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In this article we discuss the requirements to use data mining of published proteomics datasets
to assist proteomics-based biomarker discovery, the use of external data integration to solve the
issue of inadequate small sample sizes and finally, we try to estimate the probability that new
biomarkers will be identified through data mining alone.
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Targeted personalized treatment options have become a ma-
jor hope of clinical (e.g. cancer) research within the past years
[1]. Success stories such as herceptin [2] in breast cancer and
BRAFV600E inhibitors [3] in melanoma have kindled the quest
to identify novel biomarkers for diagnosis, patient stratifica-
tion, and personalized treatment options. Nevertheless, it is
well known that biomarkers must be identified and used with
care. This is best exemplified by the controversy around the
usage of the prostate-specific antigen (PSA) to detect prostate
cancer [4]. In fact, after several years, it was found that patient
survival did not improve after PSA-based prostatectomy [5].

The clinical validity of any biomarker is based on its sensi-
tivity (the ability to identify “sick” people) and specificity (the
ability to differentiate between “healthy” and “sick” people),
next to the disease’s or phenotype’s prevalence. PSA, for ex-
ample, may lead to up to 80% false-positive test results, which
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caused unnecessary treatments [6]. Estimating a biomarker’s
specificity is considerably more complex than to assess its
sensitivity but equally important for its clinical success. Cor-
rectly assessing the specificity is directly dependent on the
used control samples [7]. To correctly estimate the specificity,
it is not sufficient to only use “healthy” control samples but
also samples from closely related diseases [7]. Analyzing such
a large enough number of heterogeneous control samples is
at present outside the scope of most studies.

Genomics is frequently perceived as the “older brother”
of proteomics [8]. Only recently, Yuan et al. published a
study identifying novel somatic mutations in clinical relevant
genes [9], without analyzing a single new sample. Instead, for
their study they reanalyzed multiple studies from The Cancer
Genome Atlas (http://cancergenome.nih.gov) focusing on 12
different tumor types. Through the considerably increased
number of analyzed samples, the authors were able to de-
tect less frequent mutations that could not be detected in the
smaller, original studies. A second, commercial example is
GENEVESTIGATOR R© by Nebion (http://www.nebion.com):
It is based on a large database of reprocessed and manually
curated public genomics datasets. Through this reanalysis,
Nebion claims that it is possible to directly compare the gene
expression profiles of the individual samples. Based on these,
researchers can identify published samples with similar gene
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profiles as their own, as well as do an in silico analysis of
genes of interest.

These two projects inherently raise the question if, and
if possible when, such approaches using directly published
data at the sample level will be feasible for proteomics ex-
periments. Potentially, may it even be possible to conduct
proteomics studies that only use existing data as in sil-
ico control samples? In the discussion of their manuscript,
Yuan et al. highlight two important issues they encountered
that equally apply to proteomics data in the public domain:
(i) the lack of sufficient metadata to allow a more focused
reanalysis of available data; and (ii) the more general prob-
lem that many studies focus on p-values rather than on the
study’s magnitude. This first problem, the lack of metadata,
has been highlighted many times before as an issue for pro-
teomics data as well [7]. Especially in clinical research, it is
imperative that the analyzed samples are well characterized.
It is not sufficient to know, for example, that a patient had a
certain tumor. It is equally important to know, for example,
the tumor stage, the tumor’s known molecular characteris-
tics, as well as any possible pretreatments. The second prob-
lem addressed by the authors, the focus on p-values rather
than on sample size, has led to an increasing number of
studies that report the identification of novel biomarkers,
which are then disproved in subsequent expensive clinical
studies [7]. In practice, authors often argue about a potential
biomarker’s clinical use based on its highly significant p-value
disregarding an inadequate number of analyzed samples. Ad-
ditionally, we often see studies that analyzed only a handful
of samples while measuring hundreds of analytes. This in-
evitably leads to the danger of an overfitting of biomarker
associations [10].

In this article, we discuss the current availability of pro-
teomics data in the public domain, the requirements to use
data mining of these published proteomics datasets to assist
proteomics-based biomarker discovery, the use of external
data integration to solve the issue of inadequate small sample
sizes, and finally, we try to estimate the probability that new
biomarkers will be identified through data mining alone.

Historically, public data deposition in proteomics has
been much less common than in other biological fields.
In fact, public availability of proteomics data has only re-
cently taken a big step forward with the foundation of the
ProteomeXchange (PX) consortium [11]. There, the most
prominent proteomics repositories including the PRIDE

database [12] and PeptideAtlas [13] joined forces to stan-
dardize the submission and dissemination of MS-based pro-
teomics data. Submissions to PX are publicly announced to
all interested parties and contain raw data as well as pro-
cessed results (primarily identification data, in some cases
also quantification). In the current implementation of the
data workflow, PRIDE is the initial point of submission for
MS/MS experiments, while PeptideAtlas provides a repos-
itory for SRM datasets called PASSEL (PeptideAtlas SRM
Experiment Library) [14]. Another repository named Mas-
sIVE (http://proteomics.ucsd.edu/service/massive/) has very
recently joined PX as well (Fig. 1). The collaboration of these
major proteomics resources has resulted in a rapid increase
of publicly available proteomics datasets. Other proteomics
repositories will not be discussed here in such high detail
(reviewed in, e.g., [15–17]).

At the time of writing (September 6, 2014), PX stores
147 public clinical datasets (111 in PRIDE, 35 in Pep-
tideAtlas/PASSEL, and 1 in MassIVE, see Supporting In-
formation Table 1). This list was compiled based on
the information available (e.g. title of the dataset, ab-
stract) in the PX central portal (called ProteomeCentral,
http://proteomecentral.proteomexchange.org/, Fig. 1). It is
important to highlight that the metadata available in Pro-
teomeCentral are, in most cases, only a subset of the metadata
stored in the original repository (the minimum common de-
nominator). However, these additional metadata are not avail-
able through ProteomeCentral, although the record in the
original repository (PRIDE, PeptideAtlas/PASSEL, or Mas-
sIVE) is linked from there. Nevertheless, when writing this
manuscript, we tried to simulate the process an average user
(nonexpert in proteomics resources) would take at present to
compile the list of datasets based on this information. The
list presented here was manually curated and further classi-
fied in clinical subcategories (Fig. 2). As a result, the three
most prominent dataset types found in human samples were
datasets focused on the characterization of cancer, various
tissue types (other than cancer), and on the study of other dis-
eases (Fig. 2). The way this list had to be generated highlights
the consequence of missing structured metadata. To compile
the list, it was necessary to read through the description text
of all human PX submissions as only the analyzed sample’s
species was always available in ProteomeCentral.

To overcome the problem of insufficient metadata, the
PSI (Proteomics Standards Initiative) developed the Mini-
mum Information About a Proteomics Experiment (MIAPE)
guidelines [18]. These guidelines define the necessary mini-
mum metadata to allow the retracing of all analytical steps.
Additionally, the PSI has developed several vendor-neutral
standard data formats [19–22] to overcome the representa-
tion heterogeneity of proteomics data. These standard file
formats all support the reporting of MIAPE compliant meta-
data and can additionally hold structured metadata about the
analyzed sample. In practice, almost no dataset stored in pub-
lic repositories is annotated to the level specified by the MI-
APE guidelines. But even if this were the case, this would
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Figure 1. Current structure of the Pro-
teomeXchange data workflow. Submis-
sions have to contain the experiment’s
raw data, metadata, and the researcher’s
processed results (e.g. the identification
data). ProteomeCentral is the portal for
all ProteomeXchange datasets, indepen-
dently from the receiving repository.

not ensure by any means that metadata about the analyzed
samples are complete. This is due to the fact that, generally,
the MIAPE guidelines do not require extensive annotation
about the actual samples.

Of the detected clinical PX datasets, 71 (48%) included the
processed results in a standardized data format (the so-called
PX “complete” submissions) [11]. To access more detailed
metadata of the “complete” submissions, the authors had to
access the linked dataset in PRIDE, visit the PRIDE web,
download the file using the PRIDE Inspector tool [23], or
directly inspect a generated summary file in mzTab format,
available in the PRIDE FTP server. mzTab was recently devel-
oped by the PSI to explicitly facilitate proteomics data reuse
by a wider audience including clinicians [22]. It is a simpler
tab-delimited file format representing the final results of a
proteomics experiment. Since mzTab files are tab-delimited
text files, they can be viewed and to a certain extent edited

using standard software such as Microsoft Excel R©. Looking
at the large growth rate of PX, such an analysis will soon
become prohibitively time consuming and even impossible
for users that do not have certain computer skills to auto-
mate metadata retrieval. The other type of PX submissions,
so-called “partial” submissions (containing the processed re-
sults in a nonstandard format), include at present only basic
metadata in a structured form, such as the sample’s species,
the used mass spectrometer, and software. In any case, the
most critical pieces of information for any biological or clin-
ical data reuse, the experimental protocol and information
about the analyzed samples, were generally missing, incom-
plete, or available in a nonstructured free-text format.

Even though a significant number (around 50% of the pub-
lic clinical datasets at the time of writing) of submissions are
using standard data formats (PX “complete” submissions),
we are still at great risk to continue to lack vital metadata.

Figure 2. Frequency of clinical
dataset types found in Proteome-
Xchange per receiving repository (by
September 6, 2014).
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A major reason for this is that the software generating pro-
teomics results is mostly not aware of the metadata associated
with the analyzed sample. Thereby, even if a standard file for-
mat is supported, the initially generated files do not contain
any metadata about the sample. In many cases, especially
in clinical research, this information is not available to the
laboratory or core facility performing the proteomics exper-
iment as the study is conducted by a clinician. This can be
seen in the fact that the available annotated files in PX often
contain detailed, manually annotated information about the
mass spectrometer and its settings but generally very little
information about the analyzed sample. Therefore, we des-
perately need methods that enable data submitters to easily
annotate their processed result files. As an important step
to alleviate this problem, work on such a tool for mzTab is
planned by the PRIDE team and will hopefully help to in-
crease the amount of metadata available in submitted files.

Nevertheless, in our experience there is always a balance
between the required amount of metadata and the willing-
ness of researchers to submit their data. This balance was
taken into account when creating the initial PX data work-
flow. The focus was put on making it as practical and easy
as possible for researchers to make their data publicly avail-
able and accessible. In our opinion, this was needed since the
primary objective was to change the “culture” of data shar-
ing in the field and public data deposition was still scarce. In
this context, annotating processed result files is additional
work for the submitter—work that, in most cases, is not
perceived to be of direct benefit to them. Therefore, the types
of metadata enforced through repository requirements must
be defined with great care. As mentioned before, the current
MIAPE guidelines primarily focus on the reproducibility of
the MS experiments. This aspect is important for the retrac-
ing and reviewing of experiments but neglects the aspect of
data reuse. With the continuous maturation of proteomics
protocols, the increasing use of PX, and the increase of sub-
mitted data, we must justify the growing resources required
to keep these data available. Therefore, we must shift our
focus from data review to data reuse.

In addition to MS/MS data, PX also fully supports the
submission of targeted SRM experiments through PeptideAt-
las/PASSEL as the initial point of submission. Targeted ex-
periments can be used to identify and quantify the prede-
fined proteins of interest. Therefore, the possibilities to reuse
the data differ distinctly from untargeted MS/MS experi-
ments. The core benefit of such data is the availability of
transitions necessary to plan new SRM experiments. Multi-
ple resources, for example SRMAtlas (http://srmatlas.org/),
already use public data to provide transition lists for a large
number of proteins from multiple organisms. The direct com-
parison of SRM data is only sensible if a comparable set of
proteins was analyzed. Therefore, in our opinion, the reuse
of this valuable data faces fewer challenges as compared to
untargeted MS/MS data but inherently cannot lead to new
identifications in the published datasets. Additionally, differ-
ences in the used data analysis do not impede the reuse of

gathered results. Therefore, we believe that the reuse of tar-
geted proteomics data is, as seen through SRMAtlas, already
successfully happening on a daily basis. Thus, we focus this
viewpoint on untargeted approaches as these have greater,
unsolved challenges for data reuse, which can potentially lead
to new identifications in already analyzed datasets.

In this context, data mining of proteomics results can be
performed at two levels: as a complete reanalysis of the mass
spectrometer’s raw files, or as the integration of known iden-
tification details (peptides and/or proteins). Several resources
exist that generate combined datasets based on the reanalysis
of proteomics experiments with the most prominent being
PeptideAtlas [13] and GPMDB (Global Proteome Machine
Database) [24]. Both provide access to multiple datasets that
were reprocessed with their own respective pipeline. Addi-
tionally, both resources employ dedicated algorithms to di-
rectly control the protein false discovery rate. This is essential
as the combination of datasets from heterogeneous origins
otherwise can lead to a vast increase of incorrectly identified
proteins [25–27]. However, the same problem mentioned be-
fore applies since only a part of the metadata from the ana-
lyzed datasets is available in an organized, machine-readable
structure. Therefore, there is no simple method to quickly
assess whether the potential biomarkers found in a given
study were already identified in other conditions. More im-
portantly, it is not possible to quickly identify samples that
could be incorporated as, for example, controls in one’s own
study.

In addition, a recent example of a complete reanalysis of
multiple proteomics datasets is the “draft of the human pro-
teome” by Wilhelm et al. [28]. The authors enriched their
own experiments with publicly available datasets stored in
proteomics resources such as PX (corresponding to around
40% of their data). For these datasets, the authors reana-
lyzed the raw files. The results (about 1.1 billion peptide spec-
trum matches) were made available in a new database called
“ProteomicsDB.” ProteomicsDB is run on a computational
resource with 2 terabytes (TB) of random access memory
(RAM) and 160 central processing units (CPUs). The com-
putational effort required to analyze the actual experiments
is not mentioned. These numbers clearly highlight the com-
putational resources required to perform such meta-analysis,
which are prohibitive for most research groups. Wilhelm et
al. followed a less-stringent approach for calculating the pro-
tein FDR when combining their datasets. The danger is to
obtain larger numbers of likely false-positive protein identi-
fications, as it has been shown for the olfactory receptors in
ProteomicsDB [27]. This highlights the issues related to the
heterogeneity in data reprocessing pipelines.

An alternative method to integrate datasets is to directly
rely on the originally reported identifications. In theory,
through the PSI’s standardized data formats, this task should
be easy. Unfortunately, as mentioned before, only a subset of
the datasets available in PX reports identification data in one
of these formats. An additional obstacle is the fact that pro-
tein sequence databases are constantly updated and thereby
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changing. This leads to protein accessions, the primary iden-
tifier of proteins, being changed, merged, demerged, or
even deleted. We previously performed a study on this phe-
nomenon analyzing the experiments in PRIDE [29]. In this
study, we showed that some experiments available in PRIDE
already contained a large portion of deleted identifiers at the
time of their publication. If this effect is not taken into con-
sideration, differences may appear that are only caused by
changing protein accessions. Additionally, analysis pipelines
generally use different protein inference algorithms as well
as different models for protein homologues and isoforms
[30] and potentially different false discovery rate thresholds
[31]—details that are often not reported. These differences
in the data analysis will artificially introduce a high number
of false-positive differences between the compared samples.
Therefore, a direct comparison of final proteomics results
from different sources is possible but must be performed
with extreme care.

This problem is even more pronounced in quantitative
proteomics experiments. Labeled approaches only produce
reliable quantification between the analyzed samples. It is not
possible to directly compare reported intensities between dif-
ferent MS runs. In addition, label-free quantification is highly
dependent on the experimental protocol. The direct compar-
ison of quantitative values based on label-free approaches
is in theory only possible if detailed information about the
experimental procedures is available and similar across the
compared experiments. In practice, even slight differences
in chromatography and machine settings will prevent a reli-
able comparison of label-free quantitative values without the
use of a common reference. Therefore, the direct comparison
of quantitative experiments on a large, unsupervised scale is
currently not possible.

However, although challenging, we strongly believe that
data reuse can accelerate clinical research considerably. The
first author’s previous research group was performing clini-
cal proteomics studies at the Medical University of Vienna,
which is linked to the General Hospital of Vienna, one of Eu-
rope’s largest hospitals. The research group consisted of bio-
chemists, analytical chemists, bioinformaticians, and clini-
cians working on rather diverse clinical questions. As a central
point for the data analysis, we developed the Griss Proteomics
Database Engine (GPDE) [32] as a database that merged sin-
gle experiments based on the same disease and allowed the
comparison of newly performed experiments with any num-
ber of previous ones. Thereby, we were able to use any or even
all of our previously performed (unrelated) studies as controls
for new studies. Recently, the GPDE led to the (unexpected)
discovery that certain proteins indicating cisplatin resistance
in melanoma cell lines were also found in certain multiple
myeloma associated fibroblasts [33]. In the initial analysis
of melanoma cell lines, we identified 47 proteins that could
indicate cisplatin resistance. To assess a biomarker panel’s
specificity, the GPDE has a function that quickly analyzes in
which samples a panel of biomarkers was already detected.
In this case, the tool showed that a subset of the 47 pro-

teins from the panel was found in a total of six cell lines. We
then performed subsequent experiments testing these cells
sensibility to cisplatin. Surprisingly, we could show that the
proportion of expressed proteins of the panel directly corre-
lated with the cells’ cisplatin resistance. This finding not only
provides strong evidence for the biomarker panel’s predictive
power and specificity, but also highlights an unexpected sim-
ilarity between melanoma cell lines and multiple myeloma
associated fibroblasts. This example demonstrates the possi-
bility to increase our biological understanding by integrating
heterogeneous datasets and thereby reduce the number of
necessary experiments.

The GPDE was built around the PRIDE XML format, at
that time the only vendor-neutral format that could store MS
data as well as identification data. It thereby inherently pro-
vides the possibility to seamlessly incorporate any data avail-
able in the PRIDE repository in an analysis. Nevertheless,
this feature was never used. Most often, the lack of supplied
metadata prohibited the selection of matching datasets. More
importantly, objective, standardized measures of identifica-
tion reliabilities were missing, prohibiting an automated im-
port of data from PRIDE without the risk of considerably
increasing the number of false-positive identifications.

However, since then PRIDE has already taken several
steps to explicitly support the reuse of submitted data. In this
context, one of the most important resources is “PRIDE Clus-
ter” [34]. PRIDE Cluster uses a spectral clustering algorithm
to create an independent assessment of reliable peptide and
protein identifications. It clusters all identified spectra sub-
mitted to PRIDE to then identify reliable identifications. We
could conclusively show that if at least 70% of the spectra
within a (large enough) cluster were identified as the same
peptide, that these can be considered reliable identifications
[34]. Thereby, the original submitted dataset is not repro-
cessed but left unaltered. Since PRIDE Cluster is using the
comparison of spectra between independent experiments as
a quality control method, the data quality and number of val-
idated identifications rise with increasing data size. Thereby,
additional experiments help to validate identifications made
in previous ones. We are currently developing an updated
version of the algorithm to manage the large increase in data
through PX and be able to continuously integrate submit-
ted experiments. Additionally, we are developing a new web
interface to provide easier access to this information. This
will enable researchers to quickly identify in which datasets a
certain protein was identified—and through PRIDE Cluster
whether this identification could already be validated. This
resource may be a first step to enable researchers to integrate
heterogeneous datasets into their analyses at the identifica-
tion level.

PRIDE Cluster may gain even more importance in con-
junction with the data-independent acquisition approach
SWATH-MS [35]. SWATH experiments can acquire the sig-
nals corresponding to theoretically all the peptides in a sam-
ple included in a range from around 400 to 1200 m/z units.
Because several peptides are fragmented simultaneously,
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reliable identifications of peptides are only possible if their
spectra were recorded before and are available in a spectral
library. PRIDE Cluster automatically merges all reliable iden-
tifications from PRIDE and creates spectral libraries that have
a comparable quality to the NIST’s (National Institute of Stan-
dards and Technology) ones [34]. Therefore, over time, these
growing spectral libraries could potentially lead to additional
identifications in SWATH experiments and thereby result in
novel discoveries.

At this point, a study similar to the one by Yuan et al.
[9] based on proteomics data seems not possible. The high
heterogeneity in proteomics workflows makes the integration
of proteomics results highly susceptible to artifacts produced
by the different analysis workflows. The reanalysis of raw
data from multiple sources is computationally challenging
and can only be done by dedicated resources. The existing
ones, such as PeptideAtlas, GPMDB, and ProteomicsDB, are
not focused on the needs of clinicians and cannot be used
to assist clinicians or clinical researchers to incorporate their
results into their own analysis. For this task, dedicated re-
sources are needed for specific diseases that can integrate the
data from existing repositories to generate highly specific
datasets. The standard, machine-readable announcements
of new PX datasets provide an ideal ground for the devel-
opment of such resources. The Human Proteome Project
has recently announced the launch of the “Biology/Disease-
driven Human Proteome Project” (B/D-HPP) [36]. We think
this is an important step in the right direction and might
provide such clinical specialized resources. However, suf-
ficient metadata are the core prerequisite to a meaningful
sample selection for a meta-analysis as well as the creation
of targeted resources. The currently possible way to select
datasets of specific samples for performing meta-analysis is
through reading the associated published papers. This is pos-
sible for small, selected scenarios but not for any large-scale
data mining approach. As a first step, we have now introduced
a new tag (“Biomedical dataset”) for clinically relevant PRIDE
experiments. This new tag can be searched in PRIDE (http://
www.ebi.ac.uk/pride/archive/simpleSearch?q = biomedi-
cal&submit = Search) and in ProteomeCentral. In addi-
tion, new PRIDE REST web services are being developed
(available in beta at the moment of writing, http://www.ebi.
ac.uk/pride/ws/archive/), enabling simple computational ac-
cess to all data in PRIDE. Additionally, the EBI and the NCBI
have created BioSamples focused databases [37], which can
link datasets from the same sample analyzed using multiple
techniques (i.e. proteomics data in PRIDE and genomics data
in ArrayExpress). Thereby, particularly interesting datasets
from a data reuse point of view are easier to access.

It is clear to us that we must focus our primary efforts
on improving sample annotation in a meaningful way. Too
high prerequisites will prevent researchers to submit their
data, too little metadata will prevent a meaningful (re)use of
the submitted data. We therefore need to find a balance that
suffices both. In our opinion, this should be one of the main
future focuses of PX. Such a refinement phase is a natural

development, once the initial system has been set up and the
initial requirements have been covered. A first vital step is
the development of software tools that allow authors to easily
annotate their processed result files—work that is now being
planned at PRIDE for mzTab. Additionally, reviewers must
be provided with methods to verify that the required annota-
tion is present and correct. At last, journals in collaboration
with repositories are essential to enforce a minimal amount
of metadata in the deposited datasets. Otherwise, invaluable
experimental data may be lost to elicit future findings.
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