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Abstract
An effective forecasting model for short-term load plays a significant role in promoting the

management efficiency of an electric power system. This paper proposes a new forecasting

model based on the improved neural networks with random weights (INNRW). The key is to

introduce a weighting technique to the inputs of the model and use a novel neural network

to forecast the daily maximum load. Eight factors are selected as the inputs. A mutual infor-

mation weighting algorithm is then used to allocate different weights to the inputs. The neu-

ral networks with random weights and kernels (KNNRW) is applied to approximate the

nonlinear function between the selected inputs and the daily maximum load due to the fast

learning speed and good generalization performance. In the application of the daily load in

Dalian, the result of the proposed INNRW is compared with several previously developed

forecasting models. The simulation experiment shows that the proposed model performs

the best overall in short-term load forecasting.

Introduction
As with water supply, gas supply, communications, and transportation systems, electric power
system is a necessary component of the urban lifeline engineering as well. Accurate load fore-
casting is increasingly important since it is critical for the planning, operations and investments
of power systems [1]. Improving the accuracy of load forecasting contributes to the promotion
of the power supply efficiency and the reduction of operating costs [2].

Load forecasting can be classified into long-term, mid-term, short-term and very short-
term forecasting, based on the forecasting horizon. During the past decades, researchers have
developed many different kinds of methods to improve the load forecasting accuracy [1], espe-
cially in the field of short-term load forecasting [3–5]. Most of these methods have been
restricted in practical applications due to the randomness and nonlinearity of the short-term
load. In contrast, some intelligent forecasting calgorithms, such as artificial neural network
(ANN) [6,7] and support vector machine (SVM), have been widely used [2]. Park et al. first
used ANN to forecast short-term load [8]. Lee et al. analyzed the influence of different struc-
tures of the ANN on forecasting results [5]. Hippert et al gave a review of ANNmethods for
short-term load forecasting, and pointed out the overfitting problems existing in ANN meth-
ods [4]. Taylor et al. took the weather into account while modeling with ANNmethods [9]. In
addition, SVM performs well in the field of short-term load forecasting as well. Moreover, as
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SVM is based on the structural risk minimization framework, it can overcome overfitting prob-
lems effectively [10]. However, the effectiveness of SVM depends on the selection of kernel, the
kernel's parameters, and the regularization parameter. Typically, each combination of parame-
ters is checked using the cross validation, and the best combination of parameters is often
selected by the grid search method with the exponentially growing computational complexity.
Simulated annealing algorithm [11], genetic algorithm [12] and particle swarm optimization
were used by some researchers to select the proper parameters of SVM.

Recently, researchers from all over the world have been improving the ANN according to
different forecasting tasks and have obtained some satisfying results [13]. Nevertheless, the gra-
dient-based learning algorithms are widely used to train traditional ANNs, which may result in
some drawbacks such as the slow convergence speed, the local minimum, and the overfitting
phenomenon. In order to solve the aforementioned problems, we focus our study in this paper
on an improved machine learning algorithms based on neural networks with random weights
(NNRW) models [14]. There are three layers in NNRW: input layer, hidden layer, and output
layer. In the NNRW, the weights connecting the input layer to the hidden layer, as well as the
bias values of the hidden layer, are randomly generated before the learning process. Only the
weights connecting the hidden layer to the output layer are trained by the fast linear regression.
Because of the rapid learning speed and the good generalization performance, NNRW has
been successfully used in fields of computational intelligence and machine learning communi-
ties, such as electricity price forecasting [15], power loss analysis [16], lying and truth-telling
classification [17], and attention-deficit/hyperactivity disorder (ADHD) classification [18].
The structure of NNRW, i.e. the number of the hidden nodes, is one of the important factors
that affect the performance of NNRW. It is empirically determined by the users. Recently, neu-
ral networks with random weights and kernels (KNNRW) [19–22] has been proposed by
replacing the hidden nodes mapping with the kernel mapping. It does not need to determine
the number of hidden nodes of KNNRW.

Based on the analysis above, this paper proposes a short-term load forecasting method
based on KNNRW, which can combine the fast learning speed of NNRW and the good gener-
alization performance of SVM. Eight relevant factors (e.g., the historical load data, the temper-
ature data, and the holiday data) are first selected as the inputs of the forecasting model. It is
known that the inputs are treated equally in KNNRW. However, different inputs may have dif-
ferent influences on the forecasting values. As a result, a mutual information weighting algo-
rithm is then applied to allocate different weights to the inputs according to the corresponding
influences. Finally, the resulting improved neural networks with random weights is used to
approximate the nonlinear function between the selected inputs and the daily maximum load.

Neural Networks with RandomWeights and Kernels

2.1 Basic Neural Networks with RandomWeights
NNRW has been proposed by Schmidt et al. [14]. However, there are still existing some similar
ideas coming out from other researchers, such as Pao et al. [23] and Huang et al. [24]. Pao et al.
described such randomized learner models as the random vector functional-link (RVFL) net
[23]. Huang et al. defined such machine learning models as extreme learning machine (ELM)
[24]. Researchers have done some further researches on RVFL and ELM, and achieved some
theoretical results [22,25,26]. In fact, a feed forward NNRW has a simple three-layer structure:
input layer, output layer, and a hidden layer consisting of a large number of nonlinear process-
ing nodes. Mathematically, NNRW [14] can be expressed as follows:

ok ¼ wTg ðWin � xk þ b Þ; k ¼ 1; 2; . . . ;N ð1Þ
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whereWin 2 RL×m is the input weight matrix, b 2 RL is the bias value vector of the hidden
layer, w 2 R L is the output weight vector, g(�) is the activation function (g(�) could be almost
any nonlinear piecewise continuous activation function or any linear combination of these
functions), N is the number of the samples, L is the number of the hidden layer nodes, xk 2 Rm

is the input vector which has m-dimension features, and ok 2 R is the output value.
The output of the proposed forecasting model is the maximum load of the next day. Conse-

quently, we use the single output form of NNRW in this paper.
For N arbitrary distinct samples {xi 2 Rn, ti 2 R}, NNRW with L hidden nodes can approxi-

mate these N samples with zero error. It means that
XN

k¼1
kok � tkk ¼ 0, i.e., there exists w in

NNRW such that

wTgðWin � xk þ bÞ ¼ tk; k ¼ 1; 2; . . . ;N ð2Þ

The matrix-vector formulation of (2) can be written as

Hw ¼ t ð3Þ

whereH ¼
gðWin � x1 þ b1Þ � � � gðWin � x1 þ bnÞ

..

. . .
. ..

.

gðWin � xN þ b1Þ � � � gðWin � xN þ bnÞ

2
6664

3
7775

N�L

is the hidden layer output matrix

of NNRW, and t = [t1, t2,. . .,tN]
T is the desired output vector.

In the NNRWmodel,Win and b are generated randomly beforehand, and remain fixed in
the training process. w is the only parameter that needs to be tuned through the training. It can
be calculated analytically as follows:

w ¼ HyT ð4Þ
whereH† is the Moore-Penrose generalized inverse of matrixH.

The training of the NNRWmodel can be summarized as follows:

a. Randomly generate the input weightWin and the hidden layer bias b;

b. Calculate the hidden layer output matrixH;

c. Calculate the output weight w by (4).

As can be seen from the above, the training process of NNRW is a simple linear regression
process, which can overcome the limitations of traditional ANNs effectively. Despite the suc-
cess of NNRW, there is still room for improvement, such as the determination of the structure
(i.e., the number of the hidden layer nodes), and the ill-conditioned solution in the training
process [22].

2.2 Neural Networks with RandomWeights and Kernels
In order to overcome the aforementioned shortcomings of NNRW, neural networks with
weights and kernels (KNNRW) has been proposed by introducing the kernel function mapping
of SVM as the hidden node mapping of NNRW [19,21].

The optimization problem of NNRW can be written as:

min LPNNRW
¼ 1

2
kwk2 þ C

2

XN
i¼1

kxik2

s:t: hðxiÞ � w ¼ ti � xi; i ¼ 1; . . . ;N

ð5Þ
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where ξi is the training error related to the ith training sample xi, C is the regularization coeffi-
cient, and h(xi) denotes the ith row ofH. The corresponding dual optimization problem of (5)
can be formulated as:

LDNNRW
¼ 1

2
kwk2 þ C

2

XN
i¼1

kxik2 �
XN
i¼1

aið hðxiÞ � w� ti þ xiÞ ð6Þ

where αi is the Langrage multiplier with respect to the ith training sample xi. The correspond-
ing Karush-Kuhn-Tucker (KKT) conditions are as follows:

@LDNNRW

@w
¼ 0 ! w ¼

XN
i¼1

aihðxÞT ! w ¼ HTα ð7Þ

@LDNNRW

@xi

¼ 0 ! ai ¼ Cxi; i ¼ 1; . . . ;N ð8Þ

@LDNNRW

@ai
¼ 0 ! hðxiÞ � w� ti þ xi ¼ 0; i ¼ 1; . . . ;N ð9Þ

Substituting (7) and (8) into (9), the following equation can be obtained

I

C
þHHT

� �
α ¼ T ð10Þ

where I is an identity matrix.
Considering (7) and (10), the weight w can be calculated as:

w ¼ HT I

C
þHHT

� ��1

T ð11Þ

Thus, the output function of NNRW can be written as:

f ðxÞ ¼ hðxÞHT I

C
þHHT

� ��1

T ð12Þ

It can be seen from (12) that the specific form of h(x) is not important as long as the dot
product ofHHT (or h(x)HT) is known. As a result, if the hidden node mapping h(x) is
unknown, we can define the kernel matrix of KNNRW as follows:

ONNRW ¼ HHT :

ONNRWi;j ¼ hðxiÞ � hðxjÞ ¼ Kðxi; xjÞ
ð13Þ

Consequently, the output function can be rewritten accordingly as:

f ðxÞ ¼
Kðx; x1Þ

..

.

Kðx; xNÞ

2
6664

3
7775

T

I

C
þ ONNRW

� ��1

T ð14Þ

In the kernel implementation of NNRW, h(x) can be unknown, while the corresponding
kernel function K (u, v) usually should be given (e.g., K (u, v) = exp(−γku−vk2), where γ is the
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kernel width.). Hence, the number of the hidden layer nodes does not need to be determined
any more. Moreover, the KNNRW has the following universal approximation capability:

Theorem [21]: Universal Approximation Capability: According to NNRW, a widespread
type of the hidden node mapping h(x) can be used in NNRW so that NNRW can approximate
any continuous target function. In other words, given any target continuous function g(x),
there is a weight vector w such that

lim
L!þ1

f ðxÞ � gðxÞ�� �� ¼ lim
L!þ1

XL

i¼1

wihðxÞ � gðxÞ
�����

����� ¼ 0 ð15Þ

With this universal approximation capability, KNNRW can use a wide range of feature
mappings, such as Sigmoid, radial basis function (RBF), trigonometric, and polynomial map-
pings. The optimization objective functions of KNNRW are similar to those of traditional
SVM/least squares support vector machine (LS-SVM). However, KNNRW does not have any
constraints on the Lagrangian multipliers. As a result, KNNRW can obtain a better solution
than SVM/LS-SVM. In addition, as KNNRW does not need the bias values while SVM does
need, it is superior to the traditional SVM/LS-SVM algorithms in the performance of the scal-
ability and learning rate [21].

Short-Term Load Forecasting Model Based on KNNRW

3.1 Inputs of KNNRW
In this section, the proposed INNRW was used to forecast the short-term load of Dalian city of
China. The output of the model was the daily maximum load. With the analysis in literature
[4], the load data had weekly and monthly characteristics. It can be seen from Figs 1 and 2 that
values of the load remain stable on weekdays while dropping apparently at weekends; values of
the same month show approximately the same tendency; values of every week indicate a regu-
lar variation tendency (Take Dalian as an example). Therefore, we took both weekly and
monthly characteristics as the inputs. Additionally, it was verified that the temperature was an
essential factor influencing the maximum load [9], and the temperature showed an obvious
correlation with the maximum load. Therefore, we selected the temperature as another input.

Meanwhile, the holiday data also affected the maximum load, for the descent of the indus-
tries power consumptions during the holidays can lead to the decrease of the total power con-
sumptions. For example, as is known, there were 6 Chinese legal holiday vacations in 2012, and
they were from 1st January to 3rd January, from 22nd January to 28th January, from 2nd April
to 4th April, from 29th April to 1st May, from 22nd June to 24th June, and from 30th Septem-
ber to 7th October, respectively. In addition, it can be clearly seen from Fig 3 that the load data
have an obvious holiday characteristic, that is, values of the load descend sharply during the
holidays. Consequently, the binary encoded holiday data served as an input in this paper. As
the maximum load was closely related to the historical maximum load, which can be verified
by analyzing the load data as time series, we selected the maximum load of the day before, and
that of the day last week as inputs of KNNRW.

Finally, the inputs selected for the INNRW were month of the year, day of the month, day
of the week, week number, holiday indicator, daily average temperature, maximum electricity
load of the day before, and maximum electricity load of the day last week.

3.2 Mutual Information Weighting Algorithm
In order to further improve the forecasting accuracy, the contributions of the inputs to the out-
put of KNNRWwere calculated and the weight values were allocated to the inputs accordingly.
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The mutual information (MI) is a measurement of the variables’mutual dependence [27–30].
Accordingly, the high mutual information indicates the high dependence, and the low mutual
information indicates the low dependence.

For two given discrete variables X and Y, suppose the joint probability distribution was
PXY(x, y), and the mutual information between X and Y, denoted I(X;Y), can be formatted as

IðX;YÞ ¼
X
x;y

PXYðx; yÞlog
PXYðx; yÞ

PXðxÞPYðYÞ
ð16Þ

where PX(x) and PY(y) were the marginal probability distribution

PXðxÞ ¼
X
y

PXYðx; yÞ

PYðyÞ ¼
X
x

PXYðx; yÞ
ð17Þ

In the case of continuous variables, (16) was replaced by

IðX;YÞ ¼
Z
Y

Z
X

PXYðx; yÞlog
PXYðx; yÞ

PXðxÞPYðYÞ
dxdy ð18Þ

where PXY(x, y) was the joint probability density function of X and Y, and PX(x) and PY(y) were
the marginal probability density functions of X and Y, respectively.

Fig 1. The week characteristic of daily maximum load. The blue line represents the maximum load from November 5th of 2012 to December 2nd of 2012.
The red line represents the maximum load from November 4th of 2013 to December 1st of 2013.

doi:10.1371/journal.pone.0143175.g001
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For discrete feature variables, both the joint and marginal probability can be estimated by
tallying the samples of the categorical variables in the data. For continuous feature varibles, the
following Parzen windows method was used to approxiamte I(X;Y).

Given N samples of a vector variable x, the approximate density funciton P̂XðxÞ had the fol-
lowing form:

P̂XðxÞ ¼
1

N

XN
i¼1

dðx� xðiÞ; hÞ ð19Þ

where x(i) was the ith sample, h was the window width, and δ(�) was the Parzen window func-
tion:

dðz; hÞ ¼ exp � zTS�1z

2h2

� �,
ð2pÞd=2hdjSj1=2

n o
ð20Þ

where z = x − x(i), d was the dimension of the sample x and S was the covariance of z. When
d = 1, (19) returned the estimated marginal density; when d = 2, we can use (19) to estimate the
density of the bivariate (x, y), PXY (x, y), which was the joint density of x and y in fact.

Fig 2. Themonth characteristic of daily maximum load. The blue line represents the maximum load fromMarch 1st of 2012 to July 31st of 2012. The red
line represents the maximum load fromMarch 1st of 2013 to July 31st of 2013.

doi:10.1371/journal.pone.0143175.g002
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Hence, in this paper, we used the mutual information to determine the contribution of the
inputs to the output of the INNRW. First, the mutual informationMIi, i = 1,. . .,m of the inputs
to the output were calculated. Then the weights can be allocated to the corresponding inputs
according to the following equation

mi ¼
MIiX

i
MIi

ð21Þ

where μi was the weight allocated to the ith input. Then, the input of KNNRW can be expressed

as xj ¼ m1x1j m2x2j � � � mmxmj �T
�

. And the resulting forecasting model was denoted as the

improved neural networks with random weights.

Simulation
In order to verify the effectiveness, the proposed model was applied to forecast the actual maxi-
mum load. The electricity load data from January 1, 2012 to November 30, 2013 from the
Dalian Electricity Corporation in China, the temperature, the holiday indicator and some
other data were used to train the forecasting model. Daily maximum load data of 31 days in
December of 2013 were used to test the performance of the forecasting model. The forecasting
results were described using Mean Absolute Percentage Error (MAPE), Maximum Error (ME)

Fig 3. The holiday characteristic of daily maximum load. The blue line represents the maximum load of 2012.

doi:10.1371/journal.pone.0143175.g003
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and Forecasting Error (FE) as follows:

MAPE ¼ 100 �

Xn

i¼1

LRi
� LPi

LRi

�����
�����

n
ð22Þ

ME ¼ maxð LRi
� LPi

�� ��Þ; i ¼ 1; . . . ; n ð23Þ

FE ¼ LPi
� LRi

LRi

� 100%; i ¼ 1; . . . ; n ð24Þ

where LRi
stood for the actual values of the daily maximum load, LPi

stood for the forecasting

values of the daily maximum load, and n stood for the number of days.

4.1 Simulation Experiment
Firstly, data sets were normalized. The inputs were normalized to [–1, 1] and the outputs were
normalized to [0, 1]. According to (18), the weights were calculated and allocated to the corre-
sponding inputs.

Secondly, the INNRWmodel was initialized, in which the Gaussian kernel function was
used in the hidden layer, and the regularization coefficient and kernel width were determined
by the grid search.

Table 1. Mutual information and weight results.

Input
Feasures

Month of
the Year

Day of
the Month

Day of
the Week

Week
Number

Holiday
Indica-tor

Daily Average
Temper-ature

Maximum Electricity
Load of the Day

Before

Maximum Electricity
Load of the Day Last

Week

MI 0.0286 0.0060 0.0402 0.0075 0.1291 0.0652 0.2854 0.0932

Weight 0.0437 0.0092 0.0614 0.0114 0.1970 0.0995 0.4356 0.1422

doi:10.1371/journal.pone.0143175.t001

Fig 4. Kernel width and regularization coefficient cross validation. (A) Kernel width and regularization coefficient of MAPE. (B) Kernel width and
regularization coefficient of ME.

doi:10.1371/journal.pone.0143175.g004
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Thirdly, the INNRWmodel was trained by the training samples.
Fourthly, the testing samples based on the trained INNRW were forecasted, and the fore-

casting results of the daily maximum load of 31 days in December of 2013 were obtained.
Eventually, the residual errors between predicted values and actual values were calculated.

4.2 Experiment Results
Based on Eq (18), the mutual information and the resulting weights of the inputs are summa-
rized in Table 1.

Based on the analysis above, the Gaussian kernel function K(u, v) = exp(−γku−vk2), where γ
was the kernel width, was chosen to be the kernel function in the INNRWmodel. Fig 4(A)
illustrates the relations among MAPE, the kernel width and the regularization coefficient,
while Fig 4(B) illustrates the relations among ME, the kernel width and the regularization coef-
ficient. It can be seen from Fig 4 that both the kernel width and the regularization parameter

Table 2. Forecasting results.

Day of
December

Actual Load
(MW)

BP SVR

Forecasting
Load(MW)

Forecasting ME
(MW)

Forecasting
Error (%)

Forecasting
Load(MW)

Forecasting ME
(MW)

Forecasting
Error (%)

1 3312.8 3077.9 234.9 -7.09 3270.1 42.7 -1.29

2 3520.2 3548.9 28.7 0.82 3452.8 67.4 -1.92

3 3615.5 3577.9 37.6 -1.04 3481.0 134.5 -3.72

4 3541.8 3588.7 46.9 1.32 3545.8 4.0 0.11

5 3600.4 3535.5 64.9 -1.80 3585.7 14.7 -0.41

6 3533.1 3522.2 10.9 -0.31 3546.9 13.8 0.39

7 3444.5 3380.3 64.2 -1.86 3431.8 12.7 -0.37

8 3304.3 3217.6 86.7 -2.62 3254.5 49.8 -1.51

9 3610.8 3577.7 33.1 -0.92 3625.9 15.1 0.42

10 3683.2 3656.4 26.8 -0.73 3673.8 9.4 -0.26

11 3744.3 3708.0 36.3 -0.97 3774.3 30.0 0.80

12 3725.7 3717.4 8.3 -0.22 3809.0 83.3 2.24

13 3779.4 3697.5 81.9 -2.17 3760.1 19.3 -0.51

14 3633.8 3646.8 13 0.36 3582.4 51.4 -1.41

15 3554.6 3429.5 125.1 -3.52 3362.3 192.3 -5.41

16 3799.0 3666.2 132.8 -3.50 3792.5 6.5 -0.17

17 3768.9 3730.7 38.2 -1.01 3842.7 73.8 1.96

18 3757.3 3779.3 22 0.59 3969.8 212.5 5.65

19 3828.4 3785.7 42.7 -1.12 3954.8 126.4 3.30

20 3839.8 3794.2 45.6 -1.19 3862.5 22.7 0.59

21 3638.9 3751.2 112.3 3.09 3652.4 13.5 0.37

22 3570.3 3497.4 72.9 -2.04 3389.4 180.9 -5.07

23 3833.7 3656.5 177.2 -4.62 3699.5 134.2 -3.50

24 3884.6 3738.0 146.6 -3.77 3797.5 87.1 -2.24

25 3840.4 3726.4 114 -2.97 3820.6 19.8 -0.52

26 3867.6 3795.7 71.9 -1.86 3906.7 39.1 1.01

27 3904.8 3803.1 101.7 -2.60 3795.9 108.9 -2.79

28 3705.9 3777.1 71.2 1.92 3600.3 105.6 -2.85

29 3495.5 3495.6 0.1 0.00 3285.6 209.9 -6.00

30 3561.9 3605.0 43.1 1.21 3340.6 221.3 -6.21

31 3333.9 3575.2 241.3 7.24 3311.8 22.1 -0.66

doi:10.1371/journal.pone.0143175.t002

A Novel Neural Network for Load Forecasting

PLOS ONE | DOI:10.1371/journal.pone.0143175 December 2, 2015 10 / 14



are key parameters influencing the forecasting performance of the INNRW. The grid search
method was used to optimize the two parameters. The optimal kernel width was 3.7276e+03,
and the optimal regularization parameter was 1.3895.

In order to further illustrate the effectiveness of the proposed method, a comparison was
conducted between the INNRWmethod and several state-of-the-art load forecasting methods,
such as back propagation (BP) neural network, RBF neural network, support vector regression
(SVR), NNRW, online sequential extreme learning machine (OS-ELM) and KNNRW. The
forecasting results were shown in Table 2, Table 3 and Table 4.

Table 3. Forecasting results.

Day of
December

Actual Load
(MW)

OS-ELM INNRW

Forecasting
Load(MW)

Forecasting ME
(MW)

Forecasting
Error (%)

Forecasting
Load(MW)

Forecasting ME
(MW)

Forecasting
Error (%)

1 3312.8 3277.2 35.6 -1.07 3146.0 166.8 -5.04

2 3520.2 3540.6 20.4 0.58 3504.5 15.7 -0.45

3 3615.5 3558.4 57.1 -1.58 3544.0 71.5 -1.98

4 3541.8 3612.5 70.7 2.00 3594.7 52.9 1.49

5 3600.4 3640.3 39.9 1.11 3528.8 71.6 -1.99

6 3533.1 3602.3 69.2 1.96 3516.9 16.2 -0.46

7 3444.5 3485.9 41.4 1.20 3394.0 50.5 -1.47

8 3304.3 3282.7 21.6 -0.65 3233.0 71.3 -2.16

9 3610.8 3609.1 1.7 -0.05 3509.9 100.9 -2.79

10 3683.2 3706.2 23.0 0.62 3649.8 33.4 -0.91

11 3744.3 3788.9 44.6 1.19 3705.6 38.7 -1.03

12 3725.7 3842.3 116.6 3.13 3719.0 6.7 -0.18

13 3779.4 3805.5 26.1 0.69 3677.1 102.3 -2.71

14 3633.8 3655.3 21.5 0.59 3628.1 5.7 -0.16

15 3554.6 3416.2 138.4 -3.89 3447.2 107.4 -3.02

16 3799.0 3844.4 45.4 1.20 3654.1 144.9 -3.82

17 3768.9 3868.0 99.1 2.63 3785.3 16.4 0.44

18 3757.3 3960.2 202.9 5.40 3794.9 37.6 1.00

19 3828.4 3942.2 113.8 2.97 3762.8 65.6 -1.71

20 3839.8 3880.3 40.5 1.06 3757.8 82.0 -2.13

21 3638.9 3682.7 43.8 1.20 3699.0 60.1 1.65

22 3570.3 3419.0 151.3 -4.24 3469.3 101.0 -2.83

23 3833.7 3702.7 131.0 -3.42 3636.5 197.2 -5.14

24 3884.6 3777.0 107.6 -2.77 3809.4 75.2 -1.94

25 3840.4 3757.0 83.4 -2.17 3802.8 37.6 -0.98

26 3867.6 3919.7 52.1 1.35 3790.1 77.5 -2.00

27 3904.8 3841.0 63.8 -1.63 3767.9 136.9 -3.51

28 3705.9 3675.9 30.0 -0.81 3722.6 16.7 0.45

29 3495.5 3335.4 160.1 -4.58 3452.2 43.3 -1.24

30 3561.9 3450.6 111.3 -3.12 3528.7 33.2 -0.93

31 3333.9 3377.1 43.2 1.30 3518.4 184.5 5.54

The forecasting results of BP neural network, SVR, OS-ELM and the proposed INNRW were summarized in Table 2 and Table 3. It can be observed from

Table 2 and Table 3 that the ME of BP neural network is 241.3 and the maximum FE is 7.24%; the ME of SVR is 221.5 and the maximum FE is -6.21%;

the ME of OS-ELM is 202.9 and the maximum FE is 5.40%; while the ME of the proposed INNRW is 184.5 and the maximum FE is 5.54%. The mean

absolute forecasting error of the INNRW is 1.97%. There are 9 days’ forecasting errors of the INNRW are less than 1.00%, and 19 days’ are less than

2.00%. Moreover, the training time of the INNRW is much smaller than BP and SVR.

doi:10.1371/journal.pone.0143175.t003
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As can be seen from Table 4, KNNRW and the proposed INNRW can obtain much better
forecasting results in both MAPE and ME indexes than the other methods. Moreover, the

Table 4. Compared forecasting results.

Methods MAPE ME

BP 2.6787 241.2887

RBF 1.8728 316.8827

SVR 2.0537 221.2840

NNRW 1.7404 210.5358

OS-ELM 1.9408 202.8823

KNNRW 1.7195 209.2874

INNRW 1.6944 184.5290

doi:10.1371/journal.pone.0143175.t004

Fig 5. Forecasting results of daily maximum load of December in 2013. The blue solid line represents the forecasting maximum load of December in
2013. The red dotted line represents the actual maximum load of December in 2013. The green line represents the forecasting error between the forecasting
values and the actual values.

doi:10.1371/journal.pone.0143175.g005
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INNRW outperforms KNNRW in both indexes, which demonstrates the effectiveness of the
weighting algorithm. The forecasting results of December in 2013 based on the INNRW were
described in Fig 5. It is clear that the predicted values can be approximately fitting the tendency
of the actual values. Consequently, the effectiveness of the proposed method was well verified.

Conclusions
A forecasting model based on the INNRW was proposed for the short-term load forecasting.
Through the data pre-processing, eight features, i.e. month of the year, day of the month, day
of the week, week number, holiday indicator, daily average temperature, maximum electricity
load of the day before, and maximum electricity load of the day last week, were selected as the
inputs of the INNRW. Then, in order to further improve the forecasting accuracy, different
weights were allocated to the inputs according to their mutual information with the forecasting
load values. A novel neural network, KNNRW, which combined the universal approximation
ability and the fast learning speed of NNRW and the good generalization performance of SVM,
was used to model the nonlinear function between the selected inputs and the maximum load.
Simulation experiment results based on the actual load data from Dalian, China, showed that
the proposed method can obtain smaller predicted errors than the traditional forecasting meth-
ods in both MAPE and ME.

The kernel types and kernel parameters were crucial to the forecasting performance of the
INNRW, and they were selected by the time-consuming grid search in this paper. The multiple
kernel learning will be a potential solution. It is able to combine the kernel funtions which have
different types or different parameters. As a result, the investigation of the multiple kernel
learning in the INNRW will be a subject of the further research.
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