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a b s t r a c t 

Stereolithography (SLA) is a form of 3D printing that is based on the curing of resin under UV light. There are 

a wide variety of 3D resin printers on the market that all follow the same general procedure. First, a slicing 

program is used to slice the model in a sequence of thin layers. The model will be printed in this sequence of 

layers after it is exported in a format recognizable by a 3D printer. In addition to this main function, slicing 

programs offer additional features to manipulate the model, adjust print settings, and add model supports. 

Next, after the printer is set up, the sliced model is loaded onto the printer and fabricated. Once the print is 

complete, the model can be washed, cured and sanded/polished to the desired finish. In this work, we utilize 

SLA 3D printing to print geological macromodels, to be utilized in flooding experiments. Images captured from 

the flooding experiments were then incorporated in a set of visual learning exercises for undergraduate students 

to enhance the study of immiscible fluid flow in porous media. SLA printing was selected in this use case as it 

provides important advantages over other common 3D printing technologies (e.g. Fused Depositional Modelling: 

FDM), such as high print resolvability of sub-millimeter scale pore geometry and a high degree of transparency 

within the resultant printed models. Overall, this method was found to: 

• Provide an engaging learning experience for undergraduate students, as the captured flooding experiment 

image time series allowed students to directly visualize often obtuse fluid flow processes in porous media. 
• Be easily reproducible: after completing an initial print the method can be reproduced for many different pore 

networks, allowing for a wide array of comparative studies and learning exercises to be developed. 
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Specifications table 

Subject Area: Engineering 

More specific subject area: 3D Printing 

Method name: 3D printing of Geological Macromodels 

Name and reference of original 

method: 
• General Resin 3D Printing Instructions 
• Reference: Shenzhen AnyCubic Technology Co. [9] . AnyCubic 

PhotonMono X: User Manual. 
• The original resin 3D printing method found in the referenced 

user manual was adapted to analyze and study geological 

macromodels. 

Resource availability: Slicing Software Download Links: Chitubox , Prusa _ Slicer 

AnyCubic _ PhotonMono _ X 

AnyCubic _ Wash _ and _ Cure _ Machine 

Method details 

The SLA 3D printing workflow can be divided into two stages: (1) preparing the 3D model using a

slicing software, and (2) printing and post processing the 3D model. Whilst there are a wide variety of

commercial SLA 3D printers available on the market, the underlying principles to how these systems

operate are equivalent. SLA printers use UV light to cure/harden resin layer-by-layer to create a 3D

structure [4] . Therefore, the procedures outlined in this paper can be utilized irrespective of the

printer used. The SLA 3D printer utilized throughout this paper is the AnyCubic PhotonMonoX ( Fig. 1 ).

Preparing the 3D print on a slicing software 

Before a macromodel can be fabricated, a mesh-based representation of the porous media must be

prepared using a slicing software and exported to a printable format. There is a wide variety of slicing

software tools available. Typically, SLA printer manufacturers will include their own slicing software 

with their system. Additionally, there are several third-party slicer tools available, including Chitubox, 

Prusa Slicer and Photon Validator. The main function of slicing software is to discretize the model

into a sequence of vertically stacked thin layers that can be parsed by the 3D printer. In addition

to this main function, slicing software tools offer additional features to manipulate the scale and
Fig. 1. (a) The AnyCubic Photo Mono X used to 3D print the macromodels and (b) the AnyCubic Wash and Cure machine used 

to clean and cure the macromodels during post processing (Shenzhen AnyCubic Technology Co). 

https://www.Chitubox
https://www.Prusa_Slicer
https://www.AnyCubic_PhotonMono_X
https://www.AnyCubic_Wash_and_Cure_Machine
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Fig. 2. The Photon Workshop interface labelled with some of the software’s main features. 
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rientation of the model, adjust print settings, and add model supports required to stabilize the piece

uring fabrication. It is important to note that the slicing program has no intrinsic capacity for model

esign. Computer-aided design (CAD) software tools, such as AutoCAD are often used to design the

odels, which can be exported using the stereolithography (.stl) mesh exchange format. In addition,

ome authors have developed application-specific toolchains that facilitate the design of 3D printable

roxy pore structures (e.g. [7] ). It should be noted that mesh based representations of porous media

enerated by such methods are also amenable to computational fluid dynamic simulations (e.g. [5] ).

he 3D printer used in this paper is the AnyCubic PhotonMonoX and is provided with a proprietary

licing software (Photon Workshop) / ( Fig. 2 ). In the following section we will provide an overview of

he key functionality of Photon Workshop’s graphical user interface (GUI) in relation to macromodel

re-processing for 3D print setup. The reader should note that equivalent functionality is available

ithin most commercial slicer software tools. 

, Model size and orientation: The pushbuttons highlighted in the blue rectangle provide the ability

o adjust the model’s orientation, size, and location on the build plate. With reference to Fig. 2 , Photon

orkshop’s spatial manipulations tools are detailed as follows: 

(1) The top pushbutton opens a pop up that allows the user to translate the model along the

coordinate frame’s x,y and z axes by a specified number of millimeters on the build plate. This

feature is useful when printing multiple models at once and ensuring each model has adequate

space on the build plate. The pop up also allows the user to center the model. Additionally,

the user can move the model by holding left click on the visualization and dragging the model.

However, the pop-up tool allows for more precise positioning. 

(2) The center pushbutton allows the model to be rotated along the x, y and z axes of the

coordinate frame. This feature is important for ensuring 3D SLA prints print correctly. In fact,

in most cases it is recommended that the model is printed at a 30-degree angle from the build

plate. This oblique configuration ensures any uncured resin can be drained properly out of the

model and minimizes the number of overhangs (portions of the model that hang off the build

without structural support) or islands (portions of a model that are not in contact with other

model components or the build plate) that can often lead to failed prints [4] . Generally, the
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most effective solution to mitigating the deleterious impact of overhangs and islands to print

quality is to add supports to the build. However, such supports can reduce the final finish of the

fabricated model: a key consideration for transparent builds. Adjusting the orientation of the 

print can minimize the number of overhangs/islands and consequently the number of supports 

required. 

(3) The final highlighted button allows the user to scale the model in the x,y and z directions.

Again, this an important feature that will easily allow users to resize the model quickly and

easily. The popup window the button activates allows the user to scale in all three axes

simultaneously by the same factor or scale along each axis individually. 

B, Toolbar features: Along the toolbar are two highlighted features. From left to right these are: 

(1) Hole punching: The second feature allows a hole to be punched through the model. This

feature is mainly used to create drain holes for hollow models. Generally, two drain holes at

the bottom of the model are required. These allow for uncured resin to flow out the model

during the print and also provide an ability for isopropyl alcohol to flow into the model during

post-processing. 

(2) Text paste: The final feature to note is the ability to overlay text onto any surface of the

model. This feature is useful when models need to be easily distinguished from one another. For

instance, the feature can be used to label printed models when trialing different print settings

or similar pore network geometries. 

C, Slice settings: To the right of the graphical user interface are two sections that can be toggled.

The first provides the user with slice/print settings that can be adjusted. Generally, the default values

for these settings are fairly optimized and result in successful prints. However, these settings can be

adjusted in order to obtain more optimal results. These settings include: 

(1) Layer thickness: This setting adjusts the thickness of each of the slice layers. A smaller layer

thickness will increase print times but capture a higher level of detail, whilst a larger layer

thickness will reduce print times and reduce the level of detail. 0.05 mm is considered as the

standard value for layer thickness whilst 0.01 mm is defined as ultra-fine [6] . 

(2) Exposure times: The time (seconds) that the printer will expose each layer to UV light during

printing. Exposure times can affect the quality of the print as different resins/printers require

different curing times. Optimal exposure times for particular resins/printers can usually be 

found in the manuals that accompany a printer/resin. Generally, a 6 s exposure time is sufficient

for most resins. A bottom exposure time can be set for the first few layers at the base of

the model. The number of layers considered as ‘bottom layers’ is also user defined. It is

recommended that bottom exposure time be roughly 8–12 times longer than regular exposure 

time. A longer exposure time is required for the lowermost layers to ensure the base of the

print adheres to the build plate (Resin 3D Printer: Settings Guide). 

(3) Z lift speed and distance: The Z lift speed refers to the speed at which the build plate is lifted

from the resin VAT/tank. Increasing the value of this setting will reduce print times but also

adds strain to the model’s connection to the build plate. If the Z lift speed value is too high,

the build may become detached from the build plate. Generally, a Z lift speed of 1–2 mm/s is

recommended. Z lift distance is the distance the build plate raises up from the UV screen film

after each layer is cured. Generally, this setting should be kept as default and does not require

adjustment (Resin 3D Printer: Settings Guide). 

C, Print supports: Adding an adequate number of supports at appropriate locations is essential

towards the creation of successful prints. This is particularly true when the model has long overhangs

or islands. Supports provide structural support to such regions of the model and enhance the build’s

contact area with the build plate. Supports can vary in size and shape depending on the model’s

requirements and the nature of the overhangs. Thicker supports can be used for excessive overhangs

while smaller supports can be used in minor overhangs. The disadvantage of using thicker supports

is they require greater effort to remove and take up a larger footprint on the model which can lead

to spurious features upon the model surface if not properly removed. It is thus recommended to
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inimize or omit supports on the macromodel’s cover slip (e,g. Fig. 2 ). Supports can be added or

emoved manually or automatically, whereby the slicer software places supports in model regions

here the need for additional support is detected. It is critical that supports are not present within

he macromodel’s pore structure, as this would have a deleterious impact upon the targeted flow

xperiments. The accuracy to which automatic supports are placed varies based upon the slicing

oftware, however it is generally recommended to add automatic support and then add or remove

anual supports in any remaining problem areas for best results [3] . 

rinting and processing procedure 

Once the sliced model has been exported to a removable drive, it can be imported into the SLA

rinter, typically via a USB port. Generally, the following generic steps must be completed to execute

he print process: 

rior to printing: 

(1) Level the build plate: Before the print can commence it is important to ensure the build plate

is level with the screen. A tutorial on how to level the SLA printer’s base plate can be found

here . 

(2) Secure vat/resin reservoir and fill resin: Once the build plate has been leveled, the vat or resin

reservoir must be secured to the printer and filled with resin. Filling the reservoir with resin

up to the designated fill line is important to ensure the reservoir does not overflow when the

build plate is submerged within it during printing. Once a print is complete, any leftover resin

can be used to complete a consecutive print without detaching the reservoir, assuming that

there is sufficient resin remaining. The resin bottle should be gently shaken before pouring into

the reservoir. If shaken too vigorously, excessive bubbles will form within the resin, which may

negatively impact print quality. Before initiating a print, the resin can be allowed to sit within

the reservoir for several minutes to allow for any remaining bubbles to dissipate. 

Next, the touch screen input can be used to select the model to be printed from the connected

ash drive. Once the print initiates, the printer will display the time towards completion. Once the

rint has completed, the build should be left attached to the build plate for several minutes to allow

xcess resin to drain from the model into the resin tank. 

ost-print procedure: 

(1) Removing the Model from Build Plate: Depending on the exposure time settings, the model’s

adherence to the build plate can vary. In cases where the model has not adhered strongly to the

build plate, the build can be detached using a spatula, which is usually supplied with SLA 3D

printers. It is important to note that in some cases a steel spatula is included with the printer.

The use of steel implements to remove the model should be avoided as it can easily scratch

the build plate. Instead, utilize a plastic spatula to remove the model. If the model is difficult

to remove, carefully pour hot water along the build plate, targeting points of contact with the

model. The hot water should loosen the model and make it easier to detach. 

(2) Post Processing: Once the model is removed, clean the build plate and general work area

with a paper towel and isopropyl alcohol (IPA). Whilst IPA is the cleaning agent used in this

work, other options exist, such as dipropylene glycol monomethyl ether (DPM) and tripropylene

glycol monomethyl ether (TPM), which are advantageous if a lower flammability medium is

required. Next, carefully remove the support segment off the model. Supports will generally

break off by hand, especially when removed within the first few hours after the print has

completed. However, in some cases a pair of wire cutters may be required to remove supports.

The next step is to wash the model by submerging it in a container filled with IPA. In this

work, submersion in IPA was sufficient to adequately clean the residual resin from the internal

pore structure of the 3D macromodel presented herein. However, in cases where printed pore

structures are highly tortuous or tight, additional processing may be required. In such cases,

submersion within a sonic bath containing a cleaning agent and/or flushing the pore system

with cleaning agent using a syringe may be employed to remove residually trapped resin.
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Finally, leave the model in direct sunlight for roughly 30 mins to allow UV rays to cure and

harden the build. Alternatively, a dedicated wash and cure station can be used to complete

this operation (e.g. Fig. 2 ). To ensure transparency, the model will typically require sanding

and polishing. Sequentially finer grit sandpapers (i.e. 400 to 1500 grit) are used to provide an

increasingly refined finish to the macro model. A polishing disk on a rotary multitool or bench

top grinder coupled with a polishing compound can be used to achieve the final finish. Surface

finishing is typically reserved for the coverslip portion of the macromodel, where achieving a 

high degree of transparency in critical. 

Method validation 

The resin 3D printing method described herein was used to create macromodels based on 

geologically realistic pore network images, with models serving as the basis for immiscible flooding 

experiments. These experiments were recorded using a mirrorless digital camera, with images 

captured at different stages of the flooding procedure. Visual learning projects centered around these 

images were created to aid undergraduate students in their understanding of various geological 

concepts through tactile and engaging learning experiences [1] . The study of porous media and

petrophysical concepts can be a difficult subject matter to visualize, as the key processes are occluded

within the rock volume. However, with the aid of the geological macromodels, fluid transport

processes within porous media can be observed directly providing a tangible demonstration of 

otherwise abstract behavior. For instance, Tong et al. [10] utilized 3D printing to create spherical

porous media models and study groundwater flow. Similarly, Anjikar et al. [2] utilized the fused

filament 3D printing method to create porous media models with internal pore networks that mimic

the reactive properties of sandstone. 

Having reduced in cost significantly over the past decade, SLA printing is preferable for 

macromodels creation as it provides key advantages over other popular 3D printing technologies (e.g. 

fused depositional modeling: FDM). The most significant advantage within the context of macromodel 

generation is the high degree of transparency that can be achieved with SLA prints, whereby internal

refractions induced by micropores within FDM prints result in translucent models in cases where

transparent filaments are used. The porous nature of the solid phase within FDM prints also limits

the utility of this technology for experimental fluid imaging, as in contrast to SLA printed media, FDM

builds are liable to leak fluids. 

A further advantage lies in the ability for SLA printing to achieve a high level of accuracy and

resolution in comparison to FDM printing [ 8 , 10 ]. This is a critical feature as macromodels that seek to

mimic geological pore networks contain intricate pore structures that require refined print quality for 

adequate replication. It is worth noting that accuracy can be refined through the print settings at the

expense of printing time. 

Fig. 3 summarizes the workflow presented herein to create a geological macromodel utilized in a

visual learning project application, with a 3D view of the modelled pore structure displayed in Fig. 4 .

This view displays the inlet and outlet chambers of the model that were used to inject fluid through

the pore network during flooding experiments. The drain holes which can be seen at the ends of both

the inlet and outlet chambers allowed for resin to drain out of the pore network and chambers during

printing. These drain holes were later sealed with a hot glue gun producing a watertight model.

The example macromodel presented herein is one of eight macromodels printed in the project, with

each model being based upon a different pore network image [1] . The ability to rapidly replicate the

printing procedure for different pore network geometries provides the capacity to study the effect 

that different pore network properties have upon immiscible fluid transport. 

To further enhance the view of the pore network, the surface of the model overlaying the network

was sanded in stages with sandpaper of increasing grit size (40 0, 60 0, 80 0 and 1500) and then

polished using polishing compound and a polishing disk attached to a rotary tool. Each of the

macromodel prints utilized the same print settings which are summarized in Table 1 . 

Once sanded and polished, the inlet of the macromodel was connected to a syringe pump via

standard microfluidics 1/16 PEEK flow lines to allow fluid to be pumped through the pore network.

The outlet of the model was also connected to a flow line leading to a drainage container to store fluid
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Fig. 3. The workflow utilized to create the geological macromodel, we start with (a) binary pore network image, then (b) print 

the model, and (c) perform the flooding experiment. 

Fig. 4. 3D view of Macromodel A visualized in the 3D printing Slicer software to highlight details of the 3D pore network. 

Table 1 

The print settings utilized for each of the 8 resin 3D printed macromodels. 

Layer Thickness (mm) 0.05 

Normal Exposure Time (s) 2 

Bottom Exposure Time (s) 40 

Bottom Layers 6 

Z Lift Speed (mm/s) 2 

Z List Distance (mm) 8 
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xiting the macromodel as the experiment is run. It should be noted that the inlets and outlets for

his use case are not printed with threaded holes. Inlet/outlet ports are threaded using a tap wrench

nd 10–32 tap to facilitate connection of the flow lines using one-piece finger tight PEEK fittings. The

odel is then placed on a light pad directly below a digital camera, mounted in nadir view on a copy

tand. The described experimental setup is shown in Fig. 5 . 

As discussed, the images captured from the flooding experiments were used in a set of learning

xercises that allowed students to analyze the images and calculate various geological properties

ncluding porosity, fluid saturation, grain size distribution, wettability, and displacement efficiency

1] . These exercises guided students through the analysis of the images using an open-source image

rocessing software (Fiji). The ease at which the 3D resin printing procedure can be reproduced

roved to be vital in creating this visual learning project, as it allowed for the effective creation of

acromodels with varying pore network properties. 
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Fig. 5. Experimental setup utilized to conduct flooding experiments on the 3D resin printed macromodels. 
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