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Abstract

In this paper the possibility of classification of X-ray images of the cervical vertebrae is stud-

ied. The images should be classified into one of the following classes—the images of

healthy vertebrae and the images of vertebrae with syndesmophytes. The vertebra con-

tours, described unambiguously by using the generalized shape language, are the basis of

the analysis. As a result, the contour is represented as a chain of sinquads that determine

switches. The found switches are the characteristic points of the analyzed contour. In these

points additional features of the contour are determined. On the basis of these features two

aforementioned classes of images are defined as fuzzy sets. Such an approach allows us to

create a hierarchical algorithm of classification based on the syntactic and fuzzy description

of the contour.

Introduction

In recent years the number of medical examinations which consist in analyzing X-ray images

of bones has increased rapidly [1]. In general, the images are analyzed in two aspects: the anal-

ysis of bone density and the analysis of bone structures. It should be also mentioned that the

width of joints is analyzed as well, and this topic has been worked out relatively well [2–6].

Both the aforementioned aspects of bone images analysis provide crucial pieces of information

about pathological changes and, as a consequence, play an important role in diagnosis and

assessment of the disease progress—see the next section for more details. According to the

aforementioned large number of X-ray medical images, the methods of their automatic analy-

sis are being sought intensively. In particular, the following topics are studied:

• context-based retrieval of medical images [1, 7, 8],

• automatic localization of cervical vertebrae [9, 10],

• analysis of contours of finger bones [11–18],

• application of image languages to analysis of radiological palm images [19, 20],

• shape representation based on statistical methods [21].
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The syntactic analysis of bone contours is among the methods of studies which are based

on geometrical features of the examined object. The syntactic pattern analysis, called some-

times syntactic pattern recognition, and the syntactic scene analysis are performed on the basis

of a formal, structural representation of the studied object or scene [22, 23]. In the syntactic

object analysis, the simplest elements from which the object is constructed—so-called primi-

tives—and the structural relations between primitives are studied, whereas in the scene analy-

sis the spatial relations between objects are analyzed, as well. In the analysis of medical X-ray

images, bone structures are analyzed both on the level of a single pattern analysis and on the

level of the scene analysis. In the first case, the shape, usually the contour of a bone, is exam-

ined, whereas in the second case the spatial relations among the bones are investigated. For

both cases the syntactic methods are used—string languages are used for the contour analysis

[12–14, 24] whereas graph languages are applied to the analysis of the anatomical structures

constituted by a group of bones, for instance in a hand [19, 20]. Since the biological structures

are irregular, the syntactic approach is frequently aided by fuzzy methods. The perspectives of

assessing the disease progress are discussed as well. The proposed syntactic approach, based on

the shape language [25, 26], is combined with fuzzy methods. As a result, a hierarchical analy-

sis is proposed.

Syntactic methods have their own specific nature. The fact that these kind of methods are

extremely sensitive to the pattern distortions is among the crucial ones. Therefore, the ana-

lyzed patterns, the bone contours in the considered case, should be obtained from the carefully

preprocessed images. The effective preprocessing of medical X-ray images is difficult and the

achieved results are far from the satisfactory ones [15]. On the one hand muscles, bones, carti-

lage, and tendons have various coefficients of X-ray absorption. On the other hand, they cover

mutually in a complex way. Therefore, the preprocessing works well with soft-tissue objects

but it is poor with bones [27]. This results in creating false bone edges and the discontinuities

of contours [28]. That, in turn, causes that such changes as erosions, osteophytes and syndes-

mophytes are difficult to be detected in early stages of development. Furthermore, it is

reported that the contrast of spine X-ray digitized images is low and, as a result, the image

quality is poor [1, 7, 8]. The aforementioned problems make the preprocessing of the X-ray

image a challenging task. The images used in the studies described in this paper were prepro-

cessed by using Statistical Dominance Algorithm (SDA, for abbreviation) that is dedicated to

preprocessing medical images [29, 30]. Application of the algorithm resulted in obtaining con-

tours that have sufficient quality to be the basis for application of the proposed approach.

Clinical background

Let us present a clinical motivation for the presented studies [31, 32]. Spondyloarthritis (SpA,

for abbreviation) represents the second most prevalent inflammatory rheumatic group (ca. 2%

in Caucasians) and it is characterized by chronic inflammation and structural damage involv-

ing the axial and peripheral skeleton. SpA in adults consists of several diseases, i.e. ankylosing

spondylitis, psoriatic arthritis, reactive arthritis, arthritis in inflammatory bowel diseases and

undifferentiated spondyloarthritis. All the diseases share similar axial (sacroiliitis, spondylitis)

or peripheral (arthritis, enthesitis, dactylitis) manifestations. The disease is a significant burden

both for the health system and for an individuals quality of life because the patients have sev-

eral unfavorable consequences of chronic inflammation and structural damage to the skeleton.

Formation of syndesmophytes in the vertebral bodies of the spine—see Fig 1—is the key issue

in structural damage in SpA. Syndesmophytosis is also referred to as osteogenesis or osteopro-

liferation and from a pathophysiologic point of view, it is a new bone formation. Therefore, in

SpA the interaction between chronic inflammation and bone tissue results in a new bone
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formation that is responsible for the remodeling of the spine, which becomes stiff and inflexi-

ble. The remodeling of the spine is associated with decreased quality of life, including daily

activities, employment, family life and leisure time. The imaging assessment of growing and

established syndesmophytes is of supreme importance for planning lifelong therapy. Fast pro-

gressing syndesmophytes requires complex and aggressive therapy, including non-steroidal

anti-inflammatory drugs and biologic agents, eg. Tumour Necrosis Factor inhibitors which

attenuate the chronic inflammation may inhibit or reduce the osteogenesis. Different scoring

methods based on X-ray imaging have been developed for assessing structural damage in SpA,

mainly the formation of syndesmophytes. Currently, modified Stoke Ankylosing Spondylitis

Spine Score (mSASSS, for abbreviation) is the only system that proved to be reliable and sensi-

tive to change, and, therefore, it is preferred in clinical practice both for detecting and follow-

ing the disease progression. Nevertheless, the minimal time interval to reveal the least

significant change in the structural damage progression has been established for two years,

which seems to be, an excessively long period for treatment decision making, including moni-

toring of the effectiveness of the treatment. In other words, continuation, modification or

Fig 1. Syndesmophytes in the spine. On the left: Growing syndesmophytes in the spine of a 30-year old male with

ankylosing spondylitis. On the right: Multiple syndesmophytes, bridging adjacent vertebral bodies in the spine of a

37-year male with ankylosing spondylitis, responsible for the so called bamboo spine image on X-ray.

https://doi.org/10.1371/journal.pone.0204546.g001
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discontinuation of expensive therapies of significant numbers of SpA patients should be based

on the response-to-treatment assessment, by answering the question whether the therapy

inhibits new bone progression. That is why new methods of osteogenesis follow-up are of sig-

nificant importance, particularly if they could make the two-year-time interval of mSASSS

assessment shorter.

The state of the art

The methods of X-ray images computer investigations, based on the analysis of the shape of

anatomical structures, are not used widely because of their complexity and sensitivity to distor-

tions. In this section some examples of the analytical approaches of bone contours and the

related problems in digital X-ray images are briefly recalled.

In the papers [9, 33] and [10] the problem of automatic localization of cervical vertebrae

was considered. The presented approach is based on the generalized Hough transform, intro-

duced in the paper [34] in order to detect curves which cannot be described by using an ana-

lytic formula, as in (simple) Hough transform. As a result, an arbitrary object in the image can

only be recognized if it is encoded by its model which also represents the variability of the

shape of the recognized object. This approach is invariant to scale and rotation as well as noise.

An important research stream concerns the description of the shape in the context of

retrieval of medical images from database. The papers [7, 8] are examples of such studies. In

the presented approach the vertebrae contours are encoded by using polygon approximation.

In this method, the description of the shape of the analyzed contour is based on three mecha-

nisms. Simplifying the shape description by keeping only relevant features is the first one. It is

achieved by selecting the points which have the largest contribution to the shape. Representing

the contour in the tangent space by using, so-called, turn function is the second one. The simi-

larity of the contours, described by their turn functions, can be obtained by using similarity

measurement which is the third mechanism the method is based on. These investigations were

a significant contribution to shape-based retrieval techniques for biomedical images. There are

a few other methods concerning shape description in order to retrieve content-based data-

bases. Let us mention them very briefly. Some of them use shape properties such as elongation,

perimeter, convexity and orientation, whereas others are based on invariant moments, and

others are based on multi-scale shape representation—see [8, 35] and references given there.

Another approach to shape description, proposed in [21], is based on statistical methods. Crea-

tion of a database of qualitative anatomical features, derived from the images and based on

image characteristics, is the aim of the studies. The model shape is created as the mean value of

the sample shapes. A grey-scale profile is the second component the method is based on. In the

paper, the method is used to describe the shapes of vertebrae. The authors connect the problem

of automatic localization of vertebrae in the X-ray image with the problem of automatic

retrieval of medical databases. It should be stressed that the problems discussed above, i.e.

shape description in order to create and retrieve content-based databases of X-ray images and

automatic localization of anatomic structures in the X-ray images, though related to the topic

considered in this paper, are, however, different from it. In this paper, we focus on analyzing a

single vertebra contour in order to not only detect the pathological changes in bones such as

osteophytes and syndesmophytes but also to create a tool which allows us to assess the progress

of the disease. The authors intend to create a software tool that compares the pathological

changes in a given vertebra by using a series of X-ray images taken, let us say, every half year for

a given patient. This will allow the physician to assess the speed of the changes that take place in

the spine. Such an assessment is crucial to judge whether the applied therapy is effective. The

most related problem is considered in [1]. The method is based on the aforementioned polygon
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approximation approach. In the context of detection of the bone pathological changes, only

these fragments of vertebra contour where the pathologies can occur are described. The con-

tour has to be described in a maximally compressed way because the pathological changes

detection is based on the retrieval of databases in which bone contours with the considered

pathologies are stored. The method described in this paper—see Section Cervical vertebrae

contours analysis—is based on syntactic analysis of the contour. The analysis is combined with

fuzzy inference. Such an approach allows us to describe and analyze very precisely all types of

the pathologies which manifest in the vertebra contour.

The generalized shape language

The shape language, introduced by Jakubowski [36] as a syntactic tool for analysis of contours,

was used by us as a theoretical starting point. In the shape language, sixteen primitives are

defined—eight line segments and eight circle quadrants denoted as sij, i, j 2 {1, 2, 3, 4}, see

Fig 2.

The analyzed contour is divided into primitives. Then, the connected strings of primitives

are described in the terms of the shape language characterizations. For instance, the connected

fragments, that consist of the primitives belonging to the same quadrant of the Cartesian

plane, constitute the sinquad. The transitions between sinquads clearly define the characteris-

tic points for the analyzed contour. Two different neighbouring sinquads constitute a biquad.

The key encodes the transitions between successive sinquads, which means that the key

describes a sequence of biquads. Thus, the characteristics of the analyzed contour are described

by the key. This sequence is analyzed in order to classify types of the recognized contours

according to their geometric features. The described approach turned out to be effective in

applications to manufacturing [25, 37, 38]. The Jakubowski’s approach, however, turned out

not to be the proper tool for bone contour analysis. First of all, bone contours are irregular, in

particular, the arcs have variable curvature and, as a consequence, they cannot be segmented

into primitives sij. Therefore, in [13, 14] and [39], substantial generalization has been intro-

duced. Namely, the primitives are defined as the classes of abstraction in an equivalence rela-

tion. The relation is defined on the set of all smooth curves that have the same local geometric

properties at each point. Let us assume that the analyzed contour is sufficiently smooth, which

means that in each of its points, except at most the points in which the primitives join, the tan-

gent line exists and the convexity is determined. This means that at each point the first and the

second derivative of the contour that is considered, locally, as the graph of a function, can be

calculated apart from the cases in which the denominator zeroes. The properties at the point u
are described by a four-component vector c (u) = [ct(u), cc(u), cx(u), cy(u)]. The first two com-

ponents, ct and cc, encode the information about the first and the second derivative. They can

be equal to “+”, “-” and “0” if the value of the derivative is positive, negative or equal to zero,

respectively. If the denominator of the derivative zeroes at the point u, then the value of the

corresponding component of the vector c(u) is encoded as “V”. The components cx and cy

encode the information about the increment of X and Y coordinate along the curve, respec-

tively. In both cases, these components can be positive, negative or equal to zero and they are

encoded as “+”, “-” and “0”, respectively. Each maximal fragment of the contour, which has

the same aforementioned four characteristics calculated numerically at each point, is treated as

a primitive, let us say pij, i, j 2 {1, 2, 3, 4}. Thus, each pij can be treated as the equivalent class to

which all the segments of lines, which have the same aforementioned characteristics, belong.

The index i corresponds to geometrical features of the primitives, whereas the index j corre-

sponds to the number of a quadrant of the Cartesian plane. It turns out that there exist sixteen

equivalence classes (see [14]) and the bi-index of the primitives p is defined in such a way that
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for each i, j 2 {1, 2, 3, 4}, sij 2 pij. Furthermore, the way of contours analysis remains the same

as in the original Jakubowski’s method although the primitives are substantially generalized.

Let us put an example of encoding of a contour—see Fig 3. The primitives are separated by

dots, both black and red, and the sinquads are separated by red dots. Thus, the red dots repre-

sent switches. The contour is analyzed counterclockwise. The fragment AB is an example of

p33 primitive, whereas the fragment AD constitutes the biquad 34 with the switch in the point

B. The whole contour is represented by the key, which is a string of biquads with an additional

logical parameter equal to 1 if the biquad is convex and 0 if it is concave. Thus, starting from

the point A, the example contour shown in Fig 3 is encoded as the following key:

341.430.341.411.140.411.121.210.121.231.320.231. It is noticed that, for instance, the fragment

GH 2 p41 has a variant curvature and, as a consequence, it cannot be encoded by using Jaku-

bowski’s primitive s33.

It should be stressed, however, that even the generalized shape language turns out to be

insufficient for classification of the analyzed cases because of the existence of various types of

pathological changes. Therefore, the application of hierarchical classification and the applica-

tion of fuzzy sets algorithm are another improvements of the method. The tree structure of the

classification is proposed—see the next section—in the context of analysis of cervical vertebrae

contours. In some nodes of the tree the generalized shape language is used, whereas in the oth-

ers a fuzzy inference algorithm is used.

Cervical vertebrae contours analysis

The analyzed vertebra contours have been obtained from X-ray images by using SDA prepro-

cessing method [30] which is dedicated for preprocessing of X-ray medical images. As it has

been aforementioned, the approach proposed in this paper is the syntactic one and it differs

significantly from the methods used for description contours of vertebrae by other authors—

see the state of the art section. The formalism introduced in the previous section was applied

to the description and next to recognition of pathological changes of cervical vertebrae. The

data set was acquired from the University Hospital in Kraków, Poland. The study protocol was

designed according to the guidelines of the Declaration of Helsinki and the Good Clinical

Practice Declaration Statement. Special care was taken regarding personal data safety where all

images were anonymized before processing. Informed consent for the publication of anon-

ymized clinical images was obtained from the Scientific Committee of the Department of

Diagnostic Imaging. As the current study has a retrospective nature, therefore, a consent form

for participants was omitted. The data set contained 166 examples of vertebrae, 33 of them

were diagnosed as affected by syndesmophyte. In the experiment six vertebrae, denoted by K0,

K1, K2, K2, K3, K4, K5, visible on the X-ray images were analyzed—see Fig 4.

Since they differ regarding their anatomical structure, each of Ki was treated as a separate

set. In the first stage of analysis, the received contours of the vertebrae were described by

Fig 2. The shape language primitives.

https://doi.org/10.1371/journal.pone.0204546.g002
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primitives pij. This description allowed us to divide a given contour into the sinquads that rep-

resented the fragments which belonged to the same quadrant of the Cartesian plane. The tran-

sitions between sinquads clearly defined the characteristic points for the analyzed contour.

In the case of cervical vertebrae these points, called switches, were essential for its shape—see

Fig 5.

To obtain a contour description by using the proposed primitives, the vector values of the

components of the vector c were calculated. The calculations were carried out on the basis of

several neighboring points. In order for small lesions in the outline to be noticed, the number

of the points was established in an experimental way. Therefore, the length of the step of

numerical calculations of the first and the second derivative was equal to 5 pixels [39]. The

accepted step was also equal to the minimal length of primitives. Next, the description of con-

tours by primitives was transformed, according to [13], into the keys. It denoted for the ana-

lyzed contour a sequence of biquads which were consecutive transitions between the sinquads.

The received keys created equivalent classes that in some cases were sufficient for the process

of recognition. It means that they coincided with the expected classification of an initial con-

tour set. If the received equivalent classes do not distinguish the analyzed cases correctly, the

fuzzy analysis, based on additional features of biquads, is introduced. In the case of cervical

vertebrae, the received keys are presented in Table 1.

The description of vertebrae by strings of biquads allowed us to distinguish the healthy

ones—see Fig 6—and the ones with early changes—see Fig 7—from the strongly affected verte-

brae—see Fig 8.

By early changes, it is understood that a given contour is still described by a typical string of

biquads but it can be distinguished from healthy ones due to the features of biquads. Thus, the

equivalent class of vertebrae with serious pathological changes does not contain subclasses.

Nevertheless, the equivalent class of the healthy vertebrae and the one with early pathological

changes consists of two subclasses—see Table 1. Therefore, the fuzzy analysis has to be applied

only to this case. The diagram of the proposed method is presented in Fig 9.

Fig 3. The example of a contour representation. Primitives are separated by dots, both black and white. Sinquads are

separated by red dots.

https://doi.org/10.1371/journal.pone.0204546.g003
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Fig 4. The analyzed vertebrae. On the left the healthy cervical vertebrae, on the right the cervical vertebrae with a new

bone formation.

https://doi.org/10.1371/journal.pone.0204546.g004

Fig 5. The contours divided into the sinquads. Switches, marked in red, are the points between sinquads that were received as a result of

description by primitives pij. Below each contour, there is a key, which denotes a sequence of transitions between sinquads. After each

biquad, there are, additionally, values 0 or 1 which sequence inform about convexity of a given contour.

https://doi.org/10.1371/journal.pone.0204546.g005
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The values 0 and 1 that appear after each of the biquad inform about convexity of the given

contour. The lesions that should be found are indicated by the switch between biquads 34 or

41. Angles β and α between 3−sinquad and 4−sinquad as well as 4−sinquad and 1−sinquad are

the features that allow us to distinguish between healthy vertebrae and vertebrae with syndes-

mophyte. Both classes, healthy vertebrae and vertebrae with syndesmophyte, are treated as

fuzzy sets. The values of α and β are determined on the basis of the values of components pij,

calculated in the previous stage. In this paper the lesion placed in the lower part of a vertebra

was considered, thus the angle between 4−sinquad and 1−sinquad was taken into account. The

angle α was determined by the last minimal primitive in the 4−sinquad and the first minimal

primitive in the 1−sinquad. Three examples of vertebrae: a healthy one, with a small lesion and

with a distinct lesion are shown in Fig 10.

For each set Ki two membership functions were constructed. The functions determined

whether a considered vertebra is pathological or not. The trapezoidal functions as membership

functions were used with the parameters established in a statistical way—see Fig 11.

Table 1. The received keys and equivalent classes in the analyzed data.

Keys Equivalent classes

341.411 healthy vertebrae or with early pathological changes

341.430.341.411

341.430.341.430.341.421.210 vertebrae with serious pathological changes

341.430.311.140.411

341.430.341.430.341.411.121.210

https://doi.org/10.1371/journal.pone.0204546.t001

Fig 6. The contours of healthy vertebrae. The contours have been received by using SDA algorithm. In the first row, there are K0, K1 and K2 described

by string 341.411. In the second row, there are K3, K4 with the description 341.411 and K5 described by string 341.430.341.411.

https://doi.org/10.1371/journal.pone.0204546.g006
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Modifiers for the received membership functions were calculated in the way described in

[40]. According to it, the area under each graph of a membership function was divided as fol-

lows:

Smfalse ¼
ðb � aÞn

4
; for n 2 ½0; 1�;

Smtrue ¼
ðb � aÞðn � 1Þ

n
; for n 2 ½2;þ1Þ

and

St ¼
ðb � aÞn

4
; for n 2 ½1; 2�;

The value n corresponds to the modifier m. The interval [2, +1) characterizes the terms with

a linguistic truth value greater than or equal to true, whereas [0, 1] characterizes the terms with

a linguistic truth value less than or equal to false. The interval (1, 2) allows all the possible vari-

ants between true and false to be expressed. Thus, for the membership function m0
syn, which

identified vertebrae in the class K0 with syndesmophyte, the following areas were calculated:

Fig 7. The contours of the vertebrae with early pathological changes. The contours of the vertebrae K2, K3 and K4

from Fig 4 with pathological changes received by SDA algorithm. The first and third ones are described by string

341.430.341.411. The second one is described by string 341.411.

https://doi.org/10.1371/journal.pone.0204546.g007

Fig 8. The contours of the vertebrae with serious pathological changes. Each vertebra is described by untypical keys—see Table 1.

https://doi.org/10.1371/journal.pone.0204546.g008
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Fig 9. The diagram of the proposed hierarchical method of vertebrae contours analysis.

https://doi.org/10.1371/journal.pone.0204546.g009

Fig 10. The determining of the angle α. The examples of vertebrae with an angle α between 4−sinquad and 1−sinquad are marked.

Auxiliary straight lines help to indicate the angle. From the left: a healthy bone, a bone with a small lesion, a bone with the advanced lesion.

https://doi.org/10.1371/journal.pone.0204546.g010
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the one that defines the label false:

Smfalse ¼
ð115:6 � 0Þ � 1

4
¼ 28:9; for n ¼ 1;

and the one that defines the label true:

Smtrue ¼
ð115:6 � 0Þ � ð2 � 1Þ

2
¼ 57:8; for n ¼ 2:

From calculation, it results that a given vertebra belongs rather to the class of vertebrae with

syndesmophyte if the value of its membership function m0
synðaÞ � 0:58; whereas m0

synðaÞ � 0:29

means that it does not belong to this class. Additionally, a dilation operator supplies the follow-

ing rules:

if m0
syn � 0:76 then a vertebra clearly belongs to the class with syndesmophyte;

Fig 11. The graphs of the membership functions. The membership functions are defined for each specified class i.e. K0, K1,

K2; K3, K4, K5. The angle α is the angle between 4−sinquad and 1−sinquad.

https://doi.org/10.1371/journal.pone.0204546.g011
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if 0:76 ¼
ffiffiffiffiffiffiffiffiffi
0:58
p

> m0
syn � 0:58 then a vertebra almost belongs to the class with

syndesmophyte;

if 0:58 > m0
syn > 0:29 then the classification is unclear;

if 0:29 � m0
syn then a vertebra does not belong to the class with syndesmophyte.

In turn, for the membership function m0
nonsynðaÞ; which identified the healthy vertebrae, the

calculated areas under this function is:

Smfalse ¼
ð180 � 90Þ � 1

4
¼ 22:5; for n ¼ 1;

the ones that defines the label true:

Smtrue ¼
ð180 � 90Þ � ð2 � 1Þ

2
¼ 45; for n ¼ 2:

The received rules have the following form:

if m0
nonsyn � 0:67 then a vertebra clearly belongs to the class without pathological changes;

if 0:67 ¼
ffiffiffiffiffiffiffiffiffi
0:45
p

> m0
nonsyn � 0:45 then a vertebra almost belongs to the class without patholog-

ical changes;

if 0:45 > m0
nonsyn > 0:23 then the classification is unclear;

if 0:23 � m0
nonsyn then a vertebra does not belong to the class without pathological changes.

Analogically, the fuzzy rules for the other classes were created. The received results of classi-

fication of some vertebrae are presented in Table 2.

If the value of a membership function is equal to 1 or around 1, then a given vertebra fully

belongs to the specified class. If the value is around 0, then it does not belong to this class. In

all the cases, the received results coincide with the classification made by an expert but, addi-

tionally, the information about diversity in both considered classes was received. In the case of

the healthy class, this diversity was small and it resulted from anatomical differences. In the

case of the class with syndesmophytes, the diversity was larger and it resulted from the size of

pathological changes. In Fig 12 there are three examples of vertebrae from the set K1 with dif-

ferent values of membership functions m1
syn. The aim of this paper was to show that the pro-

posed method allows us to classify all vertebrae correctly. If we adopt the simplest rule, namely

that a given vertebra belongs to the class for which it has the greatest value of the membership

function, then we get 100% correctness. Of course, the different degree of belonging to the

class with syndesmophytes is very important in terms of the possibility of assessing the prog-

ress of a disease.

Concluding remarks

The method of hierarchical analysis of contours of vertebrae, presented in this paper, is based

on syntactic and fuzzy pattern analysis. It should be mentioned that the method is analogous

to the method that was applied by the authors to the analysis of contours of finger bones—see

[11, 12, 15] and, first of all, [13]. Though it is related to a few streams of studies which concern

the analysis of bone contours, including the contours of vertebrae, the approach, proposed in

this paper, is based on a different basis and it is a novel one. The method achieved 100% accu-

racy provided that the pattern was classified to this class which had a greater value of a
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Table 2. The results of the classification.

No. m0
s m0

ns m1
s m1

ns m2
s m2

ns m3
s m3

ns m4
s m4

ns m5
s m5

ns

1 0 1 0 1 0 1 0 1 0.13 0.87 x x

2 0 1 0 1 0 1 0 1 0 1 x x

3 0.14 0.86 0 1 0 1 0 1 0 1 x x

4 0 1 0 1 0 1 0 1 0 1 x x

5 0 1 0 1 0 1 0 1 0 1 0 1

6 0 1 0 1 0 1 0 1 0 1 0 1

7 0 1 0 1 0 1 0 1 0 1 x x

8 0 1 0 1 0 1 0 1 0.02 0.98 0.2 0.8

9 0.03 0.97 0 1 0 1 0 1 0 1 0 1

10 0.38 0.62 0 1 0 1 0 1 0 1 0.38 0.62

11 0 1 0 1 0 1 0 1 0 1 0 1

12 0 1 0 1 0.48 0.52 0 1 0 1 x x

13 0 1 0 1 0 1 0 1 0 1 0 1

14 0 1 0 1 0 1 1 0 1 0 0 1

15 0 1 0.86 0.14 1 0 1 0 1 0 x x

16 0 1 0 1 0 1 1 0 0.78 0.22 0.99 0.01

17 0 1 0 1 0 1 1 0 1 0 0 1

18 x x 0 1 0 1 0.62 0.38 0.9 0.1 0.34 0.66

19 0 1 0 1 0 1 1 0 0 1 0.99 0.01

20 0 1 0.35 0.65 0.84 0.16 1 0 0 1 x x

21 0.8 0.2 0 1 0 1 1 0 1 0 0 1

22 x x 1 0 1 0 1 0 1 0 x x

23 1 0 0 1 0 1 1 0 1 0 x x

24 0 1 1 0 0 1 0 1 0 1 0 1

The symbol x means that a vertebra is not visible at the X-ray image.

https://doi.org/10.1371/journal.pone.0204546.t002

Fig 12. Three examples of vertebrae from K1 and the values of the membership functions to the class with syndesmophytes. The values

are calculated for vertebrae from the set K1 which are presented in Fig 10.

https://doi.org/10.1371/journal.pone.0204546.g012
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membership function. This means that every pattern has been classified as a healthy bone or a

bone with pathological changes in the same way, by the algorithm and by an expert. As it has

been aforementioned, in the introduction, the proposed method is considered not only in the

context of detection of pathological changes in bones but also in the context of the possibility

of assessing the disease progress. The fact that the value of a membership function depends on

the size of a pathological change is a good starting point for creating a tool which allows us to

infer about the progress of the disease. This is planned to be the topic of our future work.

It should also be mentioned that the proposed method is not limited to medical application.

It can be potentially effective in each problem in which contour analysis according to its shape

properties is one of the key tasks. Scene analysis by cognitive vision module of autonomous

robots can be put as an example of such a problem [41–43]. In the mentioned papers the

industrial scene is represented by using only polygonal shapes. It should be stressed, however,

that such representation can be insufficient in, for instance, oriental cities, where a lot of

domes exists. In such cases both curvilinear and line segments are necessary to represent the

objects and, for this reason, the proposed approach can be applied in all its length. The contour

representation and analysis in the context of the scene analysis is also examined for solving

superimposition problems for aerial photographs in an onboard computer vision systems [44,

45]. In this problem contours of natural objects such as river banks and contours of roads are

analyzed in order to the work out correction methods for navigation parameters. The land-

scape representation and analysis in the context of the autonomous robot navigation is also

studied in the context of representing the contours of obstacles [46]. The proposed method is

potentially applicable to this task as well.
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