
RESEARCH Open Access

Body mass index-associated molecular
characteristics involved in tumor immune
and metabolic pathways
Chao Hu1†, Xiong Chen2†, Chengyun Yao1,3†, Yu Liu4, Haojun Xu1, Guoren Zhou3*, Hongping Xia1,2,3,4* and
Jinglin Xia2*

Abstract

Background: Overweight or obesity has been evidenced as an important risk factor involved in the incidence,
mortality, and therapy response of multiple malignancies. However, the differences between healthy and obesity
tumor patients at the molecular and multi-omics levels remain unclear.

Methods: Our study performed a comprehensive and multidimensional analysis in fourteen tumor types of The
Cancer Genome Atlas (TCGA) and found body mass index (BMI)-related genes in multiple tumor types. Furthermore,
we compared composite expression between normal, overweight, and obese patients of each immune cell
subpopulation and metabolism gene subset. Statistical significance was calculated via the Kruskal-Wallis rank-sum test.

Results: Our analysis revealed that BMI-related genes are enriched in multiple tumor-related biological pathways
involved in intracellular signaling, immune response, and metabolism. We also found the different relationships
between BMI and different immune cell infiltration and metabolic pathway activity. Importantly, we found that many
clinically actionable genes were BMI-affect genes.

Conclusion: Overall, our data indicated that BMI-associated molecular characteristics involved in tumor immune and
metabolic pathways, which may highlight the clinical importance of considering BMI-associated molecular signatures
in cancer precision medicine.
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Introduction
Excess body weight, including overweight and obesity, is
defined as abnormal or excessive fat accumulation that
increases the risk of many noncommunicable diseases
[1]. A large number of studies reported that excess body
weight is associated with the cancer burden. Epidemio-
logical studies concluded that excess body weight in-
creases the risk of 13 cancers with sufficient evidence,
including the esophagus, gastric, colon and rectum, liver,
gallbladder, pancreas, breast, corpus uteri, ovary, kidney,
meningioma, thyroid, and multiple myeloma [2]. Besides,
studies also reported that excess body weight is associ-
ated with other cancers, such as lung, prostate, and
hematologic cancers [3–6]. Some studies indicate that
obesity affects the treatment response of tumor patients.
Obesity could promote anti-VEGF therapy resistance in
breast cancer by producing inflammatory and angiogenic
factors [7]. And obesity promoted cancer resistance to
chemotherapy in breast, pancreatic, and prostate cancer
[8–10]. Although obesity heightened immune dysfunc-
tion and tumor progression, greater anti-tumor efficacy
and survival were found in obese patients treated with
targeted therapy and immunotherapy [11, 12]. Previous
studies have proposed various mechanisms to clarify the
relationship between excess body weight and cancers.
Chronic inflammation and metabolic abnormalities are
the most studied [13–16]. Effects of adiposity-associated
alterations of inflammation and microenvironment are
thought to affect multiple cancers types, such as gastro-
intestinal, breast, liver, and pancreatic cancers [10, 17–20].
Insulin resistance and hyperinsulinemia can stimulate
tumor cell proliferation and promote the growth of
colorectal, pancreatic, liver, breast, and endometrial
cancers [21, 22]. Adipose tissue affects the synthesis and
bioavailability of sex hormones and mediates the associ-
ation between excess body weight and hormone-related
cancers [13, 16].
Body mass index (BMI), defined as body mass in kilo-

grams divided by the square of height in meters (kg/m2),
is the most widely used anthropometric measure to esti-
mate overall body fatness and strongly correlated with
adiposity [23]. Some studies have reported some BMI-
related molecular patterns. For example, an obesity-
associated cancer expression signature was defined in
breast cancer [24]; gene microarray data revealed differ-
ent signatures between obese and nonobese endometrial
cancer patients [25]; PTEN loss resulted in PI3K path-
way activation in nonobese patients, downregulation of
β-CATENIN, and FOXO3A phosphorylation in obese
patients in endometrial cancer [26], and DNA methyla-
tion pattern of excess body weight patients was changed
in breast, colorectal, and kidney cancer [27–29]. How-
ever, these studies have been limited to individual genes,
single-molecular data types, or single-cancer lineages.

The Cancer Genome Atlas (TCGA) has provided
large-scale high-throughput molecular data with corre-
sponding clinical data of multiple cancer types, which
created an opportunity for researchers to systematically
study the association between molecular data and BMI
[30]. In this study, we performed a pan-cancer analysis
to investigate the BMI-related comprehensive cancer
molecular characteristics using these TCGA data.

Materials and methods
Analysis of patient clinical information
We obtained clinical information from TCGA-Clinical
Data Resource (CDR) Outcome (https://gdc.cancer.gov/
about-data/publications/pancanatlas) and Broad GDAC
Firehose (http://gdac.broadinstitute.org/), the patients
with both height and weight information were retained
for subsequent analysis. BMI was calculated by body
weight in kilograms divided by the square of height in
meters (kg/m2). BMI differences between male and female
patients were compared by the Wilcoxon rank-sum test.
Patients can be classified into three categories (normal,
BMI < 25; overweight, 25 ≤ BMI < 30; and obesity, 30 ≤
BMI) based on their BMI level, and survival difference be-
tween three groups was compared across all tumor types
as well as individual tumor type with p value calculated
via log-rank test using the survival package in R. And the
clinical confounders such as age, gender, stage, and grade
were controlled using multivariate COX analysis.
We obtained molecular subtypes information from

TCGAbiolinks packages of Bioconductor. Furthermore,
the BMI difference between different tumor subtypes
was compared using the Kruskal-Wallis test.

Analysis of mRNA expression and DNA methylation data
We obtained normalized gene mRNA expression and
gene DNA methylation 450K data from the website of
Firehose. The association between genes and BMI was
calculated by propensity score weighting (PSW) method
based on PSW package in R. The p value was adjusted by
Benjamini & Hochberg method and genes with the ad-
justed p value less than 0.05 were considered as BMI-
correlated genes; our method may miss few BMI-related
genes after FDR control due to the limited number of
tumor samples. Pathway enrichment analysis of selected
BMI-correlated genes was applied using the clusterProfiler
package. We also performed a Gene-Set-Enrichment ana-
lysis (GSEA) with the ranked gene according to the PSW
and identified association between BMI and gene mRNA
expression or methylation level by GSEA software 4.0 ver-
sion and the significantly enriched pathways.

Analysis of miRNA and protein expression data
We download the miRNA expression data from the
Firehose database and the protein RPPA expression data
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from The Cancer Proteome Atlas (TCPA) database
(https://www.tcpaportal.org/tcpa/index.html). The PSW
method was used to identify BMI-associated genes and
the adjusted p value less than 0.05 were considered as
BMI-correlated miRNA or protein genes. To explore the
potential functions of candidate miRNAs, we identified
potential miRNA targets from the following experimen-
tally supported miRNA-Gene interaction databases:
miRTarbase, Tarbase, miRanda, miRDB, miRecords, and
TargetScan. We then selected the candidate targets
using two criteria: (1) the targets were in miRTarbase
with strong evidence and (2) or in at least three of the
other four databases. Pathway enrichment analysis was
performed using these target genes.

Analysis of somatic mutations and somatic copy-number
alteration data
We obtained the somatic mutation (SNV) data from
TCGA Pan-Cancer Atlas and significant somatic copy
number alterations (SCNA) from Firehose. To prevent
the potential effect caused by ultra-mutated samples, we
filtered out the samples with over 1000 mutations in
their exomes, while the non-silent mutations with over
5% mutation frequency in a patient cohort were retained
for subsequent analysis because of their potential bio-
logical significance and detecting power in analysis.
Next, we divided the patients into two groups, normal
(BMI < 25) and excess weight (25 ≤ BM). The PSW
method was used to compare SNV and SCNA versus
normal patterns between normal and excess weight
group patients. The BMI-related alterations were identi-
fied at adjusting p value (FDR) less than 0.1.

Analysis of tumor-infiltrating lymphocytes and
metabolism pathways
To study the BMI-related tumor immune microenviron-
ment, we used the single-sample gene set enrichment
analysis (ssGSEA) method to identify the tumor-
infiltrating lymphocyte subpopulations described in a
previous study [31]. We first obtained genes related to
specific tumor-infiltrating lymphocytes from the study,
which include 28 immune cell types. For each patient,
genes were ranked according to their log-transformed
expression. The association was represented by a nor-
malized enrichment score (NES). An immune cell sub-
population was considered enriched in a patient when
NES > 0 and FDR (q value) ≤ 0.1. For metabolism path-
ways, we obtained seven metabolic super-pathway gene
sets that contain main human metabolic processes from
the Reactome database. We applied an analysis strategy
similar to the immune cell subpopulation analysis to
analyze enriched metabolism pathways in each patient.
Fisher’s exact test was used to compare enrichment pat-
terns between normal and excess weight group patients.

We compared composite expression between normal,
overweight, and obese patients of each immune cell
subpopulation and metabolism gene subset. Statistical
significance was calculated via the Kruskal-Wallis rank-
sum test.

Analysis of BMI-related clinically actionable genes and drugs
The clinically actionable genes were defined as FDA-
approved therapeutic targets and their corresponding
predictor markers, which obtained from the TARGET
database (http://www.broadinstitute.org/cancer/cga/tar
get). We extracted the anti-cancer drugs and their target
information from the DrugBank database.

Results
The BMI characteristics of TCGA samples
To characterize the specific molecular characteristics that
are associated with body mass index (BMI), we selected
2715 patients across 14 tumor types that provided BMI in-
formation from The Cancer Genome Atlas (TCGA) pro-
ject (Supplementary Table S1). Patients were divided into
three categories according to the BMI (normal, BMI < 25;
overweight, 25 ≤ BMI < 30; and obesity, 30 ≤ BMI). Eleven
out of 14 tumors had more than half of excess body
weight (25 ≤ BMI) patients, and endometrial carcinoma
(UCEC) was the most significant contributor of excess
body weight patients and also had the highest proportion
across the 14 tumors (Fig. 1a). The total number of tumor
cases with excess body weight was higher in females than
in males (989/1471 in females vs. 768/1248 in men).
UCEC was the largest cohort among female excess body
weight patients, followed by cervical cancers (CESC) and
colon adenocarcinoma (COAD). In contrast, the largest
cohort among males was bladder carcinoma (BLCA),
followed by kidney papillary cell carcinoma (KIRP) and
hepatocellular carcinoma (LIHC) (Fig. 1b, c). No signifi-
cant difference was observed between male and female pa-
tients’ BMI values (Fig. 1d).
To gain insight into the prognostic role of BMI, we ana-

lyzed the survival differences of the three BMI groups by
Kaplan-Meier curves across all tumor patients. Patients
with higher BMI corresponds to longer overall survival
times across all patients (Fig. 1e). Survival analysis was also
applied to each tumor separately, and only in COAD, we
observed significant overall survival differences and obese
patients had a better prognosis than normal and overweight
patients (Fig. 1f). Furtherly, the obese was independently
associated with patient prognosis after adjusted potential
clinical factors with multivariate COX analysis (Figure S1).

BMI-associated mRNA expression and DNA methylation
characteristics
To characterize the BMI-associated gene mRNA expres-
sion and DNA methylation signatures, we performed a
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PSW analysis on 14 TCGA tumor types. For mRNA
expression data, we detected BMI related genes in 8 tu-
mors and only esophagus cancer (ESCA) and UCEC iden-
tified abundant genes associated with BMI, and for DNA
methylation data, we detected BMI-related genes in 4 tu-
mors and only COAD and UCEC identified abundant
genes (Supplementary Table S2). To understand the func-
tions of BMI-correlated genes in tumors, we performed a
functional enrichment analysis and identified the affected
KEGG pathways. In ESCA, BMI-associated mRNA genes
were enriched in many important tumor pathways in-
volved intracellular signaling, immune response, such as
PI3K-Akt signaling, ECM-receptor interaction, and B cell
receptor signaling pathways (Fig. 2a). A previous study

report that BMI-associated differential genes in endomet-
rial cancers were related to cilium/microtubule or cell
cycle and DNA metabolic processes. It is similar to our
result in UCEC that the BMI-related genes mostly
enriched in cell cycle and metabolism-related pathways,
we also identified BMI biases of CST3, ADAMTSL5, and
ADAMTSL3 as mentioned related to cilium or micro-
tubule (Fig. 2b). BMI-associated gene methylation enrich-
ment showed that BMI-related genes were enriched in
metabolic or metabolic diseases, natural killer cell cytotox-
icity, and cell adhesion pathways in COAD (Fig. 2c). And
in UCEC, the BMI-related gene methylations were associ-
ated with digestion and metabolism, immune cell activity,
and signal transduction (Fig. 2d).

Fig. 1 The BMI characteristics summary of TCGA patients. a The proportion of each tumor in all excess weight patients. b Proportion of each cancer in
male excess weight patients. c Proportion of each tumor in female excess weight patients. d Comparison of the BMI difference between male and
female patients for each tumor type, no significant difference found. e Survival difference between different BMI groups across all tumor patients. f
Survival difference between diverse BMI group in COAD. The correspondence between full names and abbreviations is provided in Table S1
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We also combined colon and rectal cancer as colorec-
tal cancer (CORE) because of their clinical similarities.
PSW analysis identified 17 mRNA and 1528 methylation
genes associated with BMI in colorectal cancer. Pathway
enrichment showed the genes were enriched in focal ad-
hesion, cAMP signaling, and ECM-receptor interaction
pathways (Figure S2A).
We also performed a Gene-Set-Enrichment analysis

(GSEA) given the gene ranks according to the associ-
ation between BMI and gene expression or methylation
level and identified the significant enriched biological
pathways. Combining the gene expression and DNA
methylation GSEA enrichment results, we found that
the enriched pathways could be divided into four func-
tional groups (immune response, metabolism, signal

processing, and other pathways). The immune re-
sponse group includes allograft rejection, complement
and coagulation cascades, hematopoietic cell lineage, T
cell receptor signaling, and primary immunodeficiency
pathway. The pathways of metabolism group include
citrate cycle, fatty acid metabolism, glycolysis and glu-
coneogenesis, retinol metabolism, steroid hormone
biosynthesis, and tryptophan metabolism. The signal
processing group are several genetic and environmen-
tal information pathways that are important in cancer,
such as cytokine-cytokine receptor interaction, ribo-
some, and DNA replication (Fig. 3). ESCA and UCEC
mRNA genes positively related to the ribosome, and
ESCA mRNA negatively related to immune pathways
while UCEC methylation genes are positively related to

Fig. 2 Expression signature of BMI-associated genes in three strong BMI-related tumors. The top-enriched KEGG pathways of BMI-correlated
mRNA genes in a ESCA and b UCEC. The top BMI-correlated DNA methylation genes enriched KEGG pathways in c COAD and d UCEC
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immune pathways, it is consistent with the reverse
regulation of methylation on gene expression.

BMI-associated miRNA and protein characteristics
To characterize the BMI-associated miRNA and protein
expression, we also identified BMI-associated miRNA
and protein via the PSW method. As for mature miRNA
expression, we identified 1 in CESC, 3 in cholangiocarci-
noma (CHOL), 9 in COAD, 2 in LIHC, 3 in rectum
adenocarcinoma (READ), 17 in UCEC, and 23 in com-
bined colorectal cancer (Supplementary Table S2). We
obtained miRNA target information by integrating
multiple miRNA-mRNA interaction databases based
on 2 experimentally validated databases: miRTarBase
and TarBase [32, 33] and 4 computationally predicted
databases: miRanda, miRDB, miRecords, and TargetS-
can [34–37]. KEGG pathway enrichment analysis of
miRNA target genes was applied, and we found that
the function of miRNA-targeted pathways was similar
and potential target genes of BMI-related miRNAs
were significantly enriched in tumor-related signaling
and cell proliferation pathways such as the PI3K-AKT
signaling pathway (Fig. 4, Figure S2B).
For RPPA protein expression, we identified 6 BMI-

related proteins (YWHAE, FN1, PRDX1, PRKCA, BAK1,
and ANXA7) only in ESCA (Supplementary Table S2).
Previously study report Mapk14-Ywhae signaling
disorders in obese rats pancreas and increased YWHAE
signaling promotes esophageal squamous carcinoma cell
invasion [38, 39]. Dysregulated FN1 was identified in

obese adipose tissue while high FN1 expression was as-
sociated with esophageal cancer [40, 41].

BMI-associated somatic mutations and copy-number
alteration characteristics
We next identified BMI-associated genomic level pat-
terns. We focused on somatic mutations in each cancer
type to identify BMI-associated mutation patterns using
the PSW method. Four mutated genes were found in
ESCA, 5 were found in SKCM, and 13 were found in
UCEC (Supplementary Table S2). Among them, SYNE1,
SAMD9L, and KMT2C were overweight-biased genes
and LRP2 was normal-biased genes in ESCA, EPPK1,
MORC1, REV3L, USP34, and ZNF831 were overweight-
biased genes in SKCM, MED12, and WDR87 were
overweight-biased while DYRK1A, AHNAK, ATP2B3,
NFE2L2, CEP290, REV3L, MUC5B, VPS13A, TTN,
DHAH1, and SDK1 were normal-biased genes in UCEC
(Fig. 5).
To identify BMI-associated somatic copy-number al-

ternations (SCNA), we analyzed the significant SCNA
identified by GISTIC in each cancer type at focal level
amplifications/deletions and identified BMI-associated
SCNA in five tumor types. 3p14.2 and 18q21.2 deletion
were normal-weight-biased in CESC; 10q26.1 deletion
was excess-weight-biased in CHOL; 3p22.1 deletion was
excess-weight-biased in KIRP; 17q25.3 amplification was
excess-weight-biased in LIHC; 3p14.1 amplification,
16q22.3, 16q23.1, and 17q21.31 deletion were excess-
weight-biased in UCEC and 5q23.3 deletion; and 7p21.3
amplification were excess-weight-biased in combined

Fig. 3 Expression signature of BMI-associated genes across TCGA cancers. The enriched pathways identified via GSEA of ranked mRNA and
methylation genes, the color of each square represents NES values of significantly enriched pathways, and white squares indicate no statistical
significance. The different colors of the bar on the left indicate the function group pathways belong to
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Fig. 5 Signature of BMI-associated gene mutation across TCGA cancers. The mutation pattern of BMI-biased SNV between normal and excess
weight patients in a ESCA, bS KCM, and c UCEC. The bar on the top is the BMI label of each patient, the bar on the right represents mutation
frequencies of each BMI group, and different mutation types are shown in different colors

Fig. 4 Enriched pathways of BMI-associated miRNA targets. The top-enriched KEGG pathways of BMI-related miRNA potential target genes in a
CHOL, b COAD, c LIHC, d UCEC, and e UVM
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colorectal cancer at FDR = 0.1 (Fig. 6, Figure S2C,
Supplementary Table S2). To understand the mechanism
underlying BMI-related SCNA, we next examined
enriched pathways of amplified or deleted genes and the
result showed that copy number abnormal genes
enriched in some critical biological process pathways,
such as cell growth and differentiation pathways in
CESC, protein translation process, and myeloid cell differ-
entiation in KIRP, glucometabolic process, and epidermal
growth factor receptor signaling in LIHC, cyclin-depend
kinase activity in UCEC deletion genes (Figure S3).

BMI associated with tumor molecular subtypes in LIHC
and UCEC
The analysis of different molecular levels data showed
that there were significant molecular differences in dif-
ferent BMI levels in particular tumor types, it is possible
that obesity is associated with tumor molecular subtypes.
So we compared the BMI difference between tumor sub-
types and found that BMI distribution was significantly
different only in LIHC and UCEC molecular subtypes

(Figure S4A-B). The iCluster1 of the LIHC showed a low
BMI feature [42]. The signature genes of the POLE sub-
type with the lowest BMI involved in cellular metabolism,
while the CN-low subtype showed increased progesterone
receptor expression [43]. It is interesting that the low BMI
subtype has low CTNNB1 mutation frequency in LIHC,
and the high BMI subtype has high CTNNB1 mutation
frequency and the effects of the WNT-CTNNB1 pathway
alterations on colorectal cancer outcome are modified by
BMI and physical activity [44].

The association between BMI and tumor immune
microenvironment
To study the association between BMI and tumor im-
mune microenvironment, we first obtained genes related
to specific tumor-infiltrating lymphocytes described in
the previous study, which include 28 immune cell types
[31]. Considering the effect of tumor purity on immune
cell infiltration, we compared the purity between differ-
ent BMI groups and no statistically significant difference
was observed (Figure S4B). We then compared the

Fig. 6 Signature of BMI-associated genome SCNV across TCGA cancers. The SCNV pattern of BMI-biased focal amplification/deletion in a CESC, b
CHOL, c KIRP, d LIHC, and e UCEC. Each significant SCNA is annotated
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composite expression of each gene subset, which repre-
sents distinct immune cell subpopulations, in different
BMI groups and estimated tumor-infiltrating lympho-
cytes from TCGA expression data by both single-sample
gene set enrichment analysis (ssGSEA) and CIBERSORT
approaches [45, 46]. Fifteen of 28 immune cell types
showed significantly different expressions in different
BMI groups across all cancer types. Among them, only
two immune cell subpopulations (central memory CD4
T cell and plasmacytoid dendritic cell) showed a positive
correlation with BMI, while the others were negatively
correlated (Fig. 7a). For individual tumor types, we

also observed multiple immune cell subpopulation
expression differences in CESC, ESCA, LIHC, and
UCEC (Figure S5).
Using the ssGSEA strategy, we estimated the 28

immune cell subpopulations in the tumor microenviron-
ment of individual patients. For each immune cell
subpopulation of each tumor type, we compared the en-
richment and survival difference between normal weight
and excess weight patients. We found that the enrichment
status of more than one immune cell subpopulation is dif-
ferent between normal weight and excess weight patients
in CESC, ESCA, LIHC, THYM, and UCEC (Fig. 7b).

Fig. 7 The chariotries of immune cell subpopulations in different BMI groups. a The composite expression of each immune cell gene subset in
normal, overweight, and obesity patients across all tumor types, with statistical significance calculated by the Kruskal-Wallis rank-sum test. *p value
< 0.05, **p value < 0.01, ***p value < 0.001, and ****p value < 0.0001. b The proportion of immune cell-enriched patients in excess weight group,
each point represents an immune cell type in each tumor type with the size corresponding to the percent of enriched patients. Filled points
corresponding to significant enrichment differences of immune cells between normal and excess weight patients
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The fractions of 22 immune cell subpopulations iden-
tified by CIBERSORT were obtained from a previous
study [47]. We then analyzed the association between
BMI and tumor immune microenvironment. BMI was
positively correlated with activated NK cells and CD8 T
cells in CESC, activated mast cell, monocytes, resting
memory CD4 T cells in ESCA, neutrophils in KIRP, rest-
ing dendritic cells and T regulatory cells in UCEC, fol-
licular helper T Cells in UVM, but BMI was negatively
correlated with M1 macrophages and M2 macrophages
in ESCA, follicular helper T Cells in UCEC (Figure S6).
The immune cell types assessed by ssGSEA and

CIBERSORT were not completely consistent, but we
also found that the CD8 T cell in CESC was positively
correlated with BMI in both methods. The above data
suggested that BMI may play an important role in tumor
immune microenvironment and may affect the different
responses of cancer immunotherapy in the clinic.

The association of BMI with different tumor metabolic
pathways
To gain a penetrating view of metabolic heterogeneity in
different BMI groups, we obtained the gene sets of seven
metabolic super-pathways based on the Reactome data-
base [48]. Seven metabolic pathways include amino acid
metabolism pathway with 348 genes, carbohydrate me-
tabolism pathway with 286 genes, energy metabolism
pathway with 110 genes, lipid metabolism pathway with
766 genes, nucleotide metabolism pathway with 90
genes, tricarboxylic acid (TCA) cycle pathway with 148
genes, and vitamin-cofactor metabolism pathways with
168 genes. We compared the composite expression of
each gene subset among different BMI group samples
and found differential expression in carbohydrate, en-
ergy, lipid, nucleotide, and vitamin-cofactor metabolism
pathways (Fig. 8a). For individual tumor types, we found
differential expression metabolism pathways in BLCA,
COAD, ESCA, KIRP, READ, and UCEC (Figure S7).
We also estimated this seven metabolism pathway en-

richment of individual patients using the ssGSEA
method. In 8 cancer types, we found at least one differ-
ential enrichment metabolic pathway between normal
and excess weight groups (Fig. 8b).

BMI-related molecular signatures in clinically actionable
genes
To investigate the clinical implications BMI-related
molecular signatures, we focus on a set of clinically ac-
tionable genes, which are the targets of FDA-approved
anti-cancer drugs [49]. We selected our BMI-related
clinically actionable genes following two criteria: (1) the
target genes were contained in BMI-related genes and
(2) the drugs of the targets were recorded as being able
to be used for cancer treatment. We found 44 drugs

target in 14 clinically actionable genes across different
tumor types (Fig. 9). These 44 drugs can be categorized
into four groups: chemotherapy, hormone therapy,
immunotherapy, and targeted therapy. Previous studies
reported PDGFRs as adipogenesis negative regulators
and were associated with tumor stroma and survival [50,
51], and their biases in different BMI groups may sug-
gest treatment response differences with olaratumab or
dasatinib. Chronic myeloid leukemia observed significant
obesity gain after imatinib treatment [52]. These results
highlight the clinical importance of considering BMI-
associated molecular signatures in precision medicine.

Discussion
Although the effect of overweight or obesity on tumor
incidence, prognosis, and treatment responses has been
reported in many kinds of literature, the molecular basis
has remained unclear. Our study applied a comprehensive
pan-cancer analysis that aimed to found BMI-related
molecular differences across different cancer types and
systematically catalogs the molecular signatures related to
the BMI effect from genome to transcriptome to prote-
ome level. We found colorectal, esophageal, and endomet-
rial cancer were strong BMI-effect based on abundant
molecular signatures in multidimensional data. Some of
the BMI-correlated genes identified in this study have also
been reported in different tumors by previous studies. For
example, we identified BMI-correlated genes AKAP5 and
JMJD5 in CESC, while it was reported that knockdown
AKAP5 inhibited ERK1/2 activity and downregulation
JMJD5 suppresses oral squamous cell carcinoma metasta-
sis and induces apoptosis via p53/NF-κB pathway [53, 54].
Enrichment analysis shows that BMI-related genes are

enriched in some important tumorigenesis and cancer de-
velopment pathways, such as cell adhesion, cell prolifera-
tion, intracellular signaling, and specific tumor pathways.
BMI-related genes enriched in p53 signaling pathways in
UCEC, as it was reported that diet-induced obesity syner-
gized with p53 mutation promoted hepatocarcinogenesis
in zebrafish [55]. TP53 positivity was associated with
shorter cancer-specific survival in nonobese patients, and
breast and prostate cancer cells with mutant p53 increased
oncogenic insulin effects [56, 57]. Obese tumors patients
with PI3K pathway mutant had a trend toward favorable
outcomes [58]. GSEA analysis result indicated that signal-
ing processing, metabolism, and immune response are the
main BMI-affected pathways class in tumors. Previously, a
study reported IGF system played an essential role in
esophageal cancer malignant progression and association
with visceral obesity [59]. Our study found IGF1R and
some other IGF family genes significantly correlated with
BMI of esophageal cancer patients, indicating the IGF
pathway might be played a differential role in tumor
progression between obesity and normal body weight
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esophageal cancer patients. Global DNA methylation dif-
ferential analysis of esophageal tumor showed differential
methylation genes between different BMI groups involved
in cell adhesion molecules, Wnt signaling, and growth
hormone response, while our result showed a significant
difference in cell adhesion, PI3K-AKT signaling, and Ras
signaling pathways between the different BMI level pa-
tients [60]. Obesity is a risk factor strongly associated with
endometrial cancer. Our study reveals that BMI-related
genes were involved in the cell cycle, cell junction path-
ways, and significantly correlated with hormone receptor
PGR in endometrial carcinoma. Previously researches

reported the functions of adipose tissue in hormone
production, inflammatory responses, and cellular pro-
liferation pathways, while adipokines regulate cellular
communication via gap junction loci [61, 62]. And
the hormone receptor ER and PR were significantly
low express after bariatric surgery in endometrial and
reduced cancer risk [63].
Obesity is a risk factor strongly related to tumor

immune, inflammation, and metabolism. Previously,
research demonstrated the association between obesity
and immune aging, tumor progression, and PD-1-
mediated T cell dysfunction and increased efficacy of

Fig. 8 The chariotries of metabolism pathways in different BMI groups. a The composite expression of each metabolism pathway genes in
normal, overweight, and obesity patients across all tumor types, with statistical significance calculated by the Kruskal-Wallis rank-sum test. *p value
< 0.05, **p value < 0.01, ***p value < 0.001, and ****p value < 0.0001. b The proportion of metabolic pathways enriched patients in excess weight
group. Each point represents a metabolic pathway in each tumor type with the size corresponding to the percent of enriched patients. Filled
points corresponding to significant enrichment difference of metabolic pathway between normal and excess weight patients
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PD-1/PD-L1 blockade in tumors [11]. Obesity-associated
inflammation in cancer associated with multiple immune
cell subsets such as natural killer cells, macrophages,
and T cells [64]. Moreover, the presence of a B cell is re-
lated to good immunotherapy response in sarcoma and
melanoma [65, 66]. Our study found the enrichment
difference in multiple types of immune cells, such as T
cell, the natural killer cell in cervical cancer, B cell in
liver cancer, and natural killer T cell in uterine carcino-
sarcoma. This may be relevant to the immunotherapy
response difference in obesity patients.

Conclusions
Our results provide a valuable starting point from which
BMI effects should be explicitly considered in future
clinical investigations and oncotherapy. Since TCGA
clinical information may not be complete and rigorously
annotated, approximately only 2700 patients recorded
their BMI information across 14 cancer types. Future
studies about this topic should conduct analysis larger
cancer patient cohort and more tumor types, and the
effects of BMI caused normal tissue to alter, and other

potential confounding factors should be taken into con-
sideration, as well as the efforts of assessing the clinical
utility of the identified BMI-associated signatures.
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