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ABSTRACT: Alzheimer’s disease (AD) is the most common type of
dementia, affecting over 50 million people worldwide. Currently, most
approved medications for AD inhibit the activity of acetylcholinesterase
(AChE), but these treatments often come with harmful side effects. There is
growing interest in the use of natural compounds for disease prevention,
alleviation, and treatment. This trend is driven by the anticipation that these
substances may incur fewer side effects than existing medications. This
research presents a computational approach combining machine learning
with structural modeling to discover compounds from medicinal mushrooms
with a high potential to inhibit the activity of AChE. First, we developed a
deep neural network capable of rapidly screening a vast number of
compounds to indicate their potential to inhibit AChE activity. Subsequently,
we applied deep learning models to screen the compounds in the
BACMUSHBASE database, which catalogs the bioactive compounds from cultivated and wild mushroom varieties local to
Thailand, resulting in the identification of five promising compounds. Next, the five identified compounds underwent molecular
docking techniques to calculate the binding energy between the compounds and AChE. This allowed us to refine the selection to
two compounds, erinacerin A and hericenone B. Further analysis of the binding energy patterns between these compounds and the
target protein revealed that both compounds displayed binding energy profiles similar to the combined characteristics of donepezil
and galanthamine, the prescription drugs for AD. We propose that these two compounds, derived from Hericium erinaceus (also
known as lion’s mane mushroom), are suitable candidates for further research and development into symptom-alleviating AD
medications.

1. INTRODUCTION
Alzheimer’s disease (AD) is a neurodegenerative disorder that
progressively worsens over time. Early symptoms of AD often
manifest as memory, thinking, or reasoning deficits since the
disease typically impairs the cortical brain regions implicated in
critical thinking, learning, and memory. Common pathogenic
indications of AD include significant loss of synaptic and
neuronal tissues, astrogliosis, and the buildup of proteinaceous
deposits.1 The underlying causes of clinical onset are likely
connected to age-related factors and disease-promoting
variables.
Although the exact cause of AD remains elusive, numerous

hypotheses have been proposed to explain the development
and progression of the symptoms. One hypothesis is the
presence of extracellular amyloid plaques and neurofibrillary
tangles.1,2 Amyloid plaques are made up of extracellular
aggregates of amyloid-β (Aβ),3 a product from the cleavage of
the amyloid precursor protein by β- and γ-secretases.4
Neurofibrillary tangles are abnormal, twisted aggregates of
the tau proteins found within the neurons.5 However,

treatments directed to counter Aβ accumulation and tau
protein aggregation have so far failed to yield satisfactory
results in clinical trials.6

Another hypothesis, the cholinergic hypothesis, posits that
impaired cognitive function in AD and adult-onset dementia
disorders is closely linked to deficiencies in cholinergic
neurotransmission. Individuals with AD exhibit reduced levels
of acetylcholine, a neurotransmitter that is crucial for
transmitting messages between specific nerve cells. The decline
in acetylcholine levels and the progressive loss of these nerve
cells are linked to worsening symptoms. Acetylcholine is
hydrolytically degraded by two cholinesterases, acetylcholines-
terase (AChE) and butyrylcholinesterase (BuChE).7−9 AChE
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is more abundant than BuChE in AD brains, contributing to
acetylcholine degradation in the hippocampus and cerebral
cortex.7 Cholinesterase inhibitors assist in alleviating AD
symptoms and might even reduce the disease’s course. The
first medication to treat AD was tacrine, an acridine derivative,
which was approved by the Food and Drug Administration
(FDA) in 1993.10 The drug is an effective, noncompetitive,
reversible AChE/BuChE inhibitor; however, tacrine use has
been discontinued owing to its high hepatotoxicity.10−12 In the
following years, galanthamine, rivastigmine, donepezil, and
memantine have been approved as symptomatic treatments for
AD to manage the patients’ memory loss and cognitive
impairment.12,13 The drugs donepezil, rivastigmine, and
galanthamine block the acetylcholinesterase enzyme from
degrading acetylcholine in the brain. Maintaining appropriate
levels of acetylcholine enhances communication between nerve
cells, which stabilizes or temporarily relieves some AD
symptoms.
However, the effectiveness of these drugs is constrained due

to their unfavorable side effects in the form of a loss of
appetite, nausea, vomiting, and diarrhea, to name but a few.14

Notably, the available drugs are nowhere near the sought-after
“magic bullet” mode of action as they have yet to put a stop to
the disease progression. As such, many attempts have been
made to develop new drugs with different structures and
mechanisms of action. An emerging area of research focuses on
naturally derived AChE inhibitors.15−19 As a case in point,
huperzine A from Huperzia serrata is a licensed drug for AD in
China.20

In the preclinical drug design phase, computer-aided
development of novel chemical entities has proven indis-
pensable and significantly contributed to a decrease in the time
and resources required in the drug discovery process.21−25 The
quantitative structure−activity relationship (QSAR) is a
frequently utilized chemometrics method in computational
modeling and drug development.26,27 Several computational
methods have already been proposed for predicting potential
cholinesterase inhibitors.28−33 However, predicting the bio-
logical activity of compounds is still challenging and a subject
of research due to the complexity of representing molecular
structures to capture relevant information for the task. Capable
of addressing this complexity, deep learning techniques have
become more prominent in the field of drug discovery. The
growing availability of data from bioactivity experiments has
allowed for the requisite integration of deep learning into the
workflow. Its ability to capture nonlinearity in the data also
allows it to tackle complex biochemistry problems effectively
while minimizing the preprocessing steps.34,35 As a result, deep
learning methods have demonstrated superior accuracy
compared to traditional machine learning approaches.36,37

The techniques have found applications in myriad aspects of
drug discovery, including the prediction of drug−target
interactions.37,38 In addition, the application of convolutional
neural networks (CNNs) to extract information from
molecular structures as graphs has enabled the learning of
molecular features and fingerprints.39 The approach demon-
strates success in predicting molecular properties and
exhibiting a superior predictive performance across a range
of tasks.
With these capabilities, this work uses a deep graph

convolutional neural network to identify AChE inhibitor
candidates from an available database containing natural
compounds from mushrooms (BACMUSHBASE; http://

bacmushbase.sci.ku.ac.th/). Afterward, docking simulations
were carried out to validate the predicted compounds and
scope the choices to two compounds, erinacerin A and
hericenone B from Hericium erinaceus. Upon a detailed
examination of the binding energy patterns between these
compounds and the target protein by molecular dynamics
simulations, it was observed that both substances exhibited
binding energy profiles similar to the combined characteristics
of the two AD drugs donepezil and galanthamine. We propose
that these two compounds demonstrate significant potential
for future development as medications for AD.

2. RESULTS AND DISCUSSION
The overall workflow of this study is presented in Figure 1.
Briefly, a graph convolutional neural network (GCN) was

trained on the structural data of compounds tested for their
inhibitory effects on AChE. The trained model was employed
to assign scores to the mushroom compounds from the
BACMUSHBASE database. Based on the scores, 38
compounds were selected for subsequent molecular docking
studies. By considering both deep learning and molecular
docking scores, two promising candidates were identified and
subjected to molecular dynamics simulations. The analysis of
the interaction patterns between the potential compounds and
the target protein combined with the investigation of the
atomistic features extracted from the selected compounds
provided insight into the mechanisms that underlie the
inhibition of AChE by the compound candidates.

2.1. Building a Graph Convolutional Neural Network
for AChE Inhibitor Screening. A list of compounds tested
against acetylcholinesterase (AChE) activity was retrieved
from PubChem (https://pubchem.ncbi.nlm.nih.gov/) (NCBI
protein accession: P22303). The data (accessed in January
2021) contained 51,505 data points. After redundancy was
removed, 3001 compounds with IC50 ≤ 10 μM in inhibiting
the AChE activity were defined as “active” compounds. 7825

Figure 1. Overall workflow of this study. Multiple in silico techniques,
(i.e., deep learning, molecular docking, and molecular dynamics
simulations) were successively applied to identify potential AChE
inhibitors and elucidate the mechanisms underlying the inhibition
exerted by the compound candidates.
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compounds were “inactive” compounds as labeled by the
database. Then, 3000 active and 3000 inactive compounds
were randomly chosen and combined to form a workable data
set for this study. We implemented the Latin hypercube
algorithm to create random sets of seven to-be-tuned
hyperparameters for a graph convolutional neural network
(Table 1), resulting in 44 random sets chosen out of 432

possible combinations. For each hyperparameter set, we
implemented the graph convolutional model with 5-fold
cross-validation (CV) using atomic features extracted by the
command MolGraphConvFeaturizer() in the DeepChem
package.40 The hyperparameter set with the highest validating
AUCs averaged among the 5-fold was selected (Table 1;
averaged AUC = 0.9858 ± 0.0022). The model was then
trained with the selected hyperparameter set on the whole data
set (6000 data points) to yield a final model. The AUC scores
for the rest of the hyperparameter sets are reported in
Supporting Table S1.
The final model consisted of a 1024-node graph convolu-

tional layer with the ReLU activation function, a batch
normalization layer, a graph pool layer, a 256-node dense layer
with the ReLU activation function, another batch normal-
ization layer, a graph gather layer with the tanh activation
function, and an output node that assigns a probability of the
compound being “active” (has inhibitory effect on AChE)
using the SoftMax function. Considering the stochastic nature
of the learning algorithm, whereby the models trained with the
same data and hyperparameters may not necessarily yield
identical results, we utilized the entire data set (3000 active
and 3000 inactive compounds) to train five instances of the
models adopting the optimal hyperparameter set in Table 1.
Subsequently, the trained models were used to predict the

probability score of all substances in BACMUSHBASE
(http://bacmushbase.sci.ku.ac.th/), a database of bioactive
compounds from the mushroom species found in Thailand.
The top five compounds with an average active probability
score of more than 0.9, derived from predictions made by the
five models, are shown in Table 2. The predicted scores of the
complete list of the compounds are listed in Supporting File
S1.

2.2. Validating Potential AChE Inhibitors by Molec-
ular Docking. Next, molecular docking calculations by
AutoDock Vina 1.241 were performed on a group of 40
compounds to further validate the deep learning model in
terms of molecular interactions between the atomistic structure
of each compound and the protein target (acetylcholinesterase;

PDB ID: 4EY7). The 40 compounds consisted of two known
inhibitors, donepezil and galanthamine, the top five com-
pounds with a predicted probability score >0.9, 23 randomly
sampled compounds with a predicted probability score
between 0.1 and 0.9, and 10 compounds with a predicted
probability score <0.1.
Figure 2a displays the active probability score predicted by

the deep learning model along with the binding energy score
estimated through molecular docking calculations for each of
the 40 selected compounds. Nine of the 10 compounds with a
probability score <0.1 had a relatively weak binding affinity
(binding energy score above −6.13 kcal/mol). The com-
pounds with a predicted probability score between 0.1 and 0.9
exhibited a binding energy in the range of −7.91 and −10.41
kcal/mol. Four out of five compounds with an active
probability score >0.9 possessed relatively strong binding
affinity (binding energy scores between −9.19 and −10.54).
Donepezil displayed the strongest binding energy of −10.66
kcal/mol, while galanthamine had the binding energy of −9.90
kcal/mol. Supporting Table S2 lists the binding energy scores
of all 40 selected compounds.
Plotting the binding energy score against the logarithm of

the active probability score (log P) shown in Figure 2b
displayed a roughly linear relationship with an R-squared value
of 0.6, signifying a substantial agreement between the two
methods. Therefore, among the bioactive compounds from
BACMUSHBASE with a probability score exceeding 0.9,
erinacerin A and hericenone B, with the strongest binding
affinity, were proposed as candidates for new AChE inhibitors
and were subsequently subject to further analysis.

2.3. Binding Interaction Networks between AChE
and Candidate Compounds Compared to First-Line
Prescription Drugs. In this section, molecular interactions
between the AChE protein and each of the two proposed
inhibitors, erinacerin A and hericenone B, were analyzed in
comparison with the two AD drugs, donepezil and galanth-
amine. 50 ns molecular dynamics (MD) simulations in explicit
solvents were performed for all four AChE complexes. After
the simulations, MM/PBSA calculations were performed on
the last 25 ns of each equilibrated trajectory, and the
contributions of all of the energy terms and entropy are
plotted in Figure 3. In the case of donepezil binding to AChE
with the free energy of −166 ± 11 kJ/mol, the contribution of
the electrostatic term to the binding free energy was dominant
as the protonated donepezil became positively charged.
However, the interfacial area between the highly soluble
donepezil also became lost upon AChE binding, so the binding
energy was penalized by the polar solvation term. On the other
hand, a significantly lower energy penalty from the polar
solvation term was observed for the uncharged galanthamine
with a smaller AChE binding interface. Despite the lower
contribution of both van der Waals and electrostatic terms to

Table 1. Hyperparameter Tuning

the hyperparameter varied in the
model

varied
values

value in the optimal
hyperparameter set

number of nodes in the graph
convolutional layer

256, 512,
1024

1024

activation function in the graph
convolutional layer

ReLU,
tanh

ReLU

number of nodes in the dense layer 256, 512,
1024

256

activation function in the dense
layer

ReLU,
tanh

ReLU

activation function in the graph
gather layer

ReLU,
tanh

tanh

dropout rate 0.0, 0.1,
0.2

0.0

learning rate 10−4, 10−3 10−4

Table 2. Top Five Compounds from BACMUSHBASE as
Potential AChE Inhibitors

compound
name mushroom source

averaged “active” probability ±
sd

erinacerin A H. erinaceus 0.9622 ± 0.0416
flavidulol C Lactarius flavidulus S.

Imai
0.9609 ± 0.0353

lucidimine B Ganoderma lucidum 0.9607 ± 0.0216
lucidimine C G. lucidum 0.9424 ± 0.0242
hericenone B H. erinaceus 0.9283 ± 0.0876
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the AChE binding, the strength of the total binding free energy
of −178 ± 25 kJ/mol for galanthamine to AChE became
slightly stronger than donepezil.
The binding free energy of the proposed compounds,

erinacerin A and hericenone B, was dominated by the van der
Waals term. The structures of both proposed compounds
contained more hydrophobic functional groups than the
structure of donepezil, so the contribution of the van der
Waals term to AChE binding became stronger. However, the
entropic penalty from the additional flexible chains caused the
total AChE binding free energy of erinacerin A (−141 ± 16
kJ/mol) and hericenone B (−151 ± 16 kJ/mol) to be slightly
weaker than that of donepezil and galanthamine, which was
consistent with the active probability predicted by the deep
learning model. The interaction networks of AChE amino acid
residues to inhibitor binding were visualized in Figure 4, in

which the active site “gorge” was divided into the top region
(subsite I), side regions (subsites II and III), and the bottom
region near the catalytic sites (subsite IV). Donepezil
interacted with the top region of the AChE gorge through
its methoxyl groups connected to the indene ring and with the
bottom region through its phenyl ring (Figure 4a). Galanth-
amine utilized its phenyl ring part to bind with only one
residue in the top region but utilized its adjacent methoxyl
group to bind with all of the catalytic residues of AChE, which
could explain its clinical use for treating mild to moderate
dementia (Figure 4b). Similar to donepezil, erinacerin A
employed the phenyl ring part to bind with the bottom region
(Figure 4c), while hericenone B employed its branched
aliphatic tail to form an extensive hydrophobic interaction
network with the bottom region in concurrence with its
strongest enthalpy contribution of AChE binding energy
(Figure 4d). One of the common characteristics shared by
all four inhibitors was the tertiary amine groups found near the
side regions of AChE gorge. Moreover, the oxygen functional
group, e.g., carbonyl, ether, and methoxyl, were also found
binding to the side regions of the AChE gorge and contributed
to the binding energy.
The contributions of the AChE amino acid residues to

inhibitor binding were estimated through the decomposition of
the MM/PBSA energy averaged over the last 25 ns of each
trajectory of the AChE−inhibitor complex. Figure 5 depicts
per-residue MM/PBSA energy for inhibitor binding of the 33
selected residues with the highest degree of contribution,
which resided in the top region (subsite I), the side regions
(subsites II and III), the bottom region (subsite IV), and the
catalytic residues Ser203, Glu334, and His447.
Figure 5a shows that four glutamic acid residues within

subsite I and subsite IV, as well as the catalytic residue Glu334
with a negatively charged side chain, largely contributed to the
donepezil binding via Coulombic interactions with the
protonated donepezil. For the case of galanthamine binding

Figure 2. Binding energy scores estimated from molecular docking plotted against (a) the active probability score predicted by the deep learning
models and (b) the logarithm of the active probability score (log P) for each of the 40 selected compounds.

Figure 3. Relative contributions of the van der Waals, electrostatics,
polar solvation, apolar solvation, and entropy (−TΔS) terms to the
total binding energy of two confirmed AChE inhibitors and two
predicted AChE inhibitors.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c10459
ACS Omega 2024, 9, 16311−16321

16314

https://pubs.acs.org/doi/10.1021/acsomega.3c10459?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10459?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10459?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10459?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10459?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10459?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10459?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10459?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c10459?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


in Figure 5b, a very high per-residue energy contribution of
approximately −15 kJ/mol was observed for catalytic residue
His447 at the bottom of the AChE active site gorge. In
contrast, a relatively small energy contribution was observed in
the side regions, and almost no energy contribution was
observed in the top region. Similar to donepezil, the energy
decomposition profiles of erinacerin A (Figure 5c) and
hericenone B (Figure 5d) showed that residue Tyr341 within
subsite II of both proposed candidates was one of the
important binding residues and was in common with that of
donepezil. However, erinacerin A and hericenone B displayed a
relatively lower contribution of the top region to binding
energy but a significantly higher contribution of the bottom

region, which was similar to galanthamine. The similarity
between the binding mechanisms of the predicted inhibitors
and the combined characteristics of two known inhibitors
indeed makes a compelling case that erinacerin A and
hericenone B may have the potential as an alternative AChE-
targeting drug.

2.4. Exploring the Molecular Features Influencing
AChE Binding. To further elucidate the featural patterns of
the screened compounds from which the classification of active
and inactive compounds against AChE was learned, the values
of all 75 atomic features were extracted from the 40 sampled
compounds (see the Methods section). Pearson correlation
coefficients were calculated for each feature: one between the

Figure 4. Interaction analysis of the amino acid residues of AChE and the enzyme inhibitors (a) donepezil, (b) galanthamine, (c) erinacerin A, and
(d) hericenone B generated by LigPlot 2.2.42 Red, pink, orange, and yellow dashed circles represent Subsite I (top region), Subsite II (outside
region), Subsite III (inside region), and Subsite IV (bottom region), respectively.
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Figure 5. (Left) Binding configurations of the inhibitors into different subsites of the active site gorge of AChE: subsite I (top region; red), subsite
II (outside region; pink), subsite III (inside region; orange), subsite IV (bottom region; brown), and catalytic residues (green). (Right) Per-residue
binding energy decomposition between the important AChE residues and (a) donepezil, (b) galanthamine, (c) erinacerin A, and (d) hericenone B.
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feature and the “active” probability score and another between
said feature and the binding energy score. Three features with a
Pearson correlation coefficient ≤−0.4 or ≥0.4 from both
calculations were identified. Figure 6 plots the three feature
values against the binding energy score from docking.
Remarkably, the two known AChE inhibitors donepezil and
galanthamine, along with the two candidate compounds
erinacerin A and hericenone B, were among the compounds
that possessed the highest values for all three selected features.
The feature “symbol = C” (Figure 6a) possesses the highest
correlation with the binding energy score, indicating that both
known AChE inhibitors and predicted compounds contained a
high C content ratio, which also reflected the lower ratio of
finding hydrogens and functional groups that contained N or
O atoms. Moreover, the “degree = 3” feature (Figure 6b)
reflected the ring structures and the amino groups observed in
all four molecules. Lastly, the “#H = 0” feature (Figure 6c)
reflected the special functional groups containing N or O
atoms with no covalent bonding with H, e.g., methoxyl,
carbonyl, and tertiary amine groups. These commonly
observed functional groups in the four compounds contributed
to AChE binding: the ring structures interacted with the
hydrophobic side chains, while the polar atoms with no
adjacent hydrogen interacted with either the polar side chain

or the backbone of the amino acids within the narrow gorge
containing AChE active sites.

3. CONCLUSIONS
One of the major features of Alzheimer’s disease (AD) is an
abnormally low amount of acetylcholine, which is induced by
excessive acetylcholinesterase (AChE) activity. Several AChE
inhibitors have been approved for their ability to alleviate AD
symptoms, albeit with certain side effects. The search for new
AChE inhibitors is ongoing and has proven to be a challenging
endeavor. Compounds from herbal extracts, which are often
associated with milder effects, could prove useful as an
alternative treatment option.
This study utilized a combined deep learning and molecular

modeling approach to rapidly screen candidate compounds
from mushroom extracts as alternative AChE inhibitors. The
deep learning neural network was trained on the available data
set of the enzyme inhibitory assays indicating whether each
compound was “active” or “inactive” against AChE. After
optimizing hyperparameters for the best AUC score, the
ensemble model was used to predict the probability of each
compound being classified as an “active” compound from the
mushroom extract database. Molecular docking calculations

Figure 6. Extracted atomic features plotted against the binding energy estimated by molecular docking calculations with the highest correlations:
(a) symbol = C, (b) degree = 3, and (c) total number of hydrogens = 0.
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were then performed on a group of selected compounds with
the highest, lowest, and moderate “active” probability and
displayed a substantial correlation between the logarithm of
the “active” probability score and the binding energy score.
Subsequently, erinacerin A and hericenone B were selected as
the candidates for AChE inhibitors based on the analysis of
both methods. Afterward, we conducted molecular dynamics
(MD) simulations and MM/PBSA free energy calculations to
compare the two candidates with the two approved drug
molecules. Our aim was to determine the AChE binding
mechanisms involving functional groups and chemical features
captured by our deep learning model. According to the per-
residue MM/PBSA energy decomposition, galanthamine was
bound more directly to the active residues at the active site
gorge, while donepezil possessed a stronger binding energy
through binding with the outer (top) regions of the active site
gorge. Erinacerin A and hericenone B demonstrated the
combined binding mechanisms of both donepezil and
galanthamine while maintaining their strong binding energy.
The potentials of erinacerin A and hericenone B as alternative
AChE inhibitors were in good agreement with another report
(https://patents.google.com/patent/WO2014098306A1/en),
which validated the screening results.
The consensus derived from our deep learning and

molecular modeling calculations led to the identification of
erinacerin A and hericenone B as potential AChE inhibitors in
this study. To prove the effectiveness of the predicted
compounds, it is necessary to carry out in vitro tests, followed
by dose−response studies, to determine the concentration-
dependent effects on AChE inhibition. Furthermore, the
chemical structures of erinacerin A and hericenone B can be
optimized to improve their druglike properties and synthetic
feasibility.
Our approach was endorsed by the fact that the screened

compounds were considerably similar to donepezil. However,
some compounds with reasonably high active probability, e.g.,
flavidulols A and C, had chemical structures similar to
galanthamine. Therefore, different groups of compounds with
different AChE binding modes could exist. In fact, the
conformation of the AChE binding pocket has been shown
to be diverse, and an ensemble of binding pocket
conformations was suggested to improve the in silico
screening.43 Improving the current approach in future work
will be possible by addressing this fact.
Our drug discovery process involves identifying substances

consistently highly ranked by deep learning and molecular
modeling approaches. We believe that this approach can
significantly improve the accuracy and efficiency of drug
discovery. A similar strategy has been used to identify potential
new mTOR inhibitors from Ganoderma lucidum and Lentinus
polychrous Lev. before.44 Therefore, the approach should be
efficiently applied to similar drug discovery tasks involving
single enzyme targets, provided a sufficiently large data set is
available.

4. METHODS
4.1. AChE Inhibitor Data Set. A list of compounds with

their inhibitory activity against AChE was retrieved from
PubChem (Protein accession ID P22303) originally contained
51,505 data points. Using IC50 ≤ 10 μM as a cutoff, 3001
nonredundant compounds were defined as “active” com-
pounds (having an inhibitory effect against AChE). 7825
compounds were “inactive” compounds (do not have an

inhibitory effect) as labeled by the database. To create our data
set, 3000 active and 3000 inactive compounds were randomly
selected and combined.

4.2. Deep Learning. A graph convolutional neural network
was implemented using the DeepChem package.40 The model
comprised the following layers: a graph convolutional layer, a
batch normalization layer, a graph pool layer, a dense layer,
another batch normalization layer, and a graph gather layer.
Seven hyperparameters listed in Table 1 were tuned to identify
the best combination. The varied values, as listed in Table 1,
could be combined into 432 combinations. To reduce the task,
the Latin hypercube algorithm was implemented to select only
44 combinations to train the model and identify the best
combination using the 5-fold cross-validation (CV) method.
The combination with the highest ROC score averaged over
the 5-fold was selected to train the final models.
Finally, due to the stochastic nature of the learning

algorithm (models trained with the same data and hyper-
parameters do not necessarily produce identical results), the
whole data set (3000 positive and 3000 negative data points)
was used to train five instances of the models with the
hyperparameter identified from the previous section. Then, the
five independently trained models were employed to predict
“active” probability scores for compounds from the BAC-
MUSHBASE database (http://bacmushbase.sci.ku.ac.th/).
The average predicted scores across the five models represent
the ensemble predictions that were used to screen for top-
ranking compounds for further investigation by structural
methods.

4.3. Molecular Modeling. AutoDock Vina 1.241 was used
to perform all molecular docking of 40 selected compounds,
including two currently approved drugs, donepezil and
galanthamine. The crystallographic structural data of acetyl-
cholinesterase (PDB ID: 4EY7) was obtained and set as the
receptor after stripping water, along with other ligand
molecules and Gasteiger charge parametrization by AutoDock-
Tools.45 Then, SMILES data of each selected compound was
obtained from the BACMUCHBASE database (http://
bacmushbase.sci.ku.ac.th/) before converting into 3D coor-
dinates by Openbabel46 and Gasteiger charge parametrization
by AutoDockTools.45 After that, a search space was defined by
a 40 × 40 × 40 Å3 cubic box centered between the three
catalytic triads of AChE. Finally, the molecular docking
calculation was performed for each ligand with the
exhaustiveness set to 20, and the binding energy of the best
docking mode was output along with the docked configuration
of the ligand on the receptor.
After selecting two candidate compounds based on the deep

learning prediction and the molecular docking binding energy
score, all-atom molecular dynamics (MD) simulations were
performed for the AChE complexes with donepezil, galanth-
amine, and the two candidate compounds using the best
binding mode from the molecular docking calculation as the
starting structure. All protein and ligand molecules were
parametrized through the GROMOS54A7 force field,47 in
which the partial charge of each atom within the ligand
molecules was obtained through semiempirical QM calcu-
lations by the MOPAC software48,49 implemented within the
Automated Topology Builder (ATB) Web server tool50 along
with other force field terms. The protonation states of all
systems were set at pH 7 by default, with all of the Asp and Glu
amino acid residues deprotonated and donepezil in their
protonated form. Each system was explicitly solvated within a
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cubic simulation box filled with simple point-charge (SPC)
water models and either Na+ or Cl− counterions to neutralize
the total charge with an 8 Å minimum buffer distance between
the protein surface and the periodic boundary, treated by
particle-mesh Ewald (PME) summation.51 After performing an
energy minimization of the whole system, a 1 ns simulated
annealing was carried out to linearly increase the temperature
from 100 to 300 K. After that, a 50 ns productive MD run
under an NPT ensemble with a constant temperature of 300 K
regulated by the velocity-rescale algorithm52 and a constant
pressure of 1 atm regulated by the Parrinello−Rahman barostat
was carried out.53 The 10 Å cutoff distance for short-ranged
interactions was employed, and holonomic constraints by the
P-LINC algorithm54 were applied for all covalent bonds with
hydrogen so that a 2 fs time step was allowed. All MD
simulations were performed by the GROMACS 2019 pack-
age55 before the calculations of root-mean-square deviation
(RMSD) for both global conformational change and ligand
shifting to ensure equilibration. Finally, the MM/PBSA
calculation by the g_mmpbsa package56 was performed for
each MD trajectory to obtain the time-averaged binding free
energy between the protein complex and the docked
compound contributed by electrostatics, van der Waals,
along with both polar and apolar solvation terms. The
contribution of entropy to the binding energy was calculated
by Schlitter’s method based on the covariance matrix analysis
implemented through the “gmx covar” and “gmx anaeig”
modules, for which the change in entropy was determined
between the bound protein/ligand complex and the unbound
systems. For each calculation, the dielectric constants of
proteins and water were set to 4 and 80, respectively, and the
surface tension of the solvent was set to 0.0226778 kJ/(mol
Å2). Salt concentration was set to 0.03 M, equivalent to the
ratio between the numbers of counterions and water molecules
in the simulation boxes. The contribution of each amino acid
residue from the energy decomposition analysis was performed
to elucidate the AChE binding mechanisms, which was
illustrated through Ligplot 2.242 for the last simulated snapshot
of each complex.

4.4. Molecular Feature Extraction and Exploration.
To calculate the molecular feature, as shown in Figure 6, the
ConvMolFeaturizer() command from the DeepChem package
was used to extract 75 per-atom attributes from each
compound. The featurization resulted in a per-atom feature
matrix, denoted as F, with dimensions N × 75, where N
represents the number of atoms in the respective compound.
Each atom is represented by a 75-bit vector, encompassing
atomistic features, such as atom type, degree, implicit valence,
formal charges, hybridization type, aromaticity, and total
number of hydrogens.
The structural information was then incorporated into

matrix F through the computation of H = (A + I) × F, where A
is the N × N adjacency matrix of the molecule with N atoms, I
is the identity matrix, and H is the resulting N × 75 matrix.
This matrix encapsulates the representation of each atom as a
sum of its neighboring atoms’ features. Subsequently, atom-
level features in matrix H were aggregated by averaging values
across all atoms in the molecule, resulting in a 1 × 75 vector
containing a molecule-level fingerprint for each compound.
Next, a correlation between each of the 75 molecule-level
features and the binding energy score was calculated to identify
the features influencing the AChE binding affinity.
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