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Periodontitis is highly prevalent worldwide. It is characterized by periodontal

attachment and alveolar bone destruction, which not only leads to tooth loss

but also results in the exacerbation of systematic diseases. As such,

periodontitis has a significant negative impact on the daily lives of patients.

Detailed exploration of the molecular mechanisms underlying the

physiopathology of periodontitis may contribute to the development of new

therapeutic strategies for periodontitis and the associated systematic diseases.

Pyroptosis, as one of the inflammatory programmed cell death pathways, is

implicated in the pathogenesis of periodontitis. Progress in the field of

pyroptosis has greatly enhanced our understanding of its role in

inflammatory diseases. This review first summarizes the mechanisms

underlying the activation of pyroptosis in periodontitis and the pathological

role of pyroptosis in the progression of periodontitis. Then, the crosstalk

between pyroptosis with apoptosis, necroptosis, and NETosis in periodontitis

is discussed. Moreover, pyroptosis, as a novel link that connects periodontitis

with systemic disease, is also reviewed. Finally, the current challenges

associated with pyroptosis as a potential therapeutic target for periodontitis

are highlighted.
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Introduction

Pyroptosis has been demonstrated to participate in the

pathophysiological processes of various inflammatory diseases,

such as coronavirus disease—2019, colitis, rheumatoid arthritis,

Crohn’s disease, and neuroinflammatory injury (Xu et al., 2019;

Wu et al., 2020; Cai et al., 2021; Tan et al., 2021; Vora et al.,

2021). Pyroptosis is categorized as inflammatory programmed

cell death that is mainly dependent on caspases and gasdermins

(GSDMs). The canonical pyroptosis pathway is initiated by the

activation of the NOD-like receptor (NLR) family pyrin domain

containing 3 (NLRP3), followed by caspase-1-mediated cleavage

and activation of GSDMD, pro-interleukin (IL)-1b, and pro-IL-

18. Mature GSDMD (N-terminal fragment of GSDMD)

ultimately assembles on the plasma membrane and forms

pore-like structures, allowing water to enter cells and enabling

the excretion of cellular contents and mature inflammatory

factors (Yu et al., 2021). This determines the distinct

morphological characteristics of pyroptosis compared to other

forms of programmed cell death. Recent studies on pyroptosis

have reported that apoptosis-associated caspase-3 and 8 can also

mediate the cleavage of GSDMs, thus mediating the activation of

pyroptosis (Sarhan et al., 2018; Jiang et al., 2020). This highlights

the crosstalk between pyroptosis and apoptosis. According to the

existent proofs of pyroptosis in infectious diseases, appropriate

pyroptosis activation is beneficial in defending and clearing

foreign pathogens, while aberrant activation can cause

uncontrolled inflammatory responses and tissue damage.

Hence , there are two s ides to pyroptos i s in the

pathophysiological processes of periodontitis, with the

potential to be either beneficial or detrimental to the host’s

defense and periodontal tissue regeneration.

Periodontitis is initiated by infection with pathogenic

microorganisms; inadequate treatment results in long-term

plaque accumulation, leading to a sustained inflammatory

response and irreversible loss of periodontal tissues. Genetics,

treatments, and self-performed oral hygiene all affect the

prognosis of periodontitis (Kinane et al., 2017). Among the

reported mechanisms, various programmed cell death pathways

have been reported to be involved in the progression of

periodontitis. To date, more than ten kinds of programmed

cell death pathways have been identified, and studies have

addressed their roles in the pathogenesis of periodontitis.

While apoptosis is well studied in periodontitis, there is still a

lack of an in-depth investigation of pyroptosis and its relation to

apoptosis, necroptosis, and NETosis in this field. Pyroptosis was

reported to be associated with an extensive inflammatory

reaction in periodontitis. Clinical studies of apical

periodontitis (AP) have shown that the level of periodontal

pyroptosis correlates positively with disease severity (Cheng

et al., 2018). Furthermore, an increased level of pyroptosis in

periodontal tissue leads to overactive immune responses and
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promotes the secretion of active inflammatory factors (IL-1b, IL-
18), further contributing to the overactivation of inflammatory

signaling pathways. This, in turn, leads to reduced bone

formation ability via the suppression of osteoblast activity and

enhanced bone resorption via the upregulation of the

proliferation and activity of osteoclasts (Li et al., 2021).

Ultimately, this results in the exacerbation of the destruction

of periodontal tissue and the suppression of its regeneration (Li

et al., 2021). The exact mechanisms will be discussed below.

Recent studies have broadened our understanding of the role

of pyroptosis in periodontitis. However, there remains a

significant gap in comprehending the specific molecular

mechanisms of pyroptosis in periodontitis, and the favorable

aspect of pyroptosis in periodontitis, regarding its role in

clearing pathogens, also requires further verification. This

review summarizes the most recent contributions to our

understanding of the potential mechanisms underlying the

role of pyroptosis in the pathogenesis and development of

periodontitis. Moreover, the crosstalk between pyroptosis and

apoptosis, necroptosis, and NETosis is discussed. Based on this

review, it is hypothesized that pyroptosis might be a novel target

that connects periodontitis with systemic disease. Finally, the

recent progress and challenges in the translation of pyroptosis

research into therapeutic targets are summarized to reveal the

new therapeutic options applicable to periodontitis.
Mechanisms of pyroptosis activation
in periodontitis

Pyroptosis is initiated by canonical and noncanonical

activation of inflammasomes. In the canonical pathway,

pathogen-associated molecular patterns (PAMPs) or damage-

associated molecular patterns (DAMPs) bind to the major

histocompatibility complex or pattern recognition receptors

(PRRs), which leads to the increased transcription and

translation of inflammasome constituents, and also promotes

the activation of inflammasomes by oligomerization and

recruitment of the components of the inflammasomes

(Rathinam and Fitzgerald, 2016). Inflammasomes are

heterologous oligomeric protein complexes usually comprised

of NLRs or absent in melanoma 2 (AIM2)-like receptors (ALRs),

apoptosis-associated speck-like proteins containing a caspase

recruitment domain (ASC), and pro-caspase-1 (Li et al., 2021).

Among the 23 identified NLRs in humans, only a few of them

participate in the formation of inflammasomes; they include

NLRP3, NLRP1, NLRP6, and NLRC4. NLRs usually possess a

leucine-rich repeat (LRR) domain at the C-terminal, a

nucleotide-binding domain (NBD) or a nucleotide-binding

and oligomerization (NACHT) domain in the central region,

and a pyrin domain (PYD) at the N terminal of the NLRP or a

caspase recruitment domain (CARD) at the N terminal of the
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NLRC (Swanson et al., 2019; Li et al., 2021; Yu et al., 2021).

Following the activation of inflammasomes, the PYD in the

NLRP, such as NLRP3, assembles pro-caspase-1 (full-length) by

indirectly binding to the ASC (containing a CARD at the C-

terminal and a PYD at the N-terminal) of the inflammasome via

the homotypic interaction between PYD–PYD and CARD–

CARD. However, the CARD in NLRP1 and NLRC4 can

promote the recruitment of pro-caspase-1 by directly binding

to their CARD domains (Kay et al., 2020; Taabazuing et al., 2020;

Sundaram and Kanneganti , 2021) . Once bound to

inflammasomes, there is the promotion of the dimerization

and autoproteolysis of pro-caspase-1, followed by the release

of central and small catalytic domains, p20 and p10 (Guo et al.,

2015; Huang et al., 2021; Li et al., 2021).

Unlike in the canonical pathway, in the noncanonical pathway,

caspase-4/5 in humans and caspase-11 in mice function as both

sensor and effector molecules of lipopolysaccharide (LPS)-induced

pyroptosis. After the recognition of LPS, caspase-4/5/11

dimerization and autoproteolysis occur, releasing the p10 and p20

domains (Kayagaki et al., 2015; Downs et al., 2020). Recent

advances in this field have indicated that several guanylate

binding proteins (GBPs) are involved in caspase-4 signaling

induced by LPS (Fisch et al., 2020; Kutsch et al., 2020; Santos

et al., 2020; Wandel et al., 2020); however, this requires further

investigation in periodontitis. The active caspases in the canonical

and noncanonical pathways ultimately proteolytically cleave pro-

IL-1b and pro-IL-18 into their biologically active forms. Although

caspase-4/5/11 cannot directly cleave pro-IL-1b and pro-IL-18, they
can promote the maturation and secretion of IL-1b and IL-18 by

activating the NLRP3/caspase-1 pathway (Yu et al., 2021).

Simultaneously, the active caspase-1/4/5/11 cleaves the GSDMD

protein, the key effector protein of pyroptosis, to form active N- and

C-terminal kinase portions. The N-terminal of GSDMD binds to

phosphatidylserine, phosphatidic acid, and phosphatidylinositol on

the cell membrane, promoting oligomerization and resulting in the

formation of pore-like structures on the cells. Changes in

membrane permeability lead to cell swelling and membrane

rupture, which facilitate the active forms of inflammatory factors

to pass through the membrane pores. Moreover, new evidence

indicates that the GSDMD pore conduit is predominantly

negatively charged, thus favoring the passage of positively charged

and neutral cargo, such as the mature forms of IL-1b and IL-18 (Xia
et al., 2021).

As mentioned above, GSDMD is the most studied member

of the GSDM family, and it mediates both the canonical and

noncanonical pathways. GSDMA, -B, -C, and -E, as well as

autosomal recessive deafness-59 (DFNB59), are less studied and

require further investigation. Aside from DFNB59, all GSDMs

have a pore-forming domain at the N-terminal, an

autoinhibitory domain at the C-terminal, and a loop domain

that links the N- and C-terminal domains (Julien and Wells,

2017; Kovacs and Miao, 2017; Xia et al., 2020). Except for

DFNB59, they were proved to be involved in the activation of
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pyroptosis. Restricted reports showed that GSDME can be

cleaved by caspase-3, which specifically generates an N-

terminal fragment of GSDME, thus promoting pyroptosis

(Wang et al., 2017; Jiang et al., 2020). Moreover, GSDMC was

reported to be cleaved by caspase-8, specifically with TNFa
treatment, generating an N-terminal fragment of GSDMC,

thereby inducing pyroptosis (Hou et al., 2020; Zhang et al.,

2021). Caspase-8 has also been reported to cleave GSDMD to

induce pyroptosis (Orning et al., 2018; Sarhan et al., 2018;

Demarco et al., 2020). These results also indicated that

GSDME and GSDMC might be two points linking pyroptosis

with apoptosis. This will be discussed below. Aside from

caspases, granzyme A has been reported to cleave GSDMB in

lymphocytes (Zhou et al., 2020), and granzyme B was reported to

directly cleave GSDME in tumor cells (Zhang et al., 2020),

ultimately contributing to tumor suppression by invoking

pyroptosis. In addition, a recent study reported that

neutrophil-specific serine protease-neutrophil elastase

(ELANE) can also cleave GSDMD at the N terminal to

promote pyroptosis, thereby mediating its biological effects

(Kambara et al., 2018). However, non-caspases-dependent

cleavage of GSMDs was not clarified in periodontitis.

Therefore, detailed molecular and biological investigations

need to be conducted to shed light on it.

Accumulating evidence has shown that pyroptosis

participates in the pathophysiological process of periodontitis

(Bullon et al., 2018; Zhou et al., 2020; Li et al., 2021). Continuous

pathogenic microorganism infection is the initiating factor in

periodontitis, including bacterial, fungal, viral, and mycoplasma

infections. Toll-like receptor 4 (TLR4) is the most characterized

pattern recognition receptor during periodontitis and has been

largely argued for its crucial role in the LPS-mediated pyroptosis

pathway. Basic studies using TLR4 knockout mice models have

documented that TLR4 is involved in periodontitis and peri-

implantitis initiated by P. gingivalis (Lin et al., 2014; Deng et al.,

2020). Recent advances documented that after recognizing and

binding to the lipid A portion of LPS by TLR4 particularly, the

myeloid differetial protien-2 mediates the binding of LPS with

TLR4, followed by initiating the homotypic interaction of

TLR4’s intracellular toll/interleukin-1 receptor domain with

adaptors, including myeloid differentiation factor88 (MyD88)

and TIR domain-containing adapter protein inducing IFN-Beta

(TRIF). Consecutively, MyD88 binds to interleukin-1 receptor-

associated kinase (IRAK) 1 and 2, which facilitates the assembly

of TRAF6 and provokes TAK1-mediated phosphorylation and

activation of IkB kinases a/b (IKKa/b) (Ciesielska et al., 2021),
ultimately leading to nuclear translocation of NF-kB. This step is

essential for the transcription of NLRP3, pro-IL-1b, and pro-IL-

18, the priming step for the activation of NLRP3 inflammasome

(Ciesielska et al., 2021). In the TRIF-dependent pathway, TRAF3

and TRAF6 were involved in the activation of the MAPK and

ERK1/2 pathways, which also contributed to cytokine

production (Ciesielska et al., 2021). The activation of NLRP3
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was demonstrated to be associated with posttranslational

mod ifi c a t i o n , wh i c h wa s s u ppo r t e d b y NLRP3

deubiquitination by BRCC3 or phosphorylation by JNK1,

promoting the activation of the NLRP3 inflammasome (Py

et al., 2013; Song et al., 2017). In addition, ion flux,

mitochondrial damage, ROS and mitochondrial DNA, and

lysosomal disruption were also documented to be involved in

NLRP3 activation (Huang et al., 2021). However, the exact

underlying mechanisms are still obscure. In addition to

recruiting and activating inflammasomes in the canonical

pyroptosis pathway, downstream molecular TRIF initiates the

activation of IRF3/7 and the induction of type I interferon

release in parallel. This is followed by IFNAR1/2-dependent

activation of JAK/STAT signaling to initiate pro-caspase-11

expression, thus participating in the noncanonical pyroptosis

pathway (Gurung et al., 2012; Rathinam et al., 2012; Zamyatina

and Heine, 2020). These findings extend our understanding of

LPS and TLR4 in pyroptosis. However, these results have not

been verified in periodontitis. Pyroptosis was demonstrated to

arise in human gingival fibroblasts (HGFs), macrophages, oral

epithelial cells, human periodontal ligament fibroblasts

(HPDLFs), human periodontal l igament stem cells

(HPDLSCs), and osteoblasts during periodontitis (Ziauddin

et al., 2018; Zhuang et al., 2019; Chen et al., 2021; Lei et al.,

2021; Li et al., 2021; Zhao et al., 2021). The human gingival

epithelium (HGEs) is considered the first line of periodontal

defense, protecting the periodontal tissue against various

harmful pathogens. Streptococcus sanguinis and oral anaerobic

bacteria-produced butyrate can destroy the epithelial barrier

through the activation of pyroptosis by upregulating caspase-

3/GSDME and caspase-1, respectively (Liu et al., 2019; White

et al., 2020). HGFs are the most abundant cells in the periodontal

tissue; activation of the pyroptosis pathway in gingival

fibroblasts contributes to the exacerbation of inflammation

and the destruction of periodontal tissues. Porphyromonas

gingivalis (P. gingivalis) and LPS are reported to induce

pyroptosis in HGFs by activating the NLRP3/NLRP6/caspase-

1/GSDMD pathway (Liu et al., 2018; Huang et al., 2020; Yang

et al., 2021). Moreover, caspase-4/GSDMD, which belongs to the

noncanonical pathway, can also be activated in HGFs in

response to the Treponema pallidum surface protein Tp92

(Jun et al., 2018). Macrophages are key mediators of the

inflammatory response in the innate immune system and are

involved in defense against pathogen invasion by recognizing the

byproducts of pathogens and other endogenous factors.

Nonetheless, overactivation of microphages results in an

extended inflammatory response and tissue damage (Shapouri-

Moghaddam et al., 2018). In addition, macrophages are

remarkable plastic cells that can be phenotypically polarized to

classically activated or inflammatory (M1) and alternatively

activated or anti-inflammatory (M2) forms. While M2 can be

induced by IL-4 and IL-13, which is followed by the production

of anti-inflammatory factors IL-10 and TGF-b, M1 is triggered
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by recognizing IFN-g, TNF-a, or LPS with TLRs and IL-1R, and

this is followed by the production of pro-inflammatory cytokines

TNF-a, IL-1a, IL-1b, IL-6, IL-12, and IL-23 (Murray, 2017;

Locati et al., 2020). Cytokine production during this process was

activated NF-kB signaling dependent (Murray, 2017; Locati

et al., 2020). These results showed that M1 polarization shares

the same initiated signaling pathways with pyroptosis.

Concomitant with these findings, M1 macrophages showed

increased caspase-1 expression (Xia et al., 2022), and

polarization to M1 can be prevented by caspase-1 suppression

(Li et al., 2019). So, we speculate that in response to infection,

M1 polarization occurs in the early stage, while accumulating

inflammatory factors produced by M1 contribute to pyroptosis

activation. Given that M2 macrophages have scavenger

receptors, they might participate in the phagocytosis of cells

undergoing pyroptosis, thus restricting the amplification of

inflammation. However, the interaction between macrophage

polarization and pyroptosis has never been investigated in

periodontitis; gene knockout of pyroptosis-related caspases will

help us understand this topic. Limited evidence in periodontitis

revealed that P. gingivalis, Mycoplasma salivarium, Treponema

denticola surface protein Td92, E. faecalis, and LPS can induce

pyroptosis in macrophages through the NLRP3/caspase-1/

GSDMD pathway, contributing to the pathogenesis and

development of periodontitis (Jun et al., 2012; Sugiyama et al.,

2016; Li et al., 2019; Li et al., 2020; Ran et al., 2021). Moreover,

pyroptosis induced by the cyclic stretch, dental calculus, and

outer membrane vesicles of P. gingivalis in macrophages can also

promote periodontitis (Fleetwood et al., 2017; Ziauddin et al.,

2018; Zhuang et al., 2019).

Table 1 presents a summary of the current research on the role

of pathogens and their byproducts in the induction of pyroptosis

in periodontal tissue, providing an update on the comprehensive

understanding of the possible effects of pyroptosis on periodontal

diseases. As displayed in Table 1, studies restricted their focus on

caspase-1/GSDMD, the role of caspases, GSDMs, granzymes, and

ELANE, which, beyond caspase-1/GSDMD, remain to be fully

elucidated in periodontitis. Also, the favorable aspect of pyroptosis

in macrophages, which might contribute to the clearance of

periodontal pathogens, needs to be clarified.

Advances in the field have led to a more detailed understanding

of how pyroptosis is regulated. Recent studies have shown that

Ninjurin-1 mediates the breakdown of the plasma membrane to

smaller pieces after pyroptosis induced by GSDMD (Kayagaki et al.,

2021), thus amplifying inflammation and helping clear pathogens.

The Ragulator-Rag complex of mTORC1 is reported to be

necessary for GSDMD pore-forming activity in macrophages

(Evavold et al., 2021). Posttranslational modification of GSDMs

also contributes to the regulation of pyroptosis. For example, it has

been reported that the Shigella ubiquitin ligase IpaH7.8 mediates

the ubiquitylation of N-terminal PFD in human GSDMD and

GSDMB and promotes their degradation in immune cells to

prevent pyroptosis, enabling infection (Hansen et al., 2021;
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Luchetti et al., 2021). In addition, succination at C192 of the N

terminal of GSDMD reduces its binding to caspase-1, thus blocking

its processing and oligomerization and preventing pyroptosis-

induced cell death (Humphries et al., 2020). Moreover,

chemotherapy drugs were reported to promote pyroptosis by

palmitoylation of GSDME (Hu et al., 2020). However, these

newly discovered regulation mechanisms have not been verified

in periodontitis.

Despite accumulating achievements in this field recently, few

studies have focused on the basic molecular mechanism of

pyroptosis in periodontitis and the potential favorable aspects

of pyroptosis in periodontitis, and whether the recently

discovered regulation mechanisms also participate in the

process of periodontitis are still unknown.
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Role of pyroptosis-regulated cell
death mechanisms in periodontitis

Pyroptosis in periodontal tissue has been demonstrated to

induce inflammation, resulting in periodontal tissue damage

(Table 1). Pyroptosis-related inflammasomes, caspases, and

cytokines have been proven to be tightly associated with

inflammatory diseases and play important roles in pathogen

defense, bone resorption, and regeneration of various tissues.

Among all the pyroptosis-related inflammasomes and caspases,

NLRP3 and caspase-1 are the most comprehensively

characterized members in periodontitis. One study found that

caspase-1 deficiency suppressed the secretion of inflammation

factors from macrophages and alleviated bone resorption in
TABLE 1 Reported periodontal pathogenic factors in the activation of pyroptosis-related caspases and gasdermins.

Tissue and/or cells Pyroptosis inducers Inflammasome Caspases Gasdermins Reference

THP-1 Mycoplasma salivarium NLRP3 Caspase-1 N/A Sugiyama et al., 2016

T. denticola surface protein Td92 NLRP3 Caspase-1 N/A Jun et al., 2012

LPS from E. coli NLRP3 Caspase-1/4 GSDMD Li et al., 2020

E. faecalis NLRP3 Caspase-1 GSDMD Ran et al., 2021

U937 P. gingivalis NLRP3 Caspase-1/
11

GSDMD Li et al., 2019

XS106 Mycoplasma salivarium NLRP3 Caspase-1 N/A Sugiyama et al., 2016

HPDLCs Cyclic stretch NLRP1 and NLRP3 Caspase-1/5 GSDMD Zhao et al., 2016; Zhuang et
al., 2019

P. gingivalis and LPS NLRP3 Caspase-4 GSDMD Chen et al., 2021

HGEs Butyrate N/A Caspase-3/
1/5

GSDME Liu et al., 2019

HGFs T. denticola surface protein Tp92 N/A Caspase-4 GSDMD Jun et al., 2018

LPS from E. coli NLRP3 Caspase-1 GSDMD Huang et al., 2020

Combination of hypoxia and LPS from P.
gingivalis

NLRP3 Caspase-1 GSDMD Yang et al., 2021

P. gingivalis NLRP6 Caspase-1 GSDMD Liu et al., 2018

LPS from P. gingivalis NLRP3 Caspase-1/
4/5

GSDMD Li et al., 2021

Human macrophages from blood A. actinomycetemcomitans leukotoxin N/A Caspase-1 N/A Kelk et al., 2011

HSC-2;
HOMK107;
Immortalized mouse macrophages

Dental calculus NLRP3 Caspase-1 N/A Ziauddin et al., 2018

RAW 264.7 co-cultured with
HPDLSCs

Hyperglycemia NLRC4 Caspase-1 GSDMD Zhao et al., 2021

RAW 264.7;
Mice gingival tissue

High glucose, diabetes, and LPS from P.
gingivalis

AIM2 and NLRP3 Caspase-1 GSDMD Nie et al., 2021; Zhou et al.,
2020

Murine bone-marrow-derived
macrophages;
Human monocyte-derived
macrophages

P. gingivalis and its outer membrane
vesicles

NLRP3 Caspase-1 N/A Fleetwood et al., 2017

Oral epithelial cell Streptococcus sanguinis N/A Caspase-1/
3/7

N/A White et al., 2020

MG63 cells LPS from E. coli NLRP3 Caspase-1 GSDMD Liu et al., 2020

HPDLFs LPS from P. gingivalis and E. coli NLRP3 Caspase-1 N/A Cheng et al., 2018
XS106, murine epidermal-derived Langerhans cell line; THP-1, human acute monocytic leukemia cell line; HPDLCs, human periodontal ligament stem cells; HSC-2, human oral squamous
carcinoma cells; HOMK107, human primary oral epithelial cells; HGFs, human gingival fibroblasts; RAW 264.7, murine macrophage line; MG63, human osteosarcoma MG63 cell line;
U937, human myelomonocytic cell line.
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periodontal tissue during periodontitis (Rocha et al., 2020).

These authors also found that NLRP3 deficiency did not

contribute to this process (Rocha et al., 2020). However, this is

inconsistent with the findings of (Zang et al., 2020), which

indicated that aged mice lacking NLRP3 showed better bone

mass, and inhibition of the activation of NLRP3 with MCC950

significantly suppressed alveolar bone loss (Zang et al., 2020). In

line with this result, Chen also found that in mice with ligature-

induced periodontitis, NLRP3 deficiency decreased osteoclast

precursors and suppressed osteoclast differentiation and alveolar

bone destruction (Chen et al., 2021). These contradictory results

might be attributed to the different ages of the studied mice;

however, this hypothesis requires clarification in future studies.

The activation of inflammasomes and caspases ultimately

leads to the maturation and secretion of inflammatory factors;

the active forms of IL-1b and IL-18 are the direct byproducts of

this process. IL-1b is considered to be the most important factor

contributing to periodontal tissue damage. It is expressed in

macrophages, dendritic cells, GFs, PDLCs, and osteoblasts. IL-

1b was markedly increased in the saliva of patients with

periodontitis and gingivitis, as compared to that of healthy

individuals (Lira-Junior et al., 2021). Evidence shows that

elevated IL-1b levels caused by pyroptosis play a direct role in

the pathophysiological process of periodontitis (Cheng et al.,

2020). Previous studies have reported that elevated IL-1b
enhanced extracellular matrix degradation and bone resorption

by directly upregulating collagenolytic enzymes and matrix

metalloproteinases (MMPs) in periodontal tissues (Panagakos

et al., 1994; Polzer et al., 2010; Schett et al., 2016). IL-1b was also

found to upregulate receptor activator for NF-kB ligand

(RANKL) expression and promote osteoclast genesis directly,

thus promoting inflammatory bone loss (Bloemen et al., 2011;

Huynh et al., 2017). In line with this, IL-1b was also proved to

promote inflammatory cell infiltration toward alveolar bone in

experimental periodontitis (Graves et al., 1998), thus further

aggravating alveolar bone loss.

IL-1b certainly activates inflammatory pathways and triggers

the release of other inflammatory factors from various cell types,

amplifying the inflammatory pathway signals and mediating the

amplification of the inflammatory damage caused by pyroptosis.

For example, it stimulated chondrocytes to synthesize IL-8,

TNF-a, and IL-6 (Guerne et al., 1990; Lotz et al., 1992; Xu

et al., 2021), promoted the expression of IL-6 and TNF-a in

human retinal microvascular endothelial cells (Giblin et al.,

2021), and facilitated the secretion of IL-1a, IL-8, and IL-18

from fibroblast-like synoviocytes (Kim et al., 2021). More

importantly, IL-1b was evidenced to promote the secretion of

C-C motif chemokine ligand (CCL) 20 and C-X-C motif

chemokine ligand (CXCL) 10 from HPDLSCs (Long et al.,

2001; Zhu et al., 2012; Hosokawa et al., 2015); IL-2, IL-6, IL-8,

IL-23, interferon (IFN)-g, IL-13, and TNF-a from HPDLFs

(Abidi et al., 2020); and prostaglandin E2 (PGE2), IL-6, and

IL-8 from HGFs (Ono et al., 2011). These elevated inflammatory
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factors in periodontal tissue ultimately lead to increased

inflammation in periodontitis. However, IL-1b was reported to

have dual roles in the osteogenesis of periodontal ligament stem

cells (PDLSCs), where low doses of active IL-1b can promote the

osteogenesis of PDLSCs through the BMP/Smad pathway, while

higher doses of IL-1b can inhibit osteogenesis through the

activation of NF-kB and MAPK signaling (Mao et al., 2016).

This needs to be verified in pyroptosis-mediated periodontitis,

which is usually a severe inflammatory condition. Besides, IL-1b
is also reported to upregulate apoptotic signaling pathways

(Guadagno et al., 2015; Liang et al., 2018; Wang et al., 2019;

Kang et al., 2021), autophagy (Romagnoli et al., 2018), and

oxidative stress and is thus involved in tissue damage through

inflammatory independent pathways (Zhu et al., 2015; Wang

et al., 2021).

IL-18 belongs to the IL-1 family. Its roles in viral, bacterial,

parasitic, and fungal infections have been comprehensively

studied. Polymorphism of the IL-18 gene was demonstrated to

be associated with periodontitis (Shan et al., 2020). In one study,

RANKL and periodontal bone loss were proved to be evoked in

IL-18 transgenic mice (Yoshinaka et al., 2014). Studies have also

reported that IL-18 stimulation promotes proinflammatory

cytokine production in periodontal ligament cells, including

IFN-g, IL-2, and TNFa (Vecchie et al., 2021). When infected

with P. gingivalis, neutralization of IL-18 inhibited the release of

cytokines, chemokines, and MMPs, i.e., IL-1b, IL-6, IL-8, and
MMP-1/8/9. This also contributes to decreasing the recruitment

of inflammatory cells into periodontal tissues and to less alveolar

bone resorption (Zhang et al., 2021). In addition, IL-18 is

reported to promote the secretion of matrix metalloproteinases

in HPDLFs by activating NF-kB signaling (Wang et al., 2019).

Previous studies have indicated that IL-18 blockade is a

promising therapeutic target for rheumatic diseases and

infantile-onset macrophage activation syndrome (Vecchie

et al., 2021). Given its role in regulating the inflammation

damage associated with periodontitis, IL-18 blockade may also

be an option for the treatment of periodontitis. Further detailed

studies are warranted to investigate the exact role of IL-18

in periodontitis.

Taken together, the literature shows that an increased level of

pyroptosis in periodontitis can promote the secretion of active

inflammatory factors (IL-1b, IL-18), thus amplifying the

inflammation response, leading to an overactive immune

response; this ultimately decreases bone formation, enhances

bone resorption by upregulation of RANKL, exacerbates the

destruction of periodontal tissue, and suppresses its regeneration

(Figure 1). Although persistent localized pyroptosis could enhance

periodontal tissue disruption and pathogen dissemination,

pyroptosis has also been found to limit pathogen replication,

enhance innate and adaptive immune responses, and improve

host survival in other tissues (Jorgensen et al., 2016), as a recent

study found that GSDMD deficiency diminished neutrophil-

killing responses against Escherichia coli infection (Kambara
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et al., 2018). However, whether this favorable aspect of pyroptosis

can help clear pathogens in periodontal tissue has yet to be

addressed experimentally.
Pyroptosis in the relationship
between periodontitis and
systemic disease

Emerging evidence demonstrates that pyroptosis might be

involved in the bidirectional relationship between periodontitis

and systemic diseases, such as diabetes, cardiovascular diseases,

and rheumatoid arthritis (Jain et al., 2021). These relationships

are further summarized below.
Diabetes

The association between diabetes and periodontitis has been

thoroughly investigated (Jain et al., 2021; Pirih et al., 2021).

Diabetes is characterized by chronic subclinical inflammation,

which is directly involved in the pathogenesis of diabetes-
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associated periodontitis (Pirih et al., 2021). In addition, diabetes

induces increased advanced glycation end-products (AGEs) (Yu

et al., 2012; Zizzi et al., 2013; Mei et al., 2019), oxidative stress

(Tothova and Celec, 2017; Buranasin et al., 2018), an unbalanced

periodontal microbiome (Shi et al., 2020; Sun et al., 2020;

Balmasova et al., 2021), and immune dysfunction (Lazenby and

Crook, 2010; Zhu andNikolajczyk, 2014), which also contribute to

the progression of periodontitis. Recently, considerable attention

has been directed to pyroptosis caused by diabetes and its role in

diabetes complications. The induction of pyroptosis in human

retinal microvascular endothelial cells through the AGEs/P2X7R/

NLRP3/GSDMD pathway was found to contribute to the

progression of diabetic retinopathy (Yang et al., 2020). (Chai

et al., 2021) reported that intermittent high glucose induces

pyroptosis of cardiomyocytes through NLRP3/caspase-1/

GSDMD (Chai et al., 2021). Moreover, AGEs produced by

high-glucose induced pyroptosis in human kidney-2 cells

through AGEs/NLRP3/GSDMD were found to accelerate the

kidney damage caused by diabetes (Li et al., 2020).

Hyperglycemia also leads to an increase in NLRP3 in diabetic

muscle cells, further upregulating the pyroptosis pathway in

muscle cells (Aluganti Narasimhulu and Singla, 2021). There is
FIGURE 1

Pyroptosis in periodontal tissue. During the process of periodontitis, pyroptosis takes place in human gingival epithelial cells (HGEs), human
gingival fibroblasts (HGFs), osteoblasts, and human periodontal ligament stem cells. The induced pyroptosis involves the activation and
recruitment of immune cells, thus helping clear and prevent the spread of pathogens. However, the hyperactive and long-lasting pyroptosis
would accelerate the process of periodontitis by increasing cell death and elevating inflammatory factors, which mediate the activation of
oxygen species and matrix metalloproteinases, further causing connective tissue damage in periodontal tissue directly. The cascade
amplification of the inflammatory response during pyroptosis might also contribute to the aggravation of systematic diseases, such as
cardiovascular disease, diabetes, and rheumatoid arthritis.
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also accumulating evidence indicating that pyroptosis mediates

the adverse outcomes of diabetes-associated periodontitis. (Nie

et al., 2021) reported that hyperglycemia triggers gingival

destruction and impairment of macrophage function, including

inflammatory cytokine secretion, phagocytosis, chemotaxis, and

immune responses (Nie et al., 2021). In line with this, (Zhao et al.,

2021) also reported that hyperglycemia promotes GSDMD-

dependent pyroptosis of macrophages through NLRC4

phosphorylation, thus activating NF-kB signaling in HGFs and

further aggravating periodontitis (Zhao et al., 2021). Diabetes also

inhibits the proliferation and differentiation of osteoblasts in

alveolar bone by activating the caspase-1/GSDMD/IL-1b
pathway (Yang et al., 2020). Given the evidence suggesting that

pyroptosis mediates the progression of diabetes-induced

periodontitis, pyroptosis may serve as a new therapeutic target

for diabetes-associated periodontitis. However, more

comprehensive research on pyroptosis in diabetes-associated

periodontitis is warranted to fully understand its mechanism.

Periodontitis also participates in the pathological process of

diabetes, as has been reviewed by others (Lalla and Papapanou,

2011; Preshaw et al., 2012; Polak and Shapira, 2018; Pirih et al.,

2021). Increased circulating levels of different inflammatory

cytokines are associated with poor glucose control and insulin

resistance (Polak and Shapira, 2018). IL-1b, a byproduct of

pyroptosis, has been suggested to link periodontitis and

systemic disorders (Zhu et al., 2015); however, this has not

been validated in diabetes-associated periodontitis. Therefore,

the exact mechanisms by which periodontitis-induced

pyroptosis affects the progression of diabetes are largely

unknown. Both in vivo and in vitro studies are needed to

address this issue.
Cardiovascular diseases

Cardiomyocytes, macrophages, vascular smooth muscle

cells, endothelial cells, and fibroblasts in the cardiovascular

system can undergo pyroptosis, resulting in the progression of

cardiovascular diseases (Fidler et al., 2021; Jan et al., 2021; Yao

et al., 2021; Zhou et al., 2021). This was also evidenced by

alleviated cardiac damage in NLRP3 knockout mice (Busch et al.,

2021). Therefore, NLRP3-mediated pyroptosis has been

considered a candidate for cardiovascular disease treatment.

Periodontitis has been suggested to be the source of

inflammation resulting in cardiovascular diseases. However,

patients with periodontitis and cardiovascular diseases often

suffer from diabetes and are tobacco users, which can also

increase systemic inflammation, making it challenging to

prove that periodontitis is the direct source of inflammation

resulting in cardiovascular disease. Nonetheless, periodontal

pathogenic bacteria, such as P. gingivalis, have been confirmed

to be present in atherosclerotic plaques (Haraszthy et al., 2000;

Pavlic et al., 2021). The colonized periodontal pathogens in the
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cardiovascular system were suggested to come from transient

bacteremia caused by dental procedures, such as daily tooth care,

tooth extraction, scaling, and periodontal probing. This also

contributes to periodontal bacteria entering the circulation and

inducing low-grade inflammation. Moreover, bacterial

metabolic products, such as endotoxins and gingipains, can

also trigger systemic inflammatory responses, and some of

them have been shown to induce pyroptosis in other tissues

(Naderi and Merchant, 2020; Jain et al., 2021). However,

whether pyroptosis participates in periodontitis-associated

cardiovascular diseases remains largely unknown.
Rheumatoid arthritis

Studies have reported that periodontitis-related pathogens

and their byproducts can disturb the immune balance. Invasive

P. gingivalis promotes the occurrence and development of

collagen-induced arthritis in mice through the inhibition of

the process of B-cell differentiation into B10 cells (Zhou et al.,

2021). In addition, P. gingivalis can produce peptidyl-arginine

deiminase, thus increasing the formation of anticyclic

citrullinated peptide. Moreover, P. gingivalis–induced

gingipain mediates the degradation of fibrinogen and alpha-

enolase, which provides more substrates for citrullination

(Wegner et al., 2010; Quirke et al., 2014). Pyroptosis was

reported to participate in elevated inflammation in rheumatoid

arthritis (Li et al., 2019; Wu et al., 2020). Thus, we speculate that

pyroptosis might be involved in the pathophysiology of

periodontitis-associated rheumatoid arthritis. However, this

requires further clarification.
Crosstalk between pyroptosis
and other forms of programmed
cell death

Pyroptosis and apoptosis

Pyroptosis was traditionally conceived to have a distinct

morphology and undergo distinct pathways from apoptosis;

nonetheless, this has been challenged with more recent

evidence showing connections between pyroptosis and

apoptosis. Apoptosis was the first characterized form of

programmed cell death and can be classified as either extrinsic

or intrinsic apoptosis. Caspase-3 has traditionally been regarded

as a critical effector of apoptosis-induced cell death in intrinsic

apoptosis. Recent advances have indicated that caspase-3/

GSDME might be a switch between apoptosis and pyroptosis

(Jiang et al., 2020). A study by (Jiang et al., 2020) reported that in

coral, GSDME is cleaved by caspase-3 at two tetrapeptide motifs,

238DATD241 and 254DEPD257, yielding two active isoforms of
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the N-terminal domain of GSDME that are capable of inducing

pyroptosis (Jiang et al., 2020). (Rogers et al., 2017) reported that

during apoptosis in 293T cells, caspase-3 cleaves the

267DMPD270 domain of GSDME, which targets the plasma

membrane to induce pyroptosis (Rogers et al., 2017). In peri-

implantitis and periodontitis, this signal pathway has been found

to mediate TNF-a- and butyrate-triggered pyroptosis in human

gingival epithelial cells, respectively (Liu et al., 2019; Chen et al.,

2021). The relationship between pyroptosis and apoptosis was

also verified by the finding that exposure to cadmium, an

apoptosis trigger, can evoke the caspase-1 mediated pyroptosis

pathway (Wei et al., 2020). Caspase-8, the initiator of extrinsic

apoptosis, has also been found to be involved in the pyroptosis

signaling pathway (Sarhan et al., 2018; Fritsch et al., 2019; Zhang

et al., 2021). (Sarhan et al., 2018) reported that caspase-8

mediated pyroptosis during Yersinia infection in macrophages

by directly binding to GSDMD, driving the cleavage of GSDMD

(Orning et al., 2018; Sarhan et al., 2018). In addition, caspase-8

has been found to mediate the cleavage of GSDMC after a-
ketoglutarate treatment in Hela cells, thus promoting pyroptosis

(Zhang et al., 2021). Furthermore, caspase-8 was found to

stimulate caspase-3-dependent GSDME cleavage, further

facilitating pyroptosis (Li et al., 2021). These results indicate

that caspase-8 is another molecular switch beyond caspase-3 that

controls apoptosis and pyroptosis (Fritsch et al., 2019). The roles

of granzyme A and B in apoptosis have been thoroughly studied

(Martinvalet et al., 2005; Velotti et al., 2020). Recently, it has

been discovered that they are also able to directly cleave GSDMs,

as discussed above, further confirming the connection between

apoptosis and pyroptosis.

In turn, the upstream signals of pyroptosis have also been

reported to evoke apoptosis pathways. Oligomerization of the

initiating proteins, such as AIM2 and NLRP3, was found to

promote apoptosis through the recruitment of caspase-8 by

ASC, thereby initiating apoptosis (Sagulenko et al., 2013).

During pyroptosis, activated caspase-1 can bidirectionally lead

to the activation of caspase-3/8/9-related apoptosis (Tsuchiya

et al., 2019). More recently, the N-terminal of GSDME was

found to permeabilize the mitochondrial membrane, releasing

cytochrome c and thus activating apoptosis through the intrinsic

apoptosis pathway (Yang et al., 2020). However, the role of

pyroptosis-dependent secondary apoptosis in periodontitis

is unclear.

In sum, these results confirm the presence of a bidirectional

relationship between pyroptosis and apoptosis and further

suggest that pyroptosis tends to be concurrent with apoptosis

(Xi et al., 2016; Doitsh et al., 2017) (Figure 2). However, cells or

tissues are usually dominated by one programmed death

pathway in response to a certain trigger, and this can be

attributed to the expression levels of GSDMs and certain

caspases. Deficiency of pyroptosis-associated caspases or

GSDMs switches pyroptosis to apoptosis; for example,

deficiency of GSDMD reverts the cell-death morphology to
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apoptosis upon the activation of caspase-1 or caspase-8

(Pierini et al., 2012; Sarhan et al., 2018; Tsuchiya et al., 2019;

Jiang et al., 2020; Zhang et al., 2020). A sufficient amount of

substrates for pyroptosis contributes to the initiation of

pyroptosis (Wang and Kanneganti, 2021). In addition, the cell

type has also been suggested to influence the undergoing form of

programmed death (Yang et al., 2020). This requires further

clarification in various periodontal cell types.

Caspase-1/4/5/11/3/8 levels have all been reported to be

increased in periodontitis (Hirasawa and Kurita-Ochiai, 2018;

Jun et al., 2018; Liu et al., 2018). Elevated expression and activity

of caspase-3 and caspase-8 certainly participate in aggravating

the progression of periodontitis through the apoptosis pathway

(Alikhani et al., 2004; Hirasawa and Kurita-Ochiai, 2018; Aral

et al., 2019). However, no studies analyzed apoptosis–pyroptosis

interactions during this process, and whether pyroptosis can be

activated simultaneously and participate in the progression of

periodontitis is unclear. Given the accumulating evidence of a

connection between apoptosis and pyroptosis, we speculate that

the interaction between the two might contribute to the

pathophysiology of periodontitis. The role of the bidirectional

relationship between pyroptosis and apoptosis in periodontitis

needs to be investigated in more detailed mechanistic studies.
Pyroptosis and necroptosis

Necroptosis is another well-defined form of programmed

cell death. It is initiated by the activation of tumor necrosis factor

receptor (TNFR), death receptor, TLR, or type I interferon

receptor (IFNAR). This is followed by the formation of

complex I on the membrane, which contains TNFR-associated

death domain (TRADD), Fas-associated death domain (FADD),

TNFR-associated factors (TRAFs), receptor-interacting protein

1(RIPK1), and cellular inhibitor of apoptosis protein 1 and 2.

Then, there is the recruitment of RIPK3 and the formation of the

RIP complex, leading to the phosphorylation and activation of

mixed lineage kinase domain-like (MLKL). Activated MLKL

mediates pore formation, which facilitates the release of

inflammatory factors and cellular components, ultimately

resulting in the collapse of the membrane (Frank and Vince,

2019; Yuan et al., 2019; Bertheloot et al., 2021). This process has

already been summarized in detail. As alluded to above,

necroptosis occurs through a discriminate pathway compared

with pyroptosis. In addition, there are also distinct

morphologies: cells that undergo necroptosis usually exhibit

loose cellular detachment and exaggerated cellular swelling due

to the ion-selective MLKL pores (Frank and Vince, 2019).

Nonetheless, they still interact with each other, as the

previously defined receptors for initiating necroptosis have

also been demonstrated to be involved in pyroptosis pathways

(Frank and Vince, 2019). Triggers such as P. gingivalis and LPS

have been identified to induce both pyroptosis and necroptosis
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in periodontitis (Ke et al., 2016; Geng et al., 2022; Yang et al.,

2022). More recently, RIPK1, RIPK3, and MLKL have been

identified to be involved in the mediation of the activation of

NLRP3/caspase 1, which might contribute to the activation of

pyroptosis during periodontitis (Conos et al., 2017; Speir and

Lawlor, 2021). These results suggest the simultaneous existence

of these two forms of death in periodontal tissue. Unlike

apoptosis, which is immunologically silent, the excessive

activation of pyroptosis and necroptosis consequently elicits a

destructive immune response that participates in the process of

periodontitis. The complex interaction of these pathways in

periodontit is is largely unknown, and the primary

inflammatory programmed death pathway in distinct

periodontal cells has yet to be deciphered. Understanding this

topic will provide us with new opportunities for potential clinical

treatments of periodontitis.
Pyroptosis and NETosis

There is growing evidence indicating neutrophils as crucial

regulators in periodontitis. In response to pathogens, the recruited

neutrophils exert their host defense effects by releasing cytotoxic

factors and enzymes, phagocytosing pathogens, and discharging

neutrophil extracellular traps (NETs) during NETosis

(Hajishengallis, 2020). NETosis is initiated by the activation of

neutrophils and, simultaneously, changes in intracellular calcium

concentration, the elevation of reactive oxygen species, and the

activation of kinase signaling cascades contributing to the

formation of NETs (Thiam et al., 2020). NETs are intercellular
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chromatins decorated with activated protease (such as elastase and

myeloperoxidase), acting as scaffolds to trap and obliterate

pathogens. The release of intracellular contents, including DNA,

histones, and proteins, during NETosis, contributes to the

autoimmune response, which directs research on NETosis

mainly to the field of autoimmune diseases. Limited evidence in

periodontitis showed that periodontal pathogens F. nucleatum,

Aggregatibacter actinomycetemcomitans, and P. gingivalis

contribute to the activation of NETosis (Hirschfeld et al., 2016;

Alyami et al., 2019; Bryzek et al., 2019). P. gingivalis–induced

NETosis was gingipains dependent, and gingipains in turn

mediated the proteolysis of components of NETs (Bryzek et al.,

2019). This might lead to the amplification of the accumulation of

NETs during periodontitis and further aggravate tissue damage

caused by neutrophils. These NETosis-invoked pathogens have

also been reported to trigger pyroptosis in other types of cells in

periodontal tissues. The key factors that influence neutrophils to

undergo NETosis, pyroptosis, or phagocytose when responding to

identical triggers and pathogens remain unclear. In essence,

whether neutrophils can undergo pyroptosis is still controversial

(Sollberger, 2022). The large amount of neutrophil proteases and

the low expression level of caspases and inflammasomes

determine the priority for NETosis in neutrophils. In addition,

this was also evidenced by neutrophil protease-mediated

activation of GSDMD, and activated inflammasomes and

GSDMD tend to participate in the release of chromatin in a

feed-forward loop to promote NETosis instead of inducing

pyroptosis (Chen et al., 2018; Sollberger et al., 2018).

Researchers also failed to detect pyroptosis morphologies during

this process. This has been summarized in Figure 2. However,

these were not explored in periodontitis.
A

B

C

FIGURE 2

An overview of the crosstalk between pyroptosis with apoptosis, necroptosis, and NETosis in periodontal tissue (A–C).
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Pyroptosis, apoptosis, and necroptosis
are interconnected

The recent progress in the research on cell death advanced our

understanding of the extensive and intricate crosstalk between

different cell death signaling cascades. Caspase-8 was proposed as

a master regulator of apoptosis, necroptosis, and pyroptosis.

Signal transduction via LPS binding to TLRs results in the

activation of caspase-8, RIPK1, and RIPK3, thus contributing to

the activation of necroptosis. During this process, mammalian

inhibitor of apoptosis (IAP) proteins, including X-linked IAP

(XIAP), cellular IAP1, and IAP2 (cIAP1/2), can bind caspase-8,

caspase-3, and caspase-7 directly and inhibit their apoptotic

caspase activity; this depends on the BIR domains in IAPs (Silke

and Meier, 2013; Bertheloot et al., 2021). The combined loss of

XIAP and cIAP1/2 enhanced the caspase-8-mediated apoptotic

pathway and cleavage of pro-IL-1b. In parallel, RIPK3-mediated

necroptosis and activation of NLRP3/IL-1b were also enhanced

(Tenev et al., 2011; Moulin et al., 2012; Lawlor et al., 2015).

Furthermore, tumor necrosis factor-related apoptosis-inducing

ligand decoy receptors, survivin and XIAP, have been suggested

to suppress the apoptosis of inflammatory cells in periodontitis

and are thus associated with a prolonged lifespan of inflammatory

cells (Lucas et al., 2010). Caspase-8 deficiency failed to suppress

the maturation of IL-1b but enhanced the recruitment of RIPK1,

followed by phosphorylation of RIPK3, and ultimately

contributed to MLKL-mediated necroptosis and the activation

of NLRP3/IL-1b in pyroptosis (Fritsch et al., 2019). Notably,

RIPK1 is required to limit RIPK3 and caspase-8 mediated cell

death; this was evidenced by mice with Ripk1 deficiency dying

soon after birth due to uncontrolled cell death depending on

caspase-8, RIPK3 (Rickard et al., 2014; Samir et al., 2020), or

RIPK3 mediated activation of NLRP3/IL-1b. However, whether

activated NLRP3/IL-1b was involved in the activation of

pyroptosis was not clear. Presumably, this depended on the

cellular substrate content and the specific type of cell and tissue.

c-FLIP is also identified as a checkpoint to control the activation of

caspase-8. c-FLIP was upregulated in LPS-primed macrophages.

The elevated short isoform of c-FILP inhibited caspase-8-

dependent apoptosis by disrupting pro-caspase-8 oligomer

assembly (Speir and Lawlor, 2021). Correspondingly, NLRP3/

IL-1b and necroptosis signaling were evoked. Contradictorily, the

caspase-8-cFLIP (long isoform) complex is required for the

inhibition of both apoptosis and necroptosis to suppress cell

death (Van Opdenbosch et al., 2017). These results indicate the

intricate connection between cell death pathways and imply that

different periodontal cell types could undergo distinct cell death

pathways during periodontitis. However, these need to be clarified

in future explorations.

PANoptosis, another newly recognized proinflammatory

programmed cell death pathway, is executed by the

PANoptosome, which contains molecules involved in the
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pyroptotic, apoptotic, and necroptotic pathways. This new

definition of cell death highlights the crosstalk and concurrence

of these three pathways. The PANoptosome was regarded as a

platform that acts as a sensor and executor during infection; it was

initially shown to consist of NLRP3, NLRC4, AIM2, ASC, TNFR1,

RIPK1, RIPK3, MLKL, caspase-1/3/7/8, and GSDMD (Samir

et al., 2020). Recently, ZBP1 was recognized as an apical sensor

by recruiting RIPK3 and caspase-8 during IAV infection. This was

evidenced by ZBP1 deficiency completely abolishing IAV-induced

PANoptosis (Zheng and Kanneganti, 2020). Caspase-6 was

proved to facilitate the interactions between RIPK3 and ZBP1 in

this process (Zheng et al., 2020). These results extend our

understanding of the participating molecules. However, Sendai

virus and respiratory syncytial virus were demonstrated to trigger

PANoptosis through ZBP1-independent pathways, implying

different PANoptosome components in response to specific

microbes (Place et al., 2021). Hitherto, no study has focused on

this topic with regard to periodontitis. Considering the critical role

of PANoptosis in defending and restricting pathogens, exploring it

in periodontal disease might be helpful in the development of new

treatment strategies in this field.
Pyroptosis: A new therapeutic
opportunity for periodontitis

Appropriate pyroptosis plays a key role in the clearance of

pathogens by removing intracellular replication niches and

enhancing the host’s defense responses (Bergsbaken et al.,

2009; Jorgensen et al., 2016; Hansen et al., 2021). The

adequate release of cytokines is critical for immune activity,

contributing to tissue angiogenesis and repair. However,

overactivation of pyroptosis can result in a massive

inflammatory response, leading to aggravation of damage to

tissues and organs; moreover, long-term exposure to an

inflammatory environment can also increase the risk of

diabetes, cancers, and so on (Schroder et al., 2010; Hou et al.,

2021). Studies have reported elevated levels of pyroptosis in

periodontitis, and pharmacological inhibition of pyroptosis

prevents the progression of periodontitis. For example, the

caspase-1 inhibitor vx-765 was found to suppress bone loss

and inhibit the expression of inflammatory factors (IL-1b, MCP-

1, IL-6, and IL-8) in an experimental AP rat model (Cheng et al.,

2018). Another caspase-1 inhibitor, Z-YVAD-FMK, was found

to suppress gingivitis caused by LPS (Li et al., 2021). In addition,

the NLRP3 inhibitor MCC950 restored the osteogenic function

of MG63 cells under LPS stimulation (Liu et al., 2020). Also, the

pan-caspase inhibitor Z-VAD-FMK and the caspase-4 inhibitor

Z-LEVD-FMK have been found to alleviate inflammation in

PDLSCs exposed to P. gingivalis (Chen et al., 2021). Knockdown

of GSDMD has been found to alleviate P. gingivalis–related

inflammation in HGFs (Zhao et al., 2021). These results showed
frontiersin.org

https://doi.org/10.3389/fcimb.2022.953277
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Xu et al. 10.3389/fcimb.2022.953277
that pharmacological inhibition of canonical or noncanonical

pyroptosis pathways or gene knockout of pyroptosis-associated

molecules results in significantly reduced alveolar bone loss and

periodontal tissue inflammation and damage. Given the elevated

pyroptosis level in periodontal tissue during periodontitis and its

role in the pathological progression of periodontitis, treatments

targeting pyroptosis will provide another effective way to cope

with periodontitis. However, at present, the available inhibitors

of pyroptosis generally act on caspases and inflammasomes,

which also participate in other forms of programmed death; to

date, there is still a lack of direct and specific pyroptosis

inhibitors. Moreover, the role of pyroptosis in periodontitis is

only just beginning to be understood; further studies of the

signaling pathways involved in pyroptosis should be performed

to provide new directions for the treatment of periodontitis.
Summary

The last decade has witnessed tremendous progress in

pyroptosis research with an improved understanding of the role

of pyroptosis in inflammatory diseases, cancers, and metabolic

and autoimmune diseases. This review has provided a brief

overview of the mechanisms of pyroptosis in periodontitis and

the most recent research on the mechanisms of pyroptosis in

relation to apoptosis. A large number of studies have revealed the

critical role of pyroptosis-mediated activation of inflammation in

periodontitis; however, as discussed above, the existing studies

typically only explored the most characterized pyroptosis

pathways. The physiological roles of GSDMs other than

GSDMD in periodontitis remain poorly understood. Moreover,

knowledge of posttranslational modification and molecular

interactions between GSDMs in periodontitis remains

incomplete. Therefore, it is critical to continue performing

detailed investigations to gain extensive knowledge of pyroptosis

in periodontitis. In light of the clear evidence that periodontitis

causes systemic inflammation and increases the risk of systemic

chronic comorbidities, it can be speculated that pyroptosis may

link periodontitis with systemic disease. In this regard, future

studies should address the mechanisms of pyroptosis in the

connection between periodontitis and systemic diseases. This

will facilitate the establishment of pyroptosis-targeted adjunctive

treatments, thus contributing to reducing systemic inflammation

and promoting systemic health. Crosstalk between pyroptosis and

apoptosis, NETosis, and necroptosis has been investigated in

various cells and tissues. Caspase-3/8 are considered the switch

between apoptosis and pyroptosis, and deficiency in pyroptotic

substrates contributes to the switch from apoptosis to pyroptosis.

Notably, it seems that pyroptosis is usually concurrent with

apoptosis, NETosis, and necroptosis in periodontal tissues

during periodontitis. However, these conclusions have not been

verified, and it remains unclear which is the primary type of

programmed cell death in periodontal tissues during periodontitis.
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Understanding this topic will help us develop more precise

therapeutic methods.

With respect to infectious disease, pyroptosis participates in

the clearance of pathogens and enhances the host’s defense

responses. On the other hand, long-lasting pyroptosis leads to

inflammatory damage in periodontal tissue. While many studies

have reported that elevated pyroptosis contributes to the

pathophysiological progression of periodontitis, there is

limited research exploring the favorable aspect of pyroptosis in

the clearance of periodontal pathogens. This proves a challenge

for the application of pyroptosis inhibitors in periodontitis. The

exploration of the molecules that directly target pyroptosis and

the design of experiments to help understand the dual role of

pyroptosis in periodontitis will shed light on novel therapeutic

opportunities. Overall, it is crucial that pyroptosis be further

explored in detail, with the expectation that basic research will

translate to clinical practice prevention strategies.
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Glossary

GSDMs Gasdermins

NLRP3 NLR family pyrin domain containing 3

PAMPs pathogen-associated molecular patterns

AP apical periodontitis

IL interleukin

DAMPs damage-associated molecular patterns

MHC major histocompatibility complex

NLRs NOD-like receptors

ALRs absent in melanoma 2 (AIM2)-like receptors

ASC apoptosis-associated speck-like proteins containing a caspase
recruitment domain

LRR leucine-rich repeat domain

NBD nucleotide-binding domain

NACHT nucleotide-binding and oligomerization domain

PYD pyrin domain

CARD caspase recruitment domain

GBPs guanylate binding proteins

DFNB59 autosomal recessive deafness-59

ELANE neutrophil-specific serine protease-neutrophil elastase

HGFs human gingival fibroblasts

HPDLFs human periodontal ligament fibroblasts

HPDLSCs human periodontal ligament stem cells

HGEs human gingival epithelium

MMPs matrix metalloproteinases

CCL C-C motif chemokine ligand

CXCL C-X-C motif chemokine ligand

IFN interferon

PGE2 prostaglandin E2

AGEs advanced glycation end-products.
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