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Abstract: Detailed and accurate three-dimensional (3D) information about the morphology of hierar-
chically structured materials is derived from multi-scale X-ray computed tomography (XCT) and
subsequent 3D data reconstruction. High-resolution X-ray microscopy and nano-XCT are suitable
techniques to nondestructively study nanomaterials, including porous or skeleton materials. How-
ever, laboratory nano-XCT studies are very time-consuming. To reduce the time-to-data by more than
an order of magnitude, we propose taking advantage of a monitored tomographic reconstruction.
The benefit of this new protocol for 3D imaging is that the data acquisition for each projection is
interspersed by image reconstruction. We demonstrate this new approach for nano-XCT data of
a novel transition-metal-based materials system: MoNi4 electrocatalysts anchored on MoO2 cuboids
aligned on Ni foam (MoNi4/MoO2@Ni). Quantitative data that describe the 3D morphology of
this hierarchically structured system with an advanced electrocatalytically active nanomaterial are
needed to tailor performance and durability of the electrocatalyst system. We present the framework
for monitored tomographic reconstruction, construct three stopping rules for various reconstruction
quality metrics and provide their experimental evaluation.

Keywords: nano X-ray computed tomography; hierarchical structures; 3D morphology; monitored
reconstruction; stopping rule; time reducing; quality metrics

1. Introduction

Multi-scale X-ray computed tomography (XCT) is an efficient approach to study the
3D morphology of natural or engineered hierarchically structured systems and materials [1].
This approach combines 3D–image information at several hierarchical levels, characterized
by typical feature sizes of structures, to fully resolve the 3D morphology of complex
systems. Experimentally, this approach requires the combination of several XCT techniques
with different sample volumes and resolutions, including nano-XCT. Measurement times
for complete XCT experiments depend strongly on the brightness of the X-ray source. The
brightness of laboratory X-ray sources is typically several orders of magnitude lower than
that of synchrotron radiation sources. Since X-ray microscopes with sub-100 nm resolution,
as needed for the characterization of nanostructures and nano-scale materials, include
X-ray optics with limited efficiency, data acquisition times for full tomographies are long,
particularly for laboratory tools [2]. As a consequence, additional approaches are needed,
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including advanced data analysis and new protocols for image data acquisition (“design of
experiment”). One option to reduce time-to-data for nano-XCT studies of nanomaterials
is the application of advanced data analysis procedures. Since artificial neural networks
are able to train themselves to recognize complex patterns, deep learning algorithms
have been applied to reduce image artifacts and to handle missing data in XCT studies.
Mapping filtered back projections identically and building up a deep neural network
architecture allows for the addition of different compensation layers for several types of
artifacts through end-to-end training [3]. As an example, missing data artifacts, e.g., from
a limited-angle tomography, were reduced by trained convolutional neural networks.
This approach extracts and suppresses implicit features of artifacts from reconstructed
images [4]. Neural networks were also successfully used for noise reduction. While the
expected internal structure information of an object is retained, shorter image acquisition
times are achieved [5,6]. What all these approaches have in common is that the deep neural
network is added as a post-correction step subsequently to the reconstruction step.

A tomographic reconstruction methodology with incorporated artificial-intelligence
(AI) algorithms was described by Topal et al. [7]. This approach considers unavoidable
misalignment and object motion during high-resolution 3D data acquisition, demonstrating
that high-quality 3D images could be obtained, and data from incomplete data sets can be
recovered. A novel computer vision methodology combined with a deep neural network
approach provides estimates for motion by tracking features through adjacent projections.
This tomographic–reconstruction algorithm is empowered by sophisticated correction mod-
ules that autonomously estimate and effectively suppress artifacts and random errors using
gradient descent and deep learning algorithms (examples see [8,9]). Another development
to shorten the data acquisition time for XCT was reported by Bulatov et al. [10]. A mon-
itored reconstruction process was proposed that performs the reconstruction procedure
not only after the completion of the measurement protocol. That means, this monitored
tomographic reconstruction can be considered as an “anytime algorithm”. The acquisition
of the individual two-dimensional (2D) projections is interspersed by image reconstruction,
with the final stop of the projection data acquisition occurring according to a defined
stopping rule.

In this paper, we are applying monitored tomographic reconstruction to the analysis of
nano-XCT data of a complex hierarchically structured materials system, demonstrating the
potential of this new approach for the generation of detailed and accurate 3D information
about the morphology of advanced nanomaterials in a significantly shorter period of
time. The chosen example, a high performance and durable electrocatalytic system with
a tailored morphology, is a novel transition-metal-based materials system for fast water
dissociation: MoNi4 electrocatalysts anchored on MoO2 cuboids aligned on Ni foam
(MoNi4/MoO2@Ni) [11]. XCT, both nano-XCT and micro-XCT, are suitable techniques to
provide the morphology of the (sub-)structures of such hierarchically structured materials
and systems [8]. Since individual projections, i.e., 2D slices of the investigated object,
include very different individual features, we used several different 2D slices of one object
for evaluation. The monitored tomographic reconstruction and its application to nano-XCT
data of nanomaterials are presented in this paper, with stopping rules discussed in detail.
Finally, the plausibility of the obtained results is provided.

2. Materials and Methods
2.1. Synthesis and Characterization of the MoNi4/MoO2@Ni Material System

Highly performant and durable systems for electrochemical energy storage and con-
version require the design and synthesis of materials with optimized hierarchical 3D
morphology and surface structures with high activity. In addition to the intrinsic proper-
ties of the constituent components that determine chemical activity and conductivity, the
material’s 3D morphology is crucial to prevent agglomeration of particles and to promote
mass transfer (i.e., reactant diffusion and product release) [8]. The design and synthesis of
robust 3D structures, e.g., electrocatalysts, with an optimized hierarchical morphology, are
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of particular interest for the upscaling of processes and for the development of technologies
to fabricate advanced energy conversion devices. They will therefore play an increasing
role in the future.

A novel transition-metal-based materials system for fast water dissociation, MoNi4
electrocatalysts anchored on MoO2 cuboids aligned on Ni foam (MoNi4/MoO2@Ni), was
selected for this study. Mo-Ni-based alloy (MoxNiy) electrocatalysts provide high electro-
catalytic efficiency for the hydrogen evolution reaction (HER).

The synthesis of the MoNi4 electrocatalyst was performed in a two-step process. Firstly,
NiMoO4 cuboids were grown on a piece of Ni foam (1 × 3 cm2) during a hydrothermal
reaction at 150 ◦C for 6 h in 15 mL deionized water containing Ni(NO3)2·6H2O (0.04 M) and
(NH4)6Mo7O24·4H2O (0.01 M). Subsequently, while the as-synthesized NiMoO4 cuboids
were heated in a H2/Ar (v/v, 5/95) atmosphere at 500 ◦C for 2 h, Ni atoms were diffused
in a controlled way to the surface of the cuboid, forming numerous MoNi4 nanoparticles
with a size of 20–100 nm on the surface of the MoO2 cuboids. Simultaneously, Ni out-
diffusion caused a change in the composition of the cuboids from NiMoO4 to MoO2. The
MoNi4 electrocatalyst exhibited a zero onset overpotential, an overpotential of 15 mV at
10 mAcm−2 and a low Tafel slope of 30 mV per decade in 1 M KOH electrolyte [11].

Micro- and nano-XCT, scanning electron microscopy (SEM), and transition electron mi-
croscopy (TEM) were applied to image the electrocatalytically active nano-sized MoNi4 par-
ticles anchored on MoO2 micro cuboids vertically aligned on the conductive Ni foam [8,11].
The needle-like MoO2 micro cuboids, which were vertically arranged on the Ni foam, had
rectangular cross-sections of 0.5 × 1 µm2 and 10 to 20 µm in length. MoNi4 nanoparticles
20 to 100 nm in size were positioned on the surface of the MoO2 cuboids [8].

2.2. Nano-XCT (Laboratory Tool)

The design of 3D electrocatalysts with high performance and durability requires both
an optimized hierarchical morphology and surface structures with high activity. A sys-
tematic approach to determine the morphology of hierarchically structured materials with
high accuracy is based on multi-scale X-ray tomography since it provides 3D information
non-destructively at several length scales, with a reasonable compromise between the
considered sample volume and spatial resolution [1]. Here, we report the nano-XCT study
of MoNi4/MoO2@Ni to image the MoNi4 nanoparticles located on MoO2 micro cuboids,
since unavoidable misalignment and thermomechanical effects are more critical for X-ray
imaging with high spatial resolution.

Three-dimensional tomographic images of an object are generated by acquiring many
nondestructively obtained radiographs (2D projection images) of an object at several
projection angles. Subsequently, a reconstruction algorithm is applied to these images
for the nano-XCT technique with sub-100 nm resolution. It is necessary but difficult
in practice, if not impossible, to align the various system components with sub-micron
precision. Therefore, the acquired projections usually do not strictly match the acquisition
geometry as defined by the reconstruction algorithm. This mismatch results in artifacts
in the reconstructed images that can seriously degrade their quality. Consequently, it is
critical to explain the root causes of the artifacts in order to understand what can be done to
avoid or mitigate them. Image reconstruction could be a powerful method for addressing
the issues of accuracy of the XCT technique.

The nano-XCT data acquisition was performed using an Xradia nano-XCT 100 tool
(Concord, CA, USA), equipped with a rotating anode X-ray source (Cu-Kα radiation, 8 keV
photon energy). Figure 1 shows the scheme of the X-ray microscope used [8]. The X-ray
microscopy setup offers (nearly) parallel-beam imaging. Therefore, an angular range of
180◦ is sufficient for the acquisition of the tomography data. Laboratory X-ray microscopes
operating in the multi-keV range use Fresnel zone plates as focusing lenses, resulting in
a spatial resolution of the microscope of sub-100 nm. The enlarged image is projected onto
a thin scintillator and subsequently recorded by an optical microscope with a CCD camera
(Crytur, Turnov, Czech Republic).
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Figure 1. Characteristic early parallel-beam geometry for a nano-XCT setup.

A sample with MoO2 cuboids, each of them with a size of about 35 × 35 × 35 µm3, was
picked up from the Ni foam and fixed on the tip of a tungsten wire. The laboratory nano-XCT
studies were performed in standard resolution mode (40× FZP magnification × 20× optical
magnification = 800× total magnification). The field of view width and height were
65 µm with 1024 pixels for each, resulting in a voxel size of 65 nm. The tilt series for the
tomography consisted of 801 images within an angular range of 180◦. The exposure time
per image was 180 s.

We used Smart Tomo Engine software [12] to reconstruct the 3D numerical image of
the investigated structure. The result of the 3D reconstruction from the fully collected set
of projections is presented in Figure 2. A Filtered Back Projection algorithm was used for
reconstruction [13].
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Figure 2. Reconstructed volume from all collected projections.

3. Monitored Reconstruction

It is normal practice that tomographic image reconstruction starts after the completion
of the scan protocol, after which the recognition process can be started [14]. In this section,
we turn to the monitored reconstruction approach introduced in [10] in order to explain
how to look at the reconstruction as a process with the monitored result, i.e., we present
a framework for monitored reconstruction. The fact that the quality of reconstruction
depends not only on the number of projections but also on the sequence of their shooting
was already shown in the 1990s [15]. In our modeling experiment, we transferred the
projections for reconstruction in some random sequences. Below, we consider different XY
slices of the reconstructed object (Figure 2) as independent samples. The object itself is at
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the top of the image and has a needle-like shape. Below is the sample holder. Several gold
particles used for calibration are placed at the bottom of the object (brown color).

3.1. Cost of the Collected Projections

We collected a sequence of projections X = (X1, X2, . . .) from the slice θ ∈ Θ according
to a protocol. We can consider χi as a random vector that depends on the slice θ and is in
charge of the projection angle. Rn(x1, x2, . . . , xn) is the slice reconstructed from n collected
projections. ε(Rn(x1, . . . , xn), θ) is the reconstruction error for the slice θ. Our task was to
obtain a reconstruction result with the lowest value of the error ε(Rn(x1, . . . , xn), θ). We
assumed that the value of ε(Rn(x1, . . . , xn), θ) decreases over time.

Projection measurement has a cost in terms of measurement time, ignoring compu-
tation time. The best compromise between the current error and cost of the collected
projections leads to the problem of optimal stopping. We had to determine the last pro-
jection when the collecting of projections should be terminated. In that way, the current
result of reconstruction would be final. A comprehensive description of optimal stopping
problems formalization can be found in [15,16].

We denote the sequence of cost functions by c = (c0, c1(x1), c2(x1, x2), . . .), cn(x1, . . . , xn) <
cn+1(x1, . . . , xn, xn+1). The cost function cn has a domain χn, denoting the total cost of
projection collecting X1 = x1, . . . , Xn = xn. The total loss Ln(x1, . . . , xn) of collecting n
projections and reconstruction Rn(x1, . . . , xn) is a sum of the reconstruction error and the
cost of required projections:

Ln(x1, . . . , xn) =
= ε(Rn(x1, . . . , xn), θ) + cn(x1, . . . , xn).

(1)

The problem of stopping data collection and calculations involves choosing a stopping
rule, which should optimize the expected loss. Figure 3 presents a schematic plot of the
monitored reconstruction process.
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3.2. Absolute and Relative Estimation Errors

To evaluate the accuracy of the partial reconstruction results, we used the absolute
estimation errors (2) in terms of `2 norm:

RSRE(Rn, θ) =‖ Rn − R∗(θ) ‖2 (2)

and two relative estimation errors in terms of `2 norm. The first one is normalized to a slice
reconstruction from the full set of projections R∗(θ) :

NRSRE(Rn, θ) =
‖ Rn − R∗(θ) ‖2

‖ R∗(θ) ‖ (3)

The second relative estimation error is normalized to the sum of pixel values of the
slice reconstructed from the complete set of projections S(R∗(θ)) :

S− RSRE(Rn, θ) =
‖ Rn − R∗(θ) ‖2

S(R∗(θ))
(4)

Here Rn is a current partial reconstruction of the slice. The RSRE metric is a traditional
way to compare two images, which can be used for matching the reconstructed images.
The use of normalizations is due to the appearance of various artifacts on tomographic
images. In addition, S-RSRE errors are sensitive to the spectral width of the probe.

In general, the tomographic imaging process takes the number of projections for
reconstruction that are known in advance. In the case of the monitored reconstruction,
we accept that the data acquisition protocol defines a natural stopping point where all
required projections are acquired, e.g., at the stage n = T. The final reconstruction result
RT corresponsds to all collected projections. To prove the impact of the stopping rules,
we calculate the error component associated with the number of collected projections.
To conclude, it is sufficient to use the last reconstruction result RT instead of the ground
truth value R∗ for the stopping problem. Consequently, the obtained reconstruction
result corresponds to that which can be achieved using the measurement protocol for the
zero value of the error function.

3.3. Stopping Rules

We define a stopping rule φ as a sequence of functions in which each function is the
conditional probability of stopping data acquisition, given that n projections have been
collected and X1 = x1, . . . , Xn = xn [17]. With a selected stopping rule φ, an arbitrary
variable N can be specified, which represents the corresponding stopping time. The
stopping time N and stopping rule φ are associated in this way:

φn(x1, . . . , xn) =
= P(N = n | N ≥ n, X1 = x1, . . . , Xn = xn).

(5)

The stopping problem requires choosing a proper stopping rule φ that would mini-
mize the expected loss function V(φ), which can be defined as follows

V(φ) = E

(
=∞

∑
n=0

(φn(X1, . . . , Xn)
n−1

∏
i=0

(1− φi(X1, . . . , Xi)))Ln(X1, . . . , Xn)

)
(6)

where the “= ∞” assumes that the summation overvalues of n from 0 to ∞, including ∞.
In terms of the arbitrary stopping time N, the expected loss can be defined as follows

V(φ) = E(LN(X1, . . . , XN)). (7)

Solving the stopping Equation (6) determines the moment when the quality of the
reconstructed image is good enough given the expended cost, i.e., when the process of
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monitored reconstruction should be stopped. The scheme of the monitored reconstruction
model is presented in Figure 3.

If we assume a moment n = T where the process must stop in any case, independent of
the reconstruction accuracy, the problem can be defined as a finite-horizon-stopping prob-
lem. For the known distributions of X1, X2, . . . and total losses Ln (1), the general method
for finding an optimal value for a stopping rule is backward induction [18,19]. Monotone-
stopping problems [18,20] are a particular case. Let An denote the event {Ln ≤ En(Ln+1)}.
The optimal stopping problem is defined as monotone if ∀n ≥ 0 : An ⊂ An+1. Here, En(·)
is the conditional expectation of a random variable given that the first n observations are
taken. If the stopping problem is monotonic, an optimal stopping rule can be found in
form [10]:

N = min{n ≥ 0 : Ln ≤ En(Ln+1)}. (8)

With the loss function (1), the rule takes the following form:

N = min{n ≥ 0 : ε(Rn, θ)− En(ε(Rn+1, θ)) ≤
≤ En(cn+1)− cn}.

(9)

In our experiments, we used ε(Rn, θ) = ρ(Rn, R∗(θ)) in terms of (6). Furthermore, the
stopping rules can be rewritten:

NRSRE
∆ = min{n ≥ 0 : En(‖ Rn − Rn+1 ‖2) ≤

≤ En(cn+1)− cn}.
NNRSRE

∆ = min{n ≥ 0 : En(‖ Rn − Rn+1 ‖2) ≤
≤‖ RT ‖2 ·(En(cn+1)− cn)},

NS−RSRE
∆ = min{n ≥ 0 : En(|Rn − Rn+1|2) ≤ S(RT) · (En(cn+1)− cn)}.

(10)

To apply the stopping rules, we used the straightforward-estimation method [10],
assuming that the looking distance is close to the distance between the two most recently
obtained results:

En(‖ Rn − Rn+1 ‖2) ≈‖ Rn−1 − Rn ‖2 . (11)

Since the measurement time of one projection (exposition time) does not change
during the experiment and is long compared to the time spent on reconstruction, the
cost function is relative to the number of acquired projections. The looking value of cost
function on the next step in the process is larger than the current cost function on the
constant value c:

En(cn+1)− cn = c. (12)

To implement the stopping rule NRSRE, the following dependence model between
the reconstruction result norm and the stage number n can be written:

‖ Rn ‖2 ≈
a0

a1 + n
+ a2. (13)

At each stage n of the regression (13) values, a0, a1, and a2 were calculated using
the stated norms ‖ R1 ‖2,‖ R2 ‖2, . . . , ‖ Rn ‖2, of the existing reconstruction images in the
following way: on the outer level, we used a procedure of ternary search through the
values of the parameter a1, then using a simple linear least-squares fitting, with a fixed
value of a1, the values of a0 and a2 were obtained. The values determined on each stage
were used to extrapolate the value of ‖ RT ‖2. After all, we needed to estimate the Radon
invariant S(RT) to implement the stopping rule NS−RSRE

∆ (8). The values of the Radon
invariant did not differ notably from the values S(R1), S(R2), . . . , S(Rn) and from the sums
of elements in each projection S(x1), S(x2), . . . , S(xn). All currently available projections
were used to calculate the noise reduction,
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S(RT) ≈
1
n

n

∑
i=1

S(xi). (14)

Below, we present the evaluation of the monitored tomographic reconstruction process
with the presented framework.

4. Results and Discussion

In our simulation experiment, we used five different 2D slices of the object, choosing
slices with different morphologies. The numbers of the slices are 124, 136, 175, 243, and 260.
Two slices (numbers 175 and 260, from five slices used in the experiment) reconstructed
from the full set of the collected projections are presented in Figure 4. An FBP algorithm
was used for partial reconstruction. As slice 175 contains the gold particles used as fiduciary
markers, we present this slice in two different intensity scales (Figure 4a,b). For 4a and 4b
images (260 and 175 slices, respectively), the dynamic intervals of the pixel intensity values
are the same, i.e., they correspond to the sample intensities interval.
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Figure 4. Examples of reconstructed sections with a maximal difference in their morphology: (a) is 175th slice presented in
the full interval of reconstructed values, (b) is 175th slice with limited interval to pronounce the object and (c) is 260th slice.

Examples of partial reconstructions (three chosen slices from five slices used in the
experiment: 124, 175, and 260) are presented from top to bottom in Figure 5. The number
of projections used for the reconstruction are 10, 100, 300, 600, and 801, respectively.

We present the error functions RSRE (Figure 6a), NRSRE (Figure 6b), and S-RSRE
(Figure 6c) to confirm our conclusion about different convergences to the last result.

We evaluated the constructed stopping rules. In Figure 7, the expected performance
profiles [21] of the rules for RSRE, NRSRE, and S-RSRE are presented. To obtain the
points of the gray baseline plots, we fixed the projection number and calculated the mean
error function value for all reconstructed slices. The stopping rule performance profile is
obtained by fixing the value of the cost c. For each slice, the monitored reconstruction was
done. To obtain the abscissa of the point (X-axis value), we calculated the mean number
of the projections, and to obtain the Y-axis value, we calculated the mean error value
achieved at stopping time. In all cases, the use of stopping rules (blue, green, and red lines)
demonstrates the gain in the number of used projections.

Below, we consider in detail Figure 7a, describing the points A, B, and C. Point A of
the baseline corresponds to the following moment. Exactly 550 projections were used for
the reconstruction of each slice. Then, the mean RSRE error was calculated. The mean error
level is 0.06. The cost value c = 0.0032 for the same number of the projections on average
for all slices in the monitored reconstruction case (red line) corresponds to point B. The
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mean error level is 0.05. This level on the reference plot (baseline) corresponds to point C.
The triples of points on the residual two graphs are interpreted similarly.
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Figure 6. Convergence graphs for different error functions for five chosen slices: (a) is for RSRE, (b) is for NRSRE and (c) is
for S-RSRE.

The profiles are constructed by placing the mean error level of partial reconstructions
against the mean number of projections required before the stopping condition is met,
while varying the cost parameter c. The mean error level is expressed in terms of the error
function value ε(Rn, θ) averaged through the slices. As a reference, we plot the mean error
level achieved by reconstruction of the slice with a fixed number of the projections.
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5. Conclusions

A monitored tomographic reconstruction process that performs the reconstruction
procedure not only after the completion of the measurement protocol but simultaneously
to the acquisition of the individual radiographies was proposed. The data acquisition for
each projection or group of the projections is interspersed by fast [22] image reconstruction.
We demonstrated a new approach for nano-XCT data for a novel transition-metal-based
materials system: MoNi4 electrocatalysts anchored on MoO2 cuboids aligned on Ni foam
(MoNi4/MoO2@Ni). Applying the stopping rules to the monitored tomographic recon-
struction process decreases the average level of error with a fixed average number of
projections. This effect is demonstrated for the three stopping rules based on the plotting
of the expected performance profiles.

The proposed new protocol for image data acquisition (“design of experiment”) and
advanced data analysis reduces time-to-data for nano-XCT studies of nanomaterials by
more than an order of magnitude, while maintaining sub-100 nm resolution and high image
quality. In addition, the reduced dose is an advantage for the study of radiation–sensitive
biological and organic materials. Finally, the advanced protocol is also applicable to
synchrotron radiation 3D imaging studies, with particular benefits for in situ and operando
studies of kinetic processes in materials.
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