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Abstract
Flavonoids are widely distributed in nature and have a variety of beneficial bio-
logical effects, including antioxidant, anti-inflammatory, and anti-obesity effects.
All of these are related to gut microbiota, and flavonoids also serve as a bridge
between the host and gut microbiota. Flavonoids are commonly used to mod-
ify the composition of the gut microbiota by promoting or inhibiting specific
microbial species within the gut, as well as modifying their metabolites. In
turn, the gut microbiota extensively metabolizes flavonoids. Hence, this recip-
rocal relationship between flavonoids and the gut microbiota may play a crucial
role in maintaining the balance and functionality of the metabolism system. In
this review, we mainly highlighted the biological effects of antioxidant, anti-
inflammatory and antiobesity, and discussed the interaction between flavonoids,
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gut microbiota and lipid metabolism, and elaborated the potential mechanisms
on host lipid metabolism.
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1 INTRODUCTION

In recent decades, with the improvement in living stan-
dards, most people’s dietary structure and habits have
undergone significant changes with the high intake of
high sugar, high fat and refined processed foods, seden-
tary work, and lack of exercise. The physiological pro-
cesses associated with lipid metabolism encompass the
dysregulated synthesis and metabolism of fatty acids
and cholesterol [1–3]. Diseases, including, obesity, type 2
diabetes, hyperlipidemia, hyperglycemia, atherosclerosis,
nonalcoholic fatty liver disease, asthma, and osteoarthri-
tis arise from disorders in lipid metabolism [4, 5]. More
than 2.1 billion adults are estimated to be overweight or
obese worldwide; for instance, between 2015 and 2016,
the prevalence of obesity in the United States reached
nearly 40% (National Health and Nutrition Examina-
tion Survey), which was the main health challenge for
humans [6, 7]. Disorders of lipid metabolism are accompa-
nied by many abnormal physiological processes, including
oxidative stress, chronic inflammation, depression, and
microecological destruction. These factors will acceler-
ate the deterioration of the host’s metabolic syndrome [8,
9]. Nevertheless, the modulation mechanisms and thera-
peutic solutions for lipid metabolism are not yet entirely
clear; therefore, deeper insight into lipid metabolism
modulation methods and their mechanisms is vital to
alleviate the risk of incidence and mortality of related
diseases.
Flavonoids are a large class of heterocyclic organic com-

pounds produced by natural plant secondary metabolism.
It is widely found in fruits, vegetables, and beans in
the form of flavonoid glycosides. They play important
probiotic effects on antioxidation, antibacterial and anti-
inflammatory, antitumor, immune regulation, and gut
health [10, 11]. Following intake, flavonoids are metab-
olized by gut microbiota and host tissues; in particular,
hindgut microbiota are able to improve the bioavailabil-
ity of flavonoids, but individual differences exist [12]. An
increasing number of studies have described the ability of
flavonoids to inhibit disorders of lipid metabolism and are
associated with the correction of oxidative stress, inflam-
mation, and gutmicrobiota disorders [13–15]. In particular,
gut microbiota and host health have been extensively stud-

ied, but the mechanism by which flavonoids regulate host
lipid metabolism through gut microbiota is unclear.
Growing evidence indicates that the gutmicrobiota con-

tributes to host metabolism and that dysbiosis is closely
associatedwithmetabolic disorders that worsen the patho-
genesis process [16, 17]. For example, obese individuals
usually have a lower relative abundance of Akkerman-
sia muciniphila, Bacteroidetes, and Bifidobacterium, and
a higher abundance of Firmicutes, Fusobacteria, and Pro-
teobacteria [18]. Several studies have also transplanted
the gut microbiota from obese mice into the gut of lean
mice, resulting in weight gain and an imbalance in lipid
metabolism. Conversely, transplanting the gut microbiota
from lean to obesemice produced weight loss and reversed
lipid metabolism disorders [19]. More interestingly, germ-
free mice fed a high-fat diet failed to gain weight [20]. This
shows that gut microbiota may play an important role in
host lipid metabolism.
In this review, we highlight the biological effects of

flavonoids in terms of antioxidant, antibacterial, and anti-
inflammatory properties and describe the current under-
standing of how flavonoids affect the gut microbiota,
discussing how the interaction between dietary flavonoids
and the gut microbiota modulates host lipid metabolism.

2 THE PHYSIOLOGICAL FUNCTIONS
OF FLAVONOIDS

Flavonoids are a large subclass of polyphenol compounds
and more than 8,000 flavonoid molecules. Their basic
structure consists of one heterocyclic pyran ring (C) and
two aromatic rings (A and B), forming a 15-carbon phenyl-
propane nucleus with a C6 -C3 -C6 structure [21, 22].
According to the degree of oxidation of the three-carbon
bond (C3), whether C3 is cyclized, the connection posi-
tion of the benzene ring and substituents, and the form of
substituents on C3, it is divided into the following subcat-
egories (Table 1): flavone, flavanone, isoflavone, flavonol,
flavanol, flavanonol, chalcone, and anthocyanin.
Whereas flavonoids are diverse and exhibit a range of

biological activities (Table 2), we focused on three bio-
logical effects of antioxidant, anti-inflammatory, and anti-
obesity to understand the flavonoids, and they are closely
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TABLE 1 The main basic structures and examples of natural flavonoids.

Flavonoids
subclasses Structure Examples Food source
Flavone Apigenin, luteolin, baicalein, chrysin Cabbage, wheat sprouts, celery,

chamomile, carrot

Flavanone Hesperetin, naringenin, holy grass,
glycyrrhizin

Naringin, naringenin, eriodictyol,
hesperidin

Isoflavone Daidzein, genistein, soy isoflavones,
glycitein

Soybean, kudzu, alfalfa, red clover

Flavonol Quercetin, kaempferol, myricetin Berries, grapes, tomatoes, onions,
kale, broccoli, tea, red wine

Flavanol Theaflavins, catechins, epicatechins,
theafucins

Red wine, grape skin, tea, apricot,
apple, cherry, cocoa

Chalcone Licorice Chalcone, phloridin,
aureoflocin

Licorice, grapefruit peel, orange peel,
eyesight leaves

Anthocyanin Anthocyanin, cyanidin, delphinium
pigment, anthocyanin

Blueberry, eggplant, cherry, cabbage,
elderberry, red onion

connected to lipid metabolism. Importantly, the physi-
ological functions of flavonoids are mostly governed by
their structures; for example, the more phenolic hydroxyl
groups there are, the stronger the antioxidant activity,
and biological activity is improved by methylation and
hydroxylation modification [23, 24].

2.1 Antioxidants

Oxygen atoms, as the final electron acceptors of the
electron flow system, are constantly involved in redox
reactions in aerobic organisms, but when excess reactive
oxygen radicals (such as ROO⋅, RO⋅, O2⋅-, HO⋅, and NO⋅

TABLE 2 Physiological effects of flavonoids.

Effect Example flavonoids Reference
Antioxidant Quercetin, xanthohumol, baicalein, catechin,

procyanidin
[28, 37, 78]

Antibacterial Procyanidin, quercetin, baicalein, genistein [35, 79–81]
Anti-
inflammatory

Xanthohumol, dihydroretrochalcones, quercetin [82–84]

Anticancer Quercetin, procyanidin [85, 86]
Anti-depression Epigallocatechin-3-gallate, puerarin, genistein [87, 88]
Anti-obesity Quercetin, cyanidin, myricetin [54, 73, 76, 89]
Analgesic Loureirin, cochinchinemin, hesperidin [90, 91]
Antiviral Apigenin, luteolin, kaempferol [92]
Wound healing Apigenin, baicalein, quercetin [93–95]
Hair repair Luteolin, formononetin, epigallocatechin-3-gallate [96–98]
Anti-type 2
diabetes

Hesperetin, quercetin, luteolin [99, 100]

Anti-
atherosclerosis

Kaempferol, myricetin, cyanidin [101–103]
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are produced beyond their own scavenging capacity, dis-
turbing the normal oxidative balance of the organism,
damaging cells or tissues, causing oxidative stress, affect-
ing normal life processes and even endangering life and
health) [25]. The normal oxidative balance of the organ-
ism can be disturbed, destroying cells or tissues, causing
oxidative stress, affecting normal life processes, and even
endangering life health. In this case, such as disorders of
lipid metabolism, although the endogenous antioxidant
system can maintain the formation of free radicals and
scavenge some of them to a certain extent, there are still
some reactive oxygen radicals that are not scavenged and
are continuously accumulated, so dietary antioxidants are
needed to reduce the cumulative effect of oxidative dam-
age throughout the life cycle as well as to repair damaged
tissues [26].
Flavonoids, as a kind of phenolic compound, contain

a large number of phenolic hydroxyl groups in their
structure, which are a good class of hydrogen-donating
antioxidants and scavengers of reactive oxygen species and
reactive nitrogen species in vivo and in vitro [27]. Due
to the structural uniqueness of flavonoids, their capacity
to scavenge free radicals is highly unique and change-
able. For example, in comparison to the A ring, the
hydroxyl groups in the B and C rings contribute substan-
tially to the antioxidant activity of quercetin and gluco-
side [28]. Among the five flavonoids (wogonin, baicalin,
baicalein, catechin, and procyanidin B2), catechin exhib-
ited the greatest 1,1-diphenyl-2-picrylhydrazyl scavenging
activity, followed by procyanidin B2, baicalein, baicalin,
and wogonin. Catechin had the greatest superoxide scav-
enging efficacy, followed by baicalein, procyanidin B2, and
baicalin. Only baicalein demonstrated a strong ability to
scavenge hydroxyl radicals [29]. Similarly, a study showed
that quercetin 7-rhamnoside exhibited strong scaveng-
ing effects on 1,1-diphenyl-2-picrylhydrazyl, 2,20-azinobis-
(3-ethylbenzthiazolin-6-sulfonate), and ferrous reducing
antioxidant power free radicals in vitro [30]. Therefore,
group modification may be a new strategy to improve the
antioxidant properties of some flavonoids.
Metal ions such as iron and copper can generate reac-

tive free radicals during physiological processes, eliciting
redox imbalances to facilitate an increase in ROS. Thus,
chelation of transition state ions contributes to antiox-
idant properties [31]. Nevertheless, some studies show
that chelating divalent ions has more favorable antioxi-
dant properties than chelating trivalent ions, which may
be related to the inhibition of the Fenton reaction [32].
Flavonoid chelation of metal ions is usually related to the
location and amount of hydroxyl and carbonyl groups. For
example, quercetin can chelate various divalentmetal ions,
such as Fe, Cu, Al, Co, Cr, and Pb, thereby reducing the
production of reactive free radicals [33, 34]. The chela-

tion state is influenced by a variety of conditions, such
as the structure of the flavonoid, the pH of the environ-
ment inwhich the reaction takes place, the solvent, and the
stoichiometric relationship, making it difficult to achieve
optimal chelation of flavonoids with metal ions [32].
The regulation of process enzymes such as COX, XO,

GSH-Px, SOD, and CAT is also an important way in
which flavonoids exert their antioxidant properties [22].
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a
master transcriptional regulator of redox homeostasis
and influences the expression of downstream antioxidant
genes. In a soybean oil-induced oxidative stress model
in broiler chickens, quercetin ameliorated oxidized oil–
induced oxidative stress by upregulating the transcription
of Nrf2 and its downstream genes, such as CAT, SOD1,
GSH-Px2, HO-1, and thioredoxin, and decreased plasma
MDA levels to restore redox balance [35]. Dong et al.
administered a high-fat diet to ApoE−/− mice and treated
them with alpinetin and found reduced atherosclerotic
lesions by increasing nuclear translocation to activateNfr2,
promoting thiol-dependent glutathione and thioredoxin
antioxidant systems in macrophages to reduce ROS pro-
duction [36]. Similarly, flavonoids have shown positive
antioxidant enzymemodulation in other diseasemodels to
restore redox reaction homeostasis [30, 37].
The flavonoidmechanism of action is roughly as follows

(Figure 1): (1) supplying electrons to neutralize free rad-
icals; (2) chelating minerals to prevent the generation of
reactive oxygen species and free radical production; and (3)
activating or upregulating antioxidant signaling pathways
to increase the activity and levels of antioxidant enzymes.

2.2 Anti-inflammatory

Disorders of lipid metabolism manifest pathologically as
chronic inflammation, causing damage to the organism
[38]. Many studies have shown that flavonoids can have
an anti-inflammatory effect in many different ways. The
anti-inflammatory activity of flavonoids is structure depen-
dent; for example, flavonoids with a 3- or 4-position
hydroxyl substituent on the B ring act as selective lipoxy-
genase inhibitors, whereas flavonoids with five or more
methoxy substituents have a greater inhibitory activity
against phosphodiesterase [39].
NF-κb (nuclear factor kappa-light-chain-enhancer

of activated B cells) is important in the inflammatory
response because it activates the release of proinflamma-
tory factors such as IL-6 and TNF-α. In the Salmonella
typhimurium infection RAW264.7-cell model, Salmonella
typhimurium activated the TLR4/AMPK/NF-κb signaling
pathway, increased cellular autophagy, and increased
levels of IL-1β, IL-6, IL-8, TNF-α, and ROS, which
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F IGURE 1 Antioxidant pathways of flavonoids.

were corrected by treatment with baicalein [40]. Cel-
lular autophagy, ROS, and inflammation promote each
other. Additionally, baicalin has been shown to relieve
mycoplasma fowlis-induced pneumonia in hens by
decreasing NF-κb-p65 nuclear translocation mediated by
TLR6 [41]. While both Th17 and Treg cells are helper T
cells, their roles in controlling inflammation are quite
distinct. Th17 cells produce proinflammatory cytokines,
whereas Treg cells suppress immune responses. In dextran
sodium sulfate-induced colitis, sanguinarine, a potential
aryl hydrocarbon receptor activator, increased CYP1A1
expression, promoted dissociation of the AHR/HSP90
complex and induced AHR nuclear translocation to
upregulate CREB and Foxp3 promoter region association
and Treg differentiation-associated mDNMT-1 expression
in CD4+ T cells, restoring the ratio of Th17 to Treg
cells and ameliorating colitis [42]. NLRP3 inflammatory
vesicles recruit pro-caspase-1, modulate caspase-1 activity
and activate caspase-1. When activated, caspase-1 cleaves
the inactive proinflammatory cytokines pro-IL-1β and
pro-IL-18 to mature body IL-1β and IL-18 and mediates
apoptosis [43]. Luteolin reduced LPS-stimulated inflam-
matory damage in H9c2 cells by downregulating Nlrp3,
decreasing TNF-α, IL-1, IL-18, and IL-6 production, and
inhibiting iNOS and NOX4 protein expression [44].
Additionally, flavonoids can help reduce inflammation by
controlling gut microbiota and altering the metabolism of
gut microbiota [45, 46].

2.3 Antiobesity

Obesity is a prevalent and complicated worldwide
metabolic illness syndrome marked by an excessive
buildup of fat, and its prevalence is increasing year after
year as material living standards rise. Obesity can be
brought on by a number of things, especially in excessive
consumption of sugar and fat, inactivity, and genetics.
Patients with obesity are also commonly found to have
abnormal physiological conditions such as insulin resis-
tance, chronic inflammation, and oxidative stress, which
raises their risk of developing diseases such as diabetes,
hyperlipidemia, hyperglycemia, and chronic low-grade
inflammation [47]. Numerous studies have demonstrated
that flavonoids have an anti-obesity impact with almost
no negative effects when compared to pharmaceutical
weight loss medications [48, 49]. Additionally, flavonoids
are α-glucosidase inhibitors and insulin sensitizers that
reduce insulin resistance and increase the rate of glucose
uptake and utilization by cells [50, 51]. Interestingly,
flavonoids also positively influence the hypothalamic
regulation of food intake and satiety, such as enhancing
GLP-1, CCK, and PYY release [52, 53]. In animal tests, it
was discovered that when mice fed a high-fat diet were
continuously supplemented with flavonoids, their fecal
fat excretion increased, body weight gain decreased signif-
icantly, and fat deposition and fat droplet size in the liver,
epididymides, groin, and other tissues decreased [54–56].
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Moreover, flavonoids regulate biochemical indices and
hormone levels associated with lipid metabolism. For
example, TC, TG, AST, ALT, ALP, LDL-C, leptin, and the
leptin/adiponectin ratio were reduced in mouse serum,
and adiponectin and stomach growth hormone-releasing
hormone levels were increased [57, 58]. At the micro-
scopic level, the expression of lipid metabolism-related
genes such as FNTA, PON1, PPARG, ALDH1B1, APOA4,
SREBP-1C, ABCG5, GPAM, ACACA, FAS, CD36, FDFT1,
and FASNmay be altered by inhibiting key receptors such
as PPARs and SREBPs, thereby reducing the accumulation
of adipose tissue [54, 59–61].
Continuous adipocyte hypertrophy and an excess of new

adipocytes produced by precursor cells are the fundamen-
tal causes of obesity, so regulating adipocyte production
and hypertrophy is considered a viable tool for preventing
and controlling obesity. It was discovered that flavonoids
induce apoptosis in precursor adipocytes by activating
AMPK signaling, revealing that inhibition of the ERK
and JNK pathways induces apoptosis in mature adipocytes
[62]. They decrease cellular glucose absorption by activat-
ing the Akt and AMPK signaling pathways [63], increase
adipocyte mitochondrial number and oxygen consump-
tion rate [64], increase glucose consumption [65], and
inhibit adipocyte lipid formation [66]. Flavonoids may
limit lipid accumulation in adipocytes by downregulating
themRNA and protein expression of important adipogenic
genes, such as EBPA, PPAR, C/EBP, FABP4, AP2, LPL, and
ApoB [67–69].
Brown adipose tissue (BAT) and beige adipose tissue in

animals produce nonshivering thermogenesis by activat-
ing uncoupling protein 1 (UCP1) on the inner mitochon-
drial membrane, which consumes energy substances such
as glucose and fatty acids in the body [70]. Thus, promot-
ing BAT production and WAT browning and increasing
its activity are considered promising for intervention in
obesity and other metabolic diseases. Flavonoids were
observed to increase the expression of CETED1, HOXC9,
PGC1, PRDM16, and UCP1 and white adipose tissue (WAT)
marker genes via a SIRT1- or 3AR-dependent pathway,
triggered WAT browning to form beige adipose tissue,
increased BAT development, and decreased the amount
of WAT. Enhance the weight of brown adipose tissue
and beige adipose tissue [65, 71–73]. BAT and beige fat
exerted their thermogenic action primarily through the
release of norepinephrine from sympathetic nerve termi-
nals. Flavonoid supplementation elevated NA levels and
boosted the gene and protein expression of the ADRB3,
enhancing NA binding to ADRB3 and upregulating the
expression of downstream associated genes [74, 75]. Mito-
chondria are thermogenic organelles. Flavonoids can acti-
vate mitochondrial biogenesis, increase the number of
mitochondria in BAT cells, enhance mitochondrial struc-

ture and function in BAT cells, upregulate mitochondrial
inner membrane UCP1 expression, promote nonshivering
thermogenesis, and increase the consumption of energy
substances such as glucose and fat [76, 77].

3 THE INTERACTION OF
FLAVONOIDSWITH THE GUT
MICROBIOTA

Recent research has established that flavonoids and gut
microbiota interact and encourage one another. On the one
hand, flavonoids influence the composition and relative
abundance of the gut microbiota by promoting or inhibit-
ing certain microbes, hence modifying their metabolites.
On the other hand, gut microbiota convert and degrade
flavonoids via their own enzyme systems, releasing addi-
tional active compounds to improve biological effects [104,
105].

3.1 Flavonoids are metabolized by gut
microbiota

Flavonoids, the most abundant type of secondary metabo-
lites found in plants, are found in food as glycosides, glu-
cosyl, rutinosyl, neohesperidinyl, and rhamnolipidyl [106].
Low bioavailability is often associated with low bioactiv-
ity. A study showed that antibiotic-treated mice had less
metabolism of quercetin, kaempferol, lignan, apigenin and
naringenin, the concentrations of p-hydroxyphenylacetic
acid, protocatechuic acid, p-hydroxybenzoic acid, vanil-
lic acid, hydrocaffeic acid, coumaric acid and 3-(4-
hydroxyphenyl) propionic acid were lower in serum [107].
These results indicated that the gut microbiota play an
important role in flavonoid metabolism.
The flavonoids that enter the hindgut undergo anaero-

bic fermentation by gut microbiota, where they undergo
dehydroxylation, decarboxylation, demethylation, and gly-
coside hydrolysis, resulting in the release of more eas-
ily absorbed free aglycones and the formation of new
metabolites, thereby enhancing the biological activity of
flavonoids [108]. Glycosylated flavonoids can operate as
the sole carbon source for hindgut microbes, which first
digest the glycosidic fraction, thus eliminating the O-
glycosylation of flavonoids [109]. Themetabolism of narin-
genin is accompanied by demethylation, C-ring cleav-
age, and dehydroxylation, with the A-ring metabolized
to m-benzotrienol and the B-ring metabolized to 3-(4′-
hydroxyphenyl)-propionic acid, as well as the production
of sageol [110]. m-Benzotriol can be further metabolized
into acetic acid, propionic acid, and caseic acid, and 3-(4′-
hydroxyphenyl)-propionic acid is metabolized into small
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molecules such as p-coumaric acid, 3-phenylpropionic
acid, and 4′-hydroxybenzoic acid, which are thus absorbed
by the colon and converted into maleic acid through the
portal vein into the liver [111]. Isoflavones are also not
well absorbed in the animal intestine but show excellent
clinical effectiveness, so it is likely to be related to the
metabolites they are converted to, such as estramol. In par-
ticular, bacterial strains of Eggerthellaceae, a well-known
family of bacteria in the gutmicrobiota, are capable of con-
verting isoflavones into equol [112]. Wang et al. fermented
soybean flavonoids anaerobically in rat feces and observed
their conversion to dihydrosoybean sapogenins, S-equol
and O-desmethylangolensin [113].
Bacterial enzymes such as lactase rhizosphingo-

side hydrolase, β-glucuronidase, β-glucosidase, and
α-rhamnosidase have been reported as possible key
enzyme families for the microbial metabolism of
flavonoids, and the main microorganisms of the nor-
mal animal intestine contain these enzymes, such as
Lactobacillidae, Trichophyceae, and Enterococcaceae [12,
111]. For example, Casseliflavus and Eubacterium ramulus
ferment isoquercitrin [114]. Likewise, microbial metabo-
lites of some flavonoids exhibit greater biological activity
than the originals, such as hippuric acid, homovanillic
acid, and 5-phenylvaleric acid, which are all metabolites
of epicatechin, and the metabolites more effectively
enhance glucose-stimulated insulin secretion in β-cells
[115]. In summary, although the metabolic pathways of
certain flavonoids vary, available evidence shows that gut
microorganisms are essential for flavonoid biotransforma-
tion, mostly in terms of improving flavonoid structure and
bioavailability.

3.2 Flavonoids alter gut microbiota

The gut microbiota is a large and complicated micro-
bial community composed of bacteria, fungi, viruses, and
archaea in the intestine of animals, which is closely related
to the metabolism, immunity and other vital life activities
of animals. It has been discovered that supplementation
with flavonoids is helpful to the dynamic changes in the
composition structure, microbial abundance, and micro-
bial metabolites of the animal gut microbiota (Table 3).
Notably, in this part, we are equally interested in how
flavonoids exert bacteriostatic effects on microorganisms.

3.2.1 How flavonoids inhibit
microorganisms

The attachment of bacteria to the mucosal surface of the
organism, such as by physical adsorption, is the first step in

the initiation of their relationship with the organism, and
the pathogenic process can only continue to develop when
the bacteria are in contact with certain specific structures
of the organism’s cells for a certain period of time. Yu et al.
reported that sorghum procyanidin tetramers, by binding
to a site in the catalytic region of Streptococcus mutans
GTF-1/CAT protein (GTF-1, also known as water-insoluble
glucan synthase, is a control enzyme for bacterial synthe-
sis of adhesion site material glucan and is essential for the
expression of virulence factors in Streptococcus mutans),
alter the GTF-1/CAT secondary structure in the ratio of α-
helix, β-sheet, and randomhelix, thus affecting the normal
function of GTF-1 and hindering the adhesion of Strepto-
coccus mutans [116]. As a bacterial surface appendage, pili
play a critical function in host cell adhesion and biofilm
development, which increases bacterial attachment to the
host and aids pathogen colonization. Furthermore, it can
promote pathogen resistance to host defensive mecha-
nisms and medications. Vasudevan et al. discovered that
type A anthocyanin trimers can suppress the expression
of pili adhesion-related genes (such as focA, papG, fimA,
and fimH), reduce biofilm formation by approximately 70%
and have synergistic effects with furantoin [117]. The sur-
face hydrophobicity of bacteria is also closely related to
the bacterial adhesion process, and appropriate surface
hydrophobicity is the basis for the formation of bacterial
organisms, which can promote the adhesion and agglu-
tination of pathogens [118]. Flavonoids such as quercetin
and myricetin have been shown to drastically reduce the
hydrophobicity of urine-derived Escherichia coli (E. coli)
and limit the formation of biofilms, hence preventing
bacteria from attaching to the host [119]. The effect of
flavonoids on bacterial adherence could be a result of the
structure’s particular groups. For instance, A-type pro-
cyanidins include at least double interflavanyl linkages,
and the addition of nitro to the A ring of procyanidins
can boost their antibacterial and biofilm-preventive effects
[120]. Additionally, the presence of a methyl group at posi-
tion 6 in the A ring of flavonoids inhibits the formation
of biofilms, whereas the presence of methyl groups at
positions 6 and 8 stimulates the production of biofilms
[121].
Quorum sensing (QS), an intercellular communication

process used by bacteria to regulate population behav-
ior, regulates critical invasive processes such as bacterial
biofilm formation and virulence factor release and is a
key collaborator in chronic infections, with interruption
of QS considered one of the most effective ways to con-
trol various virulence factors [122]. It was found that
flavonoids have inhibitory effects on the expression of
major regulatory target genes of microbial QS; for exam-
ple, baicalin downregulates the expression of LASI, LASR,
RHLI, and RHLR in Pseudomonas aeruginosa and agrA,
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TABLE 3 Flavonoids alter gut microbiota.

Flavonoids Animal models Effect on gut microbiota Reference
Quercetin Arbor Acre broilers Pseudomonas aeruginosaxiang↓, Salmonella enterica serotype

Typhimurium↓, Staphylococcus aureus↓, Escherichia coli↓,
Lactobacillus↑, Bifidobacterium↑.

[35, 80]

Flavanol-Enriched
Cocoa Powder

5-mo-old male pigs Lactobacillus↑, Bifidobacterium↑. [148]

Procyanidins Bama mini-pigs Firmicutes↑, Coprococcus↑, Spirochetes↓. [149]
Baicalin UC rats Firmicutes↑, Butyricimonas spp.↑, Roseburia spp.↑, Subdoligranulum

spp.↑, Eubacteriu spp.↑, Proteobacteria↓, Actinomycetes↓; butyrate↑.
[46]

Kaempferol UC rats Prevotellaceae↑, Ruminococcaceae↑, Proteobacteria↓. [45]
Puerarin Depressed mice Firmicutes↑, Bacillales↑, Lactobacillus↑, Proteobacteria↓, Flexispira↓,

Desulfovibrio↓.
[87]

Puerarin UC rats Proteobacteria↓, Ruminococcus↓, Ruminococcaceae↓; acetate↑,
propionate↑, butyrate↑.

[150]

Puerarin Ovariectomized rats as
osteoporosis model

Bacteroidia↑, Clostridia↓, Bacteroidales↑, Peptococcaceae↑,
Lachnospiraceae↓,Melainabacteria↓, Prevotellaceae↑,
Desulfovibrionaceae↓; acetate↑, butyrate acids↑.

[151]

Myricetin NAFLD rats induced by
high-fat diets

Actinobacteria↑, Allobaculum↑, Brachybacterium↑, Allobaculum
spp.↑, Lachnospiraceae↑, B. paraconglomeratum↑, Nocardiaceae↑,
Tyzzerella 4 spp↑, Turicibacter spp.↑, Lactobacillus intestinalis↑,
Lactobacillus spp↑.

[135]

Isoflavone Postmenopausal women Lachnospiraceae↑, Pseudoflavonifractor↑, Slackia↑, Dorea↑. [152]
Catechin High-fat diets rats lithocholic acids↓, hyodeoxycholic acids↓. [153]
Theabrownin High-fat diets rats Lactobacillus↓, Bacillus↓, Streptococcus↓, Lactococcus↓, ileal

conjugated bile acids↑.
[154]

Citrus poly-
methoxyflavones

Metabolic syndrome
induced by high-fat
diets

Bacteroides ovatus↑, B. thetaiotaomicron↑, B. vulgatus↑, B. dorei↑, B.
caccae↑, B. stercoris↑, B. uniformis↑, Firmicutes Paraprevotella↓,
Firmicutes Streptococcus↓, B. fragilis↓, B. finegoldii↓, B.
coprophilus↓.

[155]

Quercetin Atherosclerosis induced
by high cholesterol
diets

Phascolarctobacterium↑, Anaerovibrio↑. [156]

RNAIII, sarA, and ica in Staphylococcus aureus (S. aureu)s,
thus reducing the secretion of signaling molecules (e.g.,
N-acylhomoserine lactones, furanylboronic acid diesters)
that impede the progression of QS and reducing the release
of virulence factors such as enterotoxin A, α-hemolysin
released by S. aureus, and pyocyanin, protease, elastase
and rhamnolipids released by Pseudomonas aeruginosa.
Moreover, the formation of biofilms was inhibited, and
existing biofilms were disrupted. A significant reduction
in biofilms was observed by electron microscopy; biofilm
clumps were dispersed, and the extracellular polysaccha-
ride matrix was significantly reduced [123, 124]. Microbial
motility is also an important influence on QS and is
critical for QS colonization, virulence expression and
biofilm formation. Flavonoids such as quercetin, baicalin,
and catechin have all been reported to inhibit bacterial
swimming and cluster motility and partially exhibit dose
dependence [125–127].

As the structural basis for ensuring the stability
of the intracellular environment and normal cellular
metabolism, the structural integrity of cell membranes
is related to the normal life activities of the bacterium.
Therefore, modulating the cell membrane structure is also
one of the important targets of capturing microorganisms.
Wang et al. treated E. coli with quercetin and observed
the ultrastructure of the bacterium by transmission elec-
tron microscopy and found separation of the cytoplasmic
membrane from the cell wall, cell wall lysis, inhomoge-
neous density of the inner cell membrane, leakage and
polarization of the cytoplasmic contents as well as cell
deformation and cell cavitation in E. coli, indicating that
quercetin caused a break in the ring of the cell wall
and cell membrane of the bacterium and its structural
integrity was lost, resulting in significant increases in alka-
line phosphatase and β-galactosidase activities and soluble
protein concentrationswere observed outside the cell (only
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exposed to the cell wall and cell membrane permeability
increased) [80]. Kusuda et al. also reported that polymeric
proanthocyanidins can cause damage to the cell mem-
brane of methicillin-resistant S. aureus (MRSA), decrease
its membrane structural stability and tolerance to hypo-
and hyperosmotic environments, and inhibit -lactamase
activity, thereby significantly lowering the minimum
inhibitory concentration of -lactam antibiotics against
MRSA [128].
Normal genetic material replication, protein synthesis,

and food metabolism are required for optimal microbial
life activities, and disruption to any of these processes
would impair normal growth and reproduction. Li et al.
treated S. aureus with LBPC and discovered changes
in the total protein content and protein production of
S. aureus, a decrease in the activity of essential energy
metabolizing enzymes (succinate dehydrogenase, malate
dehydrogenase, and adenosine triphosphatase ATPase),
and LBPC binding to small grooves in the DNA double
helix to form complexes that affected genetic material
and protein expression systems [129]. Lin et al. discov-
ered using transcriptome technology that when E. coli
was treated with flavonoids from agastache leaves, the
signal pathway and transcription level closely related
to the nucleotide metabolic pathway, energy metabolic
pathway, and carbohydrate metabolic pathway were sig-
nificantly reduced, while the number of SNPs in E. coli
increased significantly (indicating an increased probabil-
ity of nucleotide mutation) [130]. Additionally, studies
have shown that flavonoids reduce microorganism total
RNA and DNA synthesis, as well as protein synthesis
[131], which may be related to the inhibition of enzymes
involved in DNA synthesis (such as DNA gyrase and ATP
synthase) [132].
Briefly, flavonoids inhibit microorganisms primarily by

blocking population sensing, disrupting biofilm forma-
tion, impeding adhesion, reducing the release of vir-
ulence factors, enhancing cell membrane permeability,
and inhibiting genetic material replication and protein
synthesis and nutrient metabolism.

3.2.2 Remodeling/restoring gut microbiota

Unfortunately, the balance of the gut microbiota can be
readily disrupted by diets high sugar and fat, enteropathy,
and stress [16, 18].+ Remodeling gut microbiota to pro-
mote health by regulating dietary flavonoids is a frontier of
food nutrition research. Emerging evidence suggests that
flavonoids possess the potential to reshape or restore the
balance of the gut microbiota, thus contributing to the reg-
ulation of host immunity, metabolism, and inflammation
[13, 45].

Long-term or short-term high-fat diets have been shown
to alter microbiota structure and diversity, such as a
higher F/B, a higher abundance of bile acid-resistant
and pathogenic bacteria, and a lower abundance of
probiotics (Bifidobacterium, Lactobacillus, Akkermansia
muciniphila, etc.), resulting in gut microbiota dysbiosis.
Altering gut permeability increases blood endotoxin levels,
activates the inflammatory response, and further exacer-
bates complications resulting from high-fat diets [133, 134].
Sun et al. supplemented rats on a high-fat diet for 12 weeks
with myricetin and found that myricetin significantly
increased the Shannon index and decreased the ratio of
Firmicutes to Bacteroidetes (F/B) and LPS levels, and prin-
cipal coordinate analysis also showed that myricetin sig-
nificantly corrected the changes in gut microbiota caused
by the high-fat diet [135]. Similarly, supplementation with
other flavonoids in other high-fat diet trials has been
observed to reshape gut microbiota, increase probiotic
abundance and reduce pathogenic bacterial abundance
[136, 137]. Ulcerative colitis (UC) is a clinically common
chronic nonspecific inflammatory bowel disease. Qu et al.
observed that kaempferol reshaped the gut microbiota
structure, decreased F/B and increased the level of ben-
eficial bacteria such as Prevotellaceae and Rhinococcus.
Additionally, the transplantation of fecal microbiota from
kaempferol-treated mice into DSS-induced mice resulted
in decreased levels of serum IL-1β, IL-6, TNF-α, and LPS,
increased colon length, decreased DAI score, and alle-
viation of pathological features. These findings provide
confirmation that kaempferol attenuated inflammation
through the regulation of gut microbiota [45]. Similar
results were observed in UC mice supplemented with
baicalin by Zhu et al., baicalin effectively reduced the
abundance of the F/B and endotoxin-producing Proteobac-
teria, thereby reversing the dysbiosis in the gut micro-
biota induced by UC. Additionally, baicalin significantly
increased the fecal butyrate content, which exhibited a
strong positive correlation with the abundance of Butyrici-
monas spp., Roseburia spp., Subdoligranulum spp., and
Eubacteriu spp. [46].
The remodeling/restoring of the gut microbiota by

flavonoids may be attributed to an increase in intestinal
probiotics [138]. Several studies have demonstrated that
flavonoids serve as a source of nutrients for probiotics, pro-
viding both energy and nutrients to promote their growth
and reproduction [11, 139]. For instance, Feng et al. con-
ducted in vitro fermentation experiments and observed
that lotus leaf brass stimulated the growth of Actinobac-
teria and Firmicutes in colonic contents, inhibited the
growth of Proteobacteria, and triggered the production of
fermentation gases and short-chain fatty acids (SCFAs)
[140]. The intestinal environment plays a critical role in
the proliferation of probiotics as well. Intestinal microor-
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ganisms can metabolize flavonoids to produce short-chain
fatty acids, such as propionic acid and butyric acid [139,
141]. These acids help maintain the acid-base balance
in the intestines, regulate intestinal pH, inhibit the pro-
liferation of harmful bacteria, and create an intestinal
environment that is more conducive to the growth of pro-
biotics [142]. Moreover, short-chain fatty acids not only
act as a carbon source for probiotics like Lactobacillus
and Bifidobacterium, but also provide energy and nutri-
tional support to intestinal epithelial cells [143]. This, in
turn, helps maintain the integrity and barrier function
of the intestinal mucosa and further promotes the col-
onization of probiotics [11, 143]. Yan et al. found that
flavonoids from green seaweed significantly increased the
relative abundance of Lachnospiraceae, Odoribacter, and
Alisties members in an animal model of type 2 diabetes
[144]. Notably, Lachnospiraceae and Alisties belong to the
core genus of the gut and are among the most abundant
bacteria producing SCFAs [143]. In addition, mulberry
leaf flavonoids increased Akkermansia levels and Bac-
teroidetes/Firmicutes ratio in animal models of obesity
fed with high-fat diet [145]. In the animal model of high-
fat diet induced obesity and insulin resistance, nobiletin
increased the relative abundance ratio of Bacteroidetes to
Firmicutes, and decreased the relative abundance of Oscil-
libacter [146]. Recent studies have shown that the increase
in the relative abundance of Oscillibacter may lead to
inflammatory response, obesity and insulin resistance, and
the increase in the relative abundance of Oscillibacter is
closely related to excessive intestinal permeability [138,
147]. Previous studies have demonstrated that flavonoids
have the capability to alter the composition of the gut
microbiota. However, the current literature on flavonoid
remodeling of the gut microbiota has mainly focused on
phenotypic changes, while the mechanisms of remod-
eling have rarely been reported and should be empha-
sized to better understand the gut microbiota remodeling
process.

4 INTERACTION BETWEEN
FLAVONOIDS AND GUTMICROBIOTA TO
MODULATE LIPIDMETABOLISM

The interaction between flavonoids and gut microbiota to
modify lipid metabolism is complex, and the exact mech-
anism of interaction is still unclear (Figure 2). In general,
on the one hand, flavonoids are metabolized by gut micro-
biota to produce secondary metabolites such as phenolic
acids, which are absorbed through the gut, activating rele-
vant pathways and directly participating in themodulation
of lipid metabolism; on the other hand, some flavonoids,
together with their secondary metabolites, act on the gut

microbiota to indirectly improve lipidmetabolism bymod-
ulating relevant pathways through the gut microbiota and
its metabolites.

4.1 Flavonoid secondary metabolites
modulate lipid metabolism

The gut microbiota plays an important role in the
metabolism of flavonoids, promoting not only flavonoid
absorption but also some flavonoid metabolites, which
exhibit enhanced effects [157]. Equol is amicrobialmetabo-
lite of isoflavones that plays an important role in the mod-
ulation of lipid metabolism by isoflavones. Estramol acti-
vates Nrf2, alleviates endoplasmic reticulum stress, down-
regulates hepatic FAS expression, improves the plasma
lipid profile and reduces fat accumulation, but there are
sex differences [158, 159].
Hidalgo et al. fermented malvidin-3-glucoside, a mix-

ture of anthocyanins, with human hindgut microorgan-
isms and discovered that malvidin-3-glucoside was metab-
olized to syringic acid, and the anthocyanin mixture was
metabolized to produce gallic acid, syringic acid, and p-
coumaric acid, all of which could positively modulate
lipid metabolism [109, 160, 161]. Gallic acid can improve
glucose transport in adipose tissue by partially activat-
ing PPARγ and PI3K/p-Akt signaling while enhancing
β-oxidation, glycolysis and ketogenesis to control adipo-
genesis [161–163]. p-coumaric acid increases nonshiver-
ing thermogenesis, upregulates carnitine palmitoyltrans-
ferase 1 expression, decreases lipogenic enzyme activity,
increases fecal lipid excretion and reduces fat deposition
and adipocyte size [164, 165]. Ham et al. observed that
syringic acid reduced lipogenesis (CIDEA, PPARγ, SREBP-
1C, SREBP-2, HMGCR, FASN) and inflammation (TLR4,
MyD88, NF-κB, TNF-α, IL-6)-related genes, upregulated
fatty acid oxidation (PPARα, ACSL, CPT1, CPT2)-related
genes, and increased fatty acid oxidase activity, thereby
reducing fat deposition and weight gain due to high-fat
diets [160].
This is an intriguing line of research to contribute

to the understanding of flavonoid metabolism. Unfor-
tunately, due to the complexity of flavonoid species
and gut microbiota, studies on the metabolism of
flavonoids by gut microbiota are mainly in vitro only,
and few systematic and complete studies have been
carried out. Therefore, there is a desire to combine
multiomics approaches to investigate the microbial
metabolites of flavonoids in animals to better understand
the interactions between flavonoids and gut microbes,
as well as to identify the active ingredients in which
flavonoids function and suggest more clinical treatment
strategies.
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F IGURE 2 The pathway of the interaction between flavonoids and gut microbiota on lipid metabolism. After flavonoids are ingested by
the body, some of them enter the blood directly, and some of them are decomposed by microorganisms in the gut to produce secondary
metabolites, while flavonoids and their secondary metabolites affect the gut microbiota and change the microbial metabolites, both of which
are absorbed by the body into the blood and reach the liver, brain, fat, and other tissues to improve host lipid metabolism.

4.2 Modulation of lipid metabolism by
the gut microbiota and its metabolites

4.2.1 Probiotics

Recently, the regulation of host lipid metabolism by
probiotics has become an attractive emerging direc-
tion. Probiotics and their microbial metabolites serve
as substrates for some gut microorganisms and pro-
mote their proliferation. Hidalgo et al. observed that
anthocyanins enhanced the growth of Bifidobacterium
spp. and Lactobacillus−Enterococcus spp. [109]. Other
studies have observed that quercetin, proanthocyani-
din and epicatechin promote the growth of Akker-
mansia muciniphila [166–168]. To date, a number of
microorganisms have also been characterized as hav-
ing a positive role in lipid metabolism, such as Bifi-
dobacterium, Lactobacillus, and Akkermansia muciniphila
[169–171].
These probiotics can regulate lipid metabolism through

a variety of pathways. Similar to the next-generation pro-
biotic Akkermansia muciniphila, which colonizes the gut
mucus layer, which can improve the gut barrier, reduce

food intake, increase fecal fat excretion, and improve blood
lipid parameters, it induces the secretion of systemic GLP-
1 and UCP1 expression in BAT, inhibiting BAT whitening
and the inflammatory response, reducing adipocyte size
and infiltration, simultaneously activating PPAR-α and
PPAR-γ to promote fatty acid oxidation, downregulating
the mRNA expression of lipid synthesis-related genes,
and upregulating the mRNA expression of lipid transport-
related genes, to improve host lipid metabolism [172–176].
Furthermore, Lukovac et al. observed that the Akker-
mansia muciniphila metabolite propionate regulated the
expression ofFIAF,GPR43,HDACs, andPPAR-γ, which are
vital regulators of lipolysis and satiety [177]. Interestingly,
several studies have shown that the extracellular vesicles,
membrane proteins, and pasteurized forms of Akkerman-
siamuciniphila exhibit better lipidmetabolismmodulating
activity [173, 174, 178].
Imperfectly, numerous intestinal probiotics remain

unidentified or isolated due to technical limitations and
the unique growth requirements of certain microorgan-
isms. Functional verification is predominantly confined to
in vitro experiments or animalmodels, and limited clinical
research findings have been acquired.
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4.2.2 Gut microbiota metabolites

The gut microbiota is thought to be a massive metabolic
organ, and itsmetabolites, such as SCFAs, BAs, tryptophan
and its derivatives, are vital signaling molecules for the
host to sustain health. Acetic acid, propionic acid, butyric
acid, valeric acid, and other short-chain fatty acids are
metabolites of gut microorganisms such as Rumenococcus,
Bauerella, Faecoccus, Salmonella, and insoluble carbohy-
drates such as dietary fiber in the gut [179]. The total
SCFA content of the intestinal chyme was 30% lower in
the rat UC model than in healthy mice, and the butyric
acid amount was halved. However, after puerarin supple-
mentation, the acetic acid, propionic acid, and butyric acid
levels in the chymewere dramatically increased, aswas the
overall SCFA content. The content is 391.80 mol/g, which
is approximately 80% greater than that of the UC model.
SCFAs provide energy to epithelial cells and suppress
associated pathogenic bacteria, thus promoting intestinal
homeostasis and UC repair [150]. Additionally, Li et al.
observed that puerarin increased fecal and serum levels
of acetate, butyric acid, valeric acid and total SCFA in
a rat model of osteoporosis [151]. SCFA levels vary as a
result of flavonoids affecting the composition and abun-
dance of bacteria involved in SCFA production [135, 152].
Primary BAs can also be metabolized into free BAs and
secondary BAs in the gut by some bacteria involving BSH
and 7α- dehydroxylase, respectively [180]. According to
Han et al., supplementation with catechins, quercetin, and
rutin can decrease the amount of secondary BAs found
in mouse feces, including neutral sterols, lithocholic acid,
and hyodeoxycholic acid [153]. Theabrownin is an oxidized
polymer of catechins that decreases the relative abundance
and activity of bile salt hydrolase-producing microorgan-
isms such as Lactobacillus, Bacillus, Streptococcus, and
Lactococcus, as well as the hydrolysis of glycine- and
taurine-bound BAs, thereby increasing ileum combined
BA levels [154]. Additionally, the gut microbiota controls
the synthesis, transportation, and metabolism of certain
amino acids. Citrus polymethoxyflavonoid extracts have
the potential to reshape the gut microbiota of metabolic
syndrome model mice fed a high-fat diet. Thus, valine,
leucine, iso leucine, and phenylalanine levels in serumand
feces are increased [155]. Quercetin reduces atherosclerosis
in mice produced by a high cholesterol diet by modulating
tryptophan metabolism [156].

SCFAs
SCFAs, the fermentation products of nondigestible car-
bohydrates, which are a key class of metabolic signaling
molecules, are also altered in individuals with disorders
of lipid metabolism, usually with lower levels of acetic,
propionic and butyric acids [16]. There is an inextricable

relationship between SCFAs and lipid metabolism. Our
previous study discovered that supplementation of acetic
acid tomice on a high-fat diet upregulated PPARγ and LXR
expression in subcutaneous adipose tissue, promoted lipol-
ysis, reduced adipocyte size and fat mass, and decreased
weight gain [19].
For energy intake, acetic acid, propionic acid and butyric

acid bind to GPR41 and GPR43 to promote the secre-
tion of GLP-1 and PYY from intestinal L cells, modulate
host insulin release and appetite, reduce food intake and
increase glucose consumption [181, 182]. Regarding lipid
synthesis and catabolism, SCFA-dependent activation of
PPARγ, especially butyrate, promotes fatty acid β-oxidation
and white fat browning, reduces adipocyte size, increases
the number of small adipocytes and enhances insulin sen-
sitivity, while PPARγ activation increases SREBP expres-
sion and promotes cholesterol and lipid excretion [183,
184]. Notably, sometimes PPARγ also promotes adipocyte
differentiation and increases lipid synthesis and lipid
droplet aggregation [185, 186]. Other studies have also
shown that acetic acid promotes leptin secretion from
adipocytes, suppresses appetite, reduces energy intake,
increases energy expenditure and inhibits fat synthesis. It
also induces lipid oxidation in enterocytes by upregulating
theAMPK/PGC-1α/PPARα pathway after acetate uptake by
enterocytes [187–189]. In addition, SCFAs are also involved
in the control of inflammation, like butyrate inhibit Gram-
negative bacteria, reduce LPS production, activate NF-κb,
and inhibit TLR2/4 [190, 191].
Emerging research shows that flavonoids restore host

SCFA levels by increasing the number of SCFA-producing
microorganisms and by acting as metabolic substrates.
Several studies have demonstrated that supplementa-
tion with baicalin can increase the levels of SCFA-
producing microorganisms, such as Aeromonas butyricus,
Rhus spp., Alcaligenes subtilis, Eubacterium spp., Heter-
obacterium spp., and Bifidobacterium spp., thereby restor-
ing acetate, propionic acid, butyric acid, isobutyric acid,
valeric acid, and isovaleric acid levels [46, 192]. Akkerman-
sia muciniphila generates propionate, and flavonoids such
as quercetin and proanthocyanidins can also promote its
growth and increase its density [166–168, 177].

Bile acids
In addition to being involved in the digestion and absorp-
tion of lipids such as triglycerides, BAs are also important
signaling molecules regulated in glucolipid and energy
metabolism [16]. It was shown that BAs mainly regulate
glucose and lipid metabolism through FXR and TGR5 to
modulate glycolipid metabolism [193]. BAs are natural lig-
ands for FXR and TGR5 in the gut, but different forms of
BAs have different activating abilities, such as free BAs
over bound BAs and secondary BAs over primary BAs.
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Notably, the structural transformation of BAs in the gut is
strongly based on the microbial enzyme system [194].
Secondary BAs activate FXR, which on the one hand

induces FGF19 expression and secretion in the gut, down-
regulates BA synthesis, increases BA excretion and reduces
fat digestion and absorption.On the other hand, it activates
PPARγ and PPARα, which promote fatty acid oxidation,
reduce TG synthesis and regulate adipocyte differentia-
tion [195]. Additionally, FXR induces the production of
FGF15, which excretes more than 60% of absorbed choles-
terol into the intestinal lumen via ATP-binding cassette
transporter protein G5 and ATP-binding cassette trans-
porter protein G8. More interestingly, FXR inhibition also
has a positive role in lipid metabolism [196]. Wang et al.
found that 3weeks of hesperidin supplementation reduced
the abundance of BSH-producing and 7α-dehydroxylase
microorganisms such as Bacteroides, Bifidobacterium, and
Clostridium in ApoE−/− female mice on high-fat diets,
which subsequently reduced the hydrolysis of bound
BAs and inhibited the FXR/FGF15 pathway to upregu-
late CYP7A1 to promote the conversion of cholesterol to
bile acids, thereby reducing body TG levels and improv-
ing atherosclerosis [197]. As the only known endogenous
ligand for TGR5, BAs activate TGR5 and initiate cAMP
and its downstream related signaling pathways to induce
glucagonogenic gene expression and promote GLP-1 secre-
tion in intestinal L cells, which improves insulin resistance
and appetite for food [198]. He et al. supplementedmice on
a high-fat diet with pure total flavonoids for 12 weeks and
showed that pure total flavonoids significantly increased
the abundance of Bacteroidaceae and Christensenellaceae,
increased the content of secondary BAs, activated FXR
and TGR5, reduced serum TG levels, and improved non-
alcoholic steatohepatitis in mice [199].
Growing evidence shows that flavonoids are linked to

lipidmetabolism not only bymodulating the synthesis and
excretion of BAs but also by improving secondary BA pro-
duction through the modulation of microorganisms [197,
200]. However, few studies have been conducted to com-
pare the ability of different flavonoids to interact with gut
microbiota to modulate bile acids to the extent that we do
not knowwhich flavonoids aremore appropriate andmore
promising for clinical studies.

5 CONCLUDING REMARKS AND
FUTURE PERSPECTIVES

Increasing evidence indicates that flavonoids play a part
in lipid metabolism regulation by decreasing appetite
and energy intake, decreasing fat absorption, inhibit-
ing fat cell differentiation, promoting fat cell apoptosis,
increasing lipolysis, promoting WAT browning and non-

shivering thermogenesis, and restructuring themicrobiota
imbalance caused by metabolic disorders. Although the
interaction between gut microbiota and flavonoids pro-
vides a novel dimension to understand the mechanisms of
flavonoids regulating host lipidmetabolism, flavonoids are
complex in structure, and animal and clinical experiments
mostly focus on plant polyphenols. Nevertheless, numer-
ous questions and research directions for future research
persist. These include: determining which flavonoid com-
position is more promising for clinical applications and
exploring the interactions among different flavonoid com-
ponents; identifying the configuration with greater biolog-
ical potency, the most effective modification of the radical
group, and whether modifications in the modified radi-
cal group undergo metabolic changes affecting potency;
investigating if the biological potency of flavonoids is influ-
enced by diet and lifestyle, and developing strategies to
mitigate these lifestyle differences. The clinical application
of flavonoids still has someway to go, and there is a need for
increased clinical research and the application of modern
technology to explore themechanisms bywhich flavonoids
interact with the body organs to better understand the
regulatory targets.

6 LITERATURE COLLECTION
METHODS

A comprehensive search was conducted across the
PubMed and Google Scholar databases to retrieve relevant
literature. The primary search criteria encompassed
various keywords such as “flavonoids,” “flavonoid
metabolism,” “quercetin,” “baicalin,” “gut microbiota,”
“microbial metabolites,” “lipid metabolism,” “obesity,”
“antioxidant,” “antibacterial,” and “anti-obesity.” The
retrieved search results underwent evaluation to ascertain
their compliance with the predefined inclusion criteria.
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