP, red) at the edge of an active

lesion of acute multiple sclerosis. One astrocyte contains a blue nucleus, indicating oxidized DNA (�600). (i) Double staining for oxidized

DNA (8-hydroxy-D-guanosine, blue) and the macrophage marker CD68 (red) in an active lesion of acute multiple sclerosis. The macro-

phage contains a nucleus with oxidized DNA, possibly representing phagocytosis of an apoptotic cell (�600). (j) Double staining for

oxidized DNA (8-hydroxy-D-guanosine, blue) and the T-cell marker CD3 (red) in an active lesion of acute multiple sclerosis. No DNA

oxidation is seen in the CD3-positive T-cell population (�200).
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Figure 2 Oxidized lipids in multiple sclerosis lesions. (a) Myelin loss in an active white matter lesion in acute multiple sclerosis, Marburg’s

type (�8). (b) Adjacent serial section from a, stained with the marker E06 for oxidized phospholipids (OxPL) with profound immunor-

eactivity at the lesion edge and the adjacent peri-plaque white matter (�8). (c) Higher magnification of the sections shown in b, showing

increased immunoreactivity for oxidized phospholipids at the lesion edge (�45). (d) Normal white matter of a control patient without

neurological disease or CNS lesions, without immunoreactivity for oxidized phospholipids (�45). (e) Peri-plaque white matter (PPWM)

from the area shown in b, with increased immunoreactivity, in comparison with the control white matter, but much lower reactivity as at

the active lesion edge. Immunoreactivity is mostly associated with myelin (�150). (f) High immunoreactivity for oxidized phospholipids in

myelin sheaths and some globular structures, representing axonal spheroids, are present at the edge of the active lesions shown in b

(�150). (g) Inactive lesion centre of the same lesion shown in b, with low immunoreactivity for oxidized phospholipids; intensive

immunoreactivity, however, is seen in some axonal spheroids (�150). (h–k) Oxidized phospholipids are selectively accumulated within

dystrophic axons and axonal spheroids (h, i); the nature of dystrophic axons is documented by double staining confocal microscopy for

oxidized phospholipids and synaptophysin (Syn: j and k) (h, i: �900; j, k: �2500). (l–o) Accumulation of oxidized phospholipids in

neurons in patients with multiple sclerosis with active lesions: (l) lipofuscin reactivity in cortical neuron; (m) ballooned cortical neuron

adjacent to destructive subcortical lesion with intense immunoreactivity for oxidized phospholipids; (n, o) neurons with intense cytoplasmic

1920 | Brain 2011: 134; 1914–1924 L. Haider et al.
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microglia and macrophages (Fig. 1I) but not in CD3-positive T cells

(Fig. 1J).

Oxidized phospholipids
In both multiple sclerosis and control tissue, E06 immunoreactivity

was seen in lipofuscin granules of macrophages and neurons (Fig.

2L and S). In addition, oxidized phospholipids were present in

multiple sclerosis tissue in various different cell types, predomin-

antly in active white matter and cortical lesions. The most prom-

inent expression was found in acutely injured axons, mainly

located at the edges of actively expanding lesions (Fig. 2H–K).

Reactivity was most intense at the sites of axonal transection

and less in the proximal or distal axon (Fig. 2H and I). Double

staining with synaptophysin revealed a co-localization of oxidized

phospholipids with sites of disturbance of fast axonal transport

(Fig. 2J and K); however, on average only 10% of amyloid pre-

cursor protein-positive axons also contained E06 immunoreactivity

(Table 3). Quantitative analysis showed the highest density of

axonal spheroids containing oxidized phospholipids in active

lesions, followed by slowly expanding lesions, inactive lesions

and normal-appearing white matter (Table 3). Only exceptional

axonal spheroids reactive for oxidized phospholipids were encoun-

tered in brain sections from normal and septic controls (Fig. 2D).

Dense cytoplasmic staining for oxidized phospholipids was also

present in the perinuclear cell bodies and dendrites of some neu-

rons in active lesions in the cortex and the basal ganglia. Many of

the neurons with cytoplasmic staining for oxidized phospholipids

revealed irregularities or fragmentation of their dendritic processes

(Fig. 2M–O).

In addition to neurons and axons, oxidized phospholipids were

also located in myelin (Fig. 2F), in TPPP-p25-positive oligodendro-

cytes (Fig. 2P) and in glial fibrillary acidic protein-positive astro-

cytes (Fig. 2Q and R). While in oligodendrocytes the entire

cytoplasm was stained, in astrocytes the immunoreactivity was

restricted to cytoplasmic inclusions, possibly reflecting autophagic

vacuoles. A granular reactivity for oxidized phospholipids was also

seen in the cytoplasm of macrophages, consistent with their con-

tent of lipofuscin (Fig. 2S).

Figure 2 Continued
reactivity for oxidized phospholipids with fragmented cell processes (dendrites) in active lesions in the basal ganglia (h) and cortex

(o) (�600). (p) Active multiple sclerosis lesions; double staining for the oligodendrocyte marker TPPP-p25 (red) and (black/brown),

showing one of the two oligodendrocytes with intense cytoplasmic E06 immunoreactivity (�900). (q, r) In astrocytes, oxidized

phospholipids are sequestered in the cytoplasm in the form of larger granules, possibly representing autophagic vacuoles (q: �450;

r: �750). (s) Macrophages with granular cytoplasmic reactivity for oxidized phospholipids in the centre of an active multiple sclerosis

plaque (�150). (t) Normal white matter of a control patient without neurological disease or brain lesions; no MDA2 immunoreactivity

(�900). (u, v) MDA2 immunoreactivity in oligodendrocytes and myelin in active multiple sclerosis lesions; the nature of the cells as

oligodendrocytes is shown by double staining in v, using TPPP-p25 as a marker (�900). (w) Granular cytoplasmic MDA2 immunor-

eactivity (blue) in the cytoplasm of a glial fibrillary acidic protein (GFAP)-positive astrocyte (red) in an active multiple sclerosis lesion

(�800). LFB = Luxol fast blue.

Table 3 Quantification of oxidized lipids and oxidized DNA in different types of multiple sclerosis lesions in comparison
with controls

Active lesion Slowly expanding lesion Inactive lesion NAWM multiple sclerosis White matter
controls

Median
(range)

P-value* Median
(range)

P-value* Median
(range)

P-value* Median
(range)

P-value* Median (range)

Percentage of E06
positive area

3.1 (26.5) 0.004 1.6 (16.7) 0.245 0.6 (9.2) 0.02 0.8 (17.1) 0.029 0.06 (2.9)

E06 axon spheroids 1.3 (18.2) 0.000 1.2 (121.2) 0.000 0.4 (2.3) 0.000 0.0 (1.2) 0.061 0.00 (0.0)

MDA-2 OG 1.6 (25.8) 0.005 0.9 (5.4) 0.048 0.9 (1.6) 0.286 0.4 (9.2) 0.147 0.00 (1.6)

8-OHdG nuclei 5.6 (78.1) 0.023 9.0 (19.0) 0.136 1.6 (6.8) 0.544 1.4 (12.0) 0.486 0.40 (10.4)

APP 44.3 (197.6) 0.000 16.1 (40.0) 0.000 0.3 (1.5) 0.022 0.0 (1.0) 1.002 0.00 (0.8)

CD3 73.6 (298.8) 0.000 51.2 (105.6) 0.008 10.0 (69.1) 2.835 4.8 (38.4) 0.35 9.60 (49.6)

HLA-D 324.8 (585.6) 0.000 148.3 (398.0) 0.020 29.0 (246.5) 3.718 99.3 (190.0) 0.289 43.10 (114.4)

Values represent medians and range (95th percentile range values); P-values are corrected by Bonferroni for multiple testing; all values represent counted cells/mm2. Active

lesions = classical actively demyelinating lesions; slowly expanding lesions = lesions with inactive lesion centre, surrounded by a small rim of activated microglia with recent
myelin-degradation products; inactive lesions = lesions without any recent demyelinating activity; NAWM multiple sclerosis = normal-appearing white matter from patients
with multiple sclerosis; white matter controls = normal white matter of all controls; APP = amyloid precursor protein reactive axonal spheroids or end bulbs; CD3 = T cells;
percentage of E06 positive area = densitometric analysis of area covered by E06 immunoreactivity; E06 axon spheroids = axonal spheroids or end bulbs stained by E06
antibody; HLA-D = class II MHC-positive macrophages/microglia; MDA-2 OG = oligodendrocyte-like cells, immunoreactive for MDA-2; 8-OHdG nuclei = number of
cell nuclei containing 8-hydroxy-D-guanosine immunoreactivity; Our data show a highly significant accumulation of oxidized DNA and oxidized lipids in active multiple

sclerosis lesions in comparison with controls. Oxidized DNA and lipids are predominantly seen in lesions with high T-cell and macrophage infiltrates and with profound
microglia activation. *P-value: Bold values represent significant differences (P5 0.05) in comparison to respective control values.
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Malondialdehyde
Similar to oxidized phospholipids, MDA immunoreactivity was

seen in lipofuscin granules in neurons and macrophages in multiple

sclerosis and control tissue. In multiple sclerosis tissue, additional

staining was predominantly present in myelin sheaths in active

lesions, which in many instances were fragmented. In addition,

reactivity was present in small round cells with morphological fea-

tures of oligodendrocytes (Fig. 2U). These cells could be in part

identified as oligodendrocytes by double staining with TPPP-p25

(Fig. 2V). Similar to other markers for oxidative damage, the

number and density of MDA-positive oligodendroglial-like cells

was highest in classical active lesions, followed by slowly expand-

ing lesions, inactive lesions and the normal-appearing white matter

(Table 3). MDA2 reactivity was also seen in the cytoplasm of

astrocytes and macrophages. In these cells, reactivity was present

in granular inclusions, similar to the staining pattern for oxidized

phospholipids (Fig. 2W). No MDA2 immunoreactivity was seen in

CD3-positive T cells.

White matter stroke lesions
We have shown before (Aboul Enein et al., 2003) that the pat-

terns of tissue injury in Pattern III multiple sclerosis lesions closely

resemble those seen in the initial stages of white matter stroke

lesions, consistent of microglia activation, distal oligodendroglio-

pathy, oligodendrocyte apoptosis and acute axonal injury, fol-

lowed by demyelination and reactive gliosis. However, in

contrast to multiple sclerosis, these lesions occur in the absence

of major lymphocytic infiltrates. Using the same panel of oxidative

markers, as described above, we found very similar distribution of

oxidized DNA and oxidized lipids within the lesions. As in multiple

sclerosis, 8-hydroxy-D-guanosine reactive nuclei were mainly seen

in oligodendrocytes and in neurons within cortical lesions. MDA2

and E06 immunoreactivity was seen in myelin and diffusely in the

oligodendrocyte cytoplasm, while in astrocytes reactivity was se-

questered in lipofuscin-like granules. In addition, numerous axonal

spheroids and end bulbs were reactive for oxidized phospholipids.

Discussion
To date, the mechanisms of tissue injury and neurodegeneration in

multiple sclerosis are poorly understood. Demyelination and axonal

injury occurs on a background of chronic inflammation in the

relapsing as well as in the progressive stage of the disease

(Frischer et al., 2009) and close contacts between activated micro-

glia or macrophages and degenerating axons, myelin sheaths and

oligodendrocytes have been described (Ferguson et al., 1997;

Trapp et al., 1998; Kornek et al., 2000). Reactive oxygen species

and nitric oxide intermediates are produced by activated macro-

phages and microglia and are, thus, likely candidates to be

involved in tissue injury in multiple sclerosis (Van Hoorsen et al.,

2010). Indeed, biochemical studies on multiple sclerosis tissue pro-

vided clear evidence for oxidized lipids and DNA within active

multiple sclerosis lesions (Vladimirova et al., 1998; Smith et al.,

1999; Lu et al., 2000) and upregulation of antioxidative proteins

has been reported mainly in astrocytes (Van Hoorssen et al., 2008,

2010). However, attempts to directly localize oxidized molecules

to degenerating oligodendrocytes, axons and neurons have so far

been unsatisfactory. In the current study, immunocytochemistry

for oxidized lipids revealed their presence within macrophages,

located in structures that morphologically resemble lipofuscin.

This is not surprising, since lipofuscin appears to contain

non-digestible remnants of oxidized cellular components, accumu-

lating in macrophages or resident cells of the CNS, for instance

neurons (Keller et al., 2004; Wang et al., 2008). Similarly, nitro-

sylated epitopes, recognized by antibodies against nitrotyrosine,

were mainly seen in macrophages (Cross et al., 1998; Liu et al.,

2001). The only exception is immunoreactivity in oligodendrocytes

for nitrotyrosine, previously described in some active multiple

sclerosis lesions, which suggests a role of peroxynitrite in their

destruction (Jack et al., 2007; Zeis et al., 2009). In contrast to

these previous studies, we show here that DNA and lipid oxidation

is associated with ongoing demyelination and neurodegeneration

in active multiple sclerosis lesions. Furthermore, we show for the

first time that acute cell injury and cell death of oligodendrocytes,

axons and neurons in multiple sclerosis is linked to profound cyto-

plasmic and nuclear oxidative damage. The reason for the differ-

ent results between our current and previous studies is not entirely

clear. The most likely explanation comes from our observation that

oxidized DNA and lipids were mainly present in a small zone of

active multiple sclerosis lesions, which represents that previously

described as the area of initial demyelination (Marik et al., 2007)

or the ‘prephagocytic’ lesion (Barnett and Prineas, 2004;

Henderson et al., 2009). Such lesions or lesion areas may not

have been included in earlier studies. It has been shown previously

that oxidized phospholipids and MDA epitopes are present in

apoptotic cells as well as in apoptotic bodies ingested by macro-

phages (Chang et al., 1999). Apoptotic oligodendrocytes are pre-

dominantly seen in multiple sclerosis lesions in areas of initial

(prephagocytic) demyelination (Barnett and Prineas, 2004; Marik

et al., 2007). Furthermore, apoptotic cell death through oxidative

mechanisms may exert pro-inflammatory and immunogenic ac-

tions (Chang et al., 2004), which in part may explain the progres-

sive increase in inflammation with lesion maturation in multiple

sclerosis (Marik et al., 2007; Henderson et al., 2009).

Analysing DNA oxidation in active multiple sclerosis, we found

that the cells most severely affected are those morphologically

resembling oligodendrocytes and that these cells in part show

condensed and fragmented nuclei, morphologically resembling

apoptosis. These cells could in part be identified by their expres-

sion of the oligodendrocyte marker TPPP-p25 (Höftberger et al.,

2010). Identification of dying oligodendrocytes by double staining

is difficult, since many cellular proteins, used as specific cell mark-

ers, are degraded in the course of apoptosis or necrosis.

Nevertheless, the selective demyelination and oligodendrocyte

apoptosis related to the expression of apoptosis-inducing factor

(Veto et al., 2010) in active multiple sclerosis lesions is in line

with the profound DNA oxidation seen in this study. The promin-

ent labelling of myelin and oligodendrocyte-like cells by immuno-

cytochemistry for MDA and oxidized phospholipids, as shown in

this study, further supports the view that oxidative damage plays a

major role in demyelination and oligodendrocyte destruction in
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active multiple sclerosis lesions. It must, however, be emphasized

that DNA oxidation in active multiple sclerosis lesions is not re-

stricted to oligodendrocytes, but also affects astrocytes in low

incidence.

Immunocytochemistry for oxidized phospholipids provided fur-

ther insights into the mechanisms of tissue injury in multiple scler-

osis lesions. Besides the presence of oxidized phospholipids in

oligodendrocytes and myelin, we also found a highly selective

and profound expression of these neo-epitopes within degenerat-

ing axons and neurons. Accumulation of oxidized phospholipids in

dystrophic axons may accumulate at sites of disturbed axonal

transport. Alternatively, they may indicate radical-mediated

damage as an initial change in axonal demise. We think that the

second possibility is more likely. The half-life of oxidized lipids in a

cell is estimated by minutes or few hours only (Keller and Matson,

1998). Furthermore, only a small fraction of amyloid precursor

protein reactive dystrophic axons were also stained for oxidized

phospholipids and they were concentrated at sites of initial lesions.

In contrast, abundant amyloid precursor protein reactive axonal

spheroids, which are present in the centre of the lesions, were

devoid of immunoreactivity for oxidized phospholipids. This sug-

gests that for the first time it is possible to directly visualize acute

injury of axons, neuronal cell bodies or the fragmentation of their

dendrites as a direct consequence of radical-mediated injury.

Oxidized phospholipids were also present in astrocytes in active

multiple sclerosis lesions. In contrast to oligodendrocytes and neu-

rons, these cells, however, do not degenerate but appear to be

capable of sequestering damaged cytoplasmic components into

(autophagic) vacuoles. However, it has been shown before that

astrocytes, too, show signs of injury, mainly reflected by retraction

of their cell processes and altered expression of molecules, related

to the formation of the glia limitans (Parrat and Prineas, 2010;

Sharma et al., 2010).

It was interesting to note that different cell types within the

multiple sclerosis lesions differentially accumulated MDA and oxi-

dized phospholipids. While both types of oxidized lipid epitopes

were seen in myelin and oligodendrocytes, axons and neurons

exclusively accumulated oxidized phospholipids. One possible ex-

planation could be that the cellular content of phosphatidylcholine,

rich in polyunsaturated fatty acids, is higher in the grey matter

compared with the white matter (Svennerholm, 1968), suggesting

that such fatty acids are preferentially present in neurons and

axons.

In summary, our study provides evidence for an important role

of oxidative damage in the pathogenesis of demyelination and

neurodegeneration in multiple sclerosis lesions, which may act in

addition to, or in cooperation with nitric oxide radicals, as

described previously (Bagasra et al., 1995; Zeis et al., 2009). It

further shows—for the first time—that the analysis of oxidized

lipid epitopes in multiple sclerosis lesions allows identification of

acute damage of oligodendrocytes, axons and neurons at different

stages of lesion formation. Our data also suggest that oxidative

damage is in part related to inflammation, that it affects different

cellular components of the CNS, but that myelin, oligodendro-

cytes, neurons and axons may be more sensitive to oxidative

damage than astrocytes.
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