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A pan‑cancer analysis revealing 
the role of TIGIT in tumor 
microenvironment
Jie Wen1, Xueyi Mao1, Quan Cheng1,2, Zhixiong Liu1 & Fangkun Liu1,3*

T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT), an immune checkpoint, 
plays a pivotal role in immune suppression. However its role in tumor immunity and correlation 
with the genetic and epigenetic alterations remains unknown. Here, we comprehensively analyzed 
the expression patterns of the TIGIT and its value of prognostic prediction among 33 types of 
cancers based on the data collected from The Cancer Genome Atlas (TCGA) and the Genotype‑Tissue 
Expression projects (GTEx). Furthermore, the correlations of TIGIT with pathological stages, tumor‑
infiltrating immune cells (TIICs), signatures of T cells subtypes, immune checkpoint genes, the degree 
of Estimation of STromal and Immune cells in MAlignant Tumor tissues using the Expression data 
(ESTIMATE), tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MMR) 
genes, and DNA methyltransferases (DNMTs) were also explored. Gene functional enrichment was 
conducted by Gene Set Enrichment Analysis (GSEA). Our results showed that the expression of TIGIT 
was upregulated in most of the cancer types. Cox regression model showed that high expression of 
TIGIT in tumor samples correlates with poor prognosis in KIRC, KIRP, LGG, UVM, and with favorable 
prognosis in BRCA, CECS, HNSC, SKCM. TIGIT expression positively correlated with advanced stages, 
TIICs, the signatures of effector T cells, exhausted T cells, effector Tregs and the degree of ESTIMATE 
in KIRC, KIRP and UVM. TIGIT expression also positively correlated with CTLA4, PDCD1 (PD‑1), CD274 
(PD‑L1), ICOS in most of the cancer types. Furthermore, the expression of TIGIT was correlated 
with TMB, MSI, MMR genes and DNMTs in different types of cancers. GSEA analysis showed that 
the expression of TIGIT was related to cytokine‑cytokine receptor interaction, allograft rejection, 
oxidative phosphorylation. These findings suggested that TIGIT could serve as a potential biomarker 
for prognosis and a novel target for immunotherapies in cancers.

T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT, also called WUCAM, Vstm3, VSIG9), 
an immune inhibitory receptor (IR) and immune checkpoint expressed on NK cells and T cells including  CD4+ T 
cells,  CD8+ cells and  Tregs, plays critical roles in limiting adaptive and innate immunity against  tumors1–3. Upregu-
lation of TIGIT was observed in a variety of cancers, such as lung  cancers4, kidney  cancers5, liver  cancers6. Several 
mechanisms of the TIGIT inhibition of T cells in the tumor microenvironment (TME) have been  revealed7. Cur-
rently, TIGIT has been viewed as a promising biomarker to predict the prognosis and a potential target to develop 
novel  immunotherapies8. However, a specific function of TIGIT in pan-cancers remains largely unknown.

The initiation and development of the cancers are largely dependent on immune  dysfunction9.TME consists 
of a variety of cells including immune cells, stromal cells, etc. The tumor and immune cells interact with each 
other dynamically in TME, which determines the characteristics and heterogenicity of the  cancers10,11. Under 
chronic exposure to tumor antigens, T cells become dysfunctional/exhausted and upregulate several IRs includ-
ing programmed cell death receptor 1 (PD-1) and  TIGIT12,13. Immunotherapies such as Immune checkpoint 
blockades (ICBs) have achieved great progress and show tremendous potentiality, especially for those patients 
with resistance to  chemoradiotherapy14,15. However, the clinical options of the immunotherapies are still  lacking16. 
Thus it is of great significance and urgency to explore and validate more effective immune-related targets.

In this research, taking advantages of TCGA and GTEx datasets, we conducted a comprehensive analysis at 
pan-cancer level to illustrate the TIGIT expression profiles, prognostic values and its correlation with immune 
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infiltration level, tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MMR) genes, 
and DNA methyltransferases (DNMTs).

Methods
Data source and processing. The TIGIT expression data of 33 types of cancers and corresponding clinical 
information were acquired from The Cancer Genome Atlas through the UCSC cancer genome browser (https:// 
tcga. xenah ubs. net, accessed April 2020)17. To compare with the TIGIT expression level in normal tissues, we 
extracted RNA sequences in normal tissues from Genotype-tissue expression (GTEx; http:// commo nfund. nih. 
gov/ GTEx/).

Data of 33 types of cancer were introduced into the final analysis, including Adrenocortical Carcinoma (ACC), 
Bladder Urothelial Carcinoma (BLCA), Breast invasive carcinoma (BRCA), Cervical squamous cell carcinoma 
and endocervical adenocarcinoma (CESC), Cholangiocarcinoma (CHOL), Colon adenocarcinoma (COAD), 
Lymphoid Neoplasm Diffuse Large B-cell Lymphoma (DLBC), Esophageal carcinoma (ESCA), Glioblastoma mul-
tiforme (GBM), Head and Neck squamous cell carcinoma (HNSC), Kidney Chromophobe (KICH), Kidney renal 
clear cell carcinoma (KIRC), Kidney renal papillary cell carcinoma (KIRP), Acute Myeloid Leukemia (LAML), 
Brain Lower Grade Glioma (LGG), Liver hepatocellular carcinoma (LIHC), Lung adenocarcinoma (LUAD), Lung 
squamous cell carcinoma (LUSC), Mesothelioma (MESO), Ovarian serous cystadenocarcinoma (OV), Pancreatic 
adenocarcinoma (PAAD), Pheochromocytoma and Paraganglioma (PCPG), Prostate adenocarcinoma (PRAD), 
Rectum adenocarcinoma (READ), Sarcoma (SARC), Skin Cutaneous Melanoma (SKCM), Stomach adenocarci-
noma (STAD), Testicular Germ Cell Tumors (TGCT), Thyroid carcinoma (THCA), Thymoma (THYM), Uterine 
Corpus Endometrial Carcinoma (UCEC), Uterine Carcinosarcoma (UCS), Uveal Melanoma (UVM).

Gene expression and survival analysis. The TIGIT expression data of 33 cancer types from TCGA and 
normal samples from GTEx were extracted and formed an expression matrix. Using univariate cox model to 
evaluate the correlation between TIGIT expression and patient survival for the 33 cancer types. Based on the 
median TIGIT expression levels, we stratified patients into the high and low group. The Kaplan–Meier (KM) 
analysis by log rank test was applied to compared patient prognosis from these 2 groups. A p < 0.05 was consid-
ered as statistical significance.

GEPIA2 (Gene Expression Profiling Interactive Analysis 2, http:// gepia2. cancer- pku. cn/# index) was a power-
ful resource for analysis of gene expression based on the data from TCGA and GTEx  database18. Here we assessed 
the correlation between TIGIT expression and pathological stages in cancers by utilizing GEPIA2.

Relationship between TIGIT expression and immunity. We explored the abundance of tumor-infil-
trated immune cells (TIICs) among 33 types of cancers through Tumor Immune Estimation Resource (TIMER, 
https:// cistr ome. shiny apps. io/ timer/)19 and Cell-type identification by Estimating Relative Subsets of RNA Tran-
scripts (CIBERSORT)20 respectively. The correlation between the TIGIT expression level and the abundance of 
TIICs including CD4+ T cells, CD8+ T cells, B cells, neutrophils, macrophages and dendritic cells. GEPIA2 was 
utilized to analyze the correlation between TIGIT expression and signatures of T cells subtypes. We chose log2 
transformed expression data as parameter selection for plotting.

We also utilized the Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression 
data (ESTIMATE) to generate 3 scores including stromal score, immune score, and ESTIMATE score, which 
represented the immunocyte infiltration level, stromal cells, tumor purity respectively in tumor  tissues21. We 
further analyzed the correlation between TIGIT expression and these 3 scores.

In addition, to explore the potential mechanism of immune inhibition of TIGIT signaling, the correlations 
of TIGIT expression with other checkpoint markers were compared across diverse cancer types with preference 
to previous  researches22–24, with the generation of estimated statistical significance and Spearman’s correlation 
coefficient.

Through the extraction of somatic mutation profiles of all patients from TCGA, we calculated the TMB scores, 
MSI scores and analyzed their correlation with TIGIT expression. We also conducted correlation analysis between 
TIGIT expression and MMR genes, DNMTs, respectively. We drew the figures to visualization of the results on 
Sangerbox online platform (http:// sange rbox. com/).

Gene set enrichment analysis. To explore the biological signaling pathway of TIGIT, gene set enrich-
ment analysis (GSEA) was performed by KEGG and HALLMARK  analyses25–27. We acquired the permission to 
use the KEGG software from the Kanehisa laboratories. Significant enrichment results were demonstrated using 
normalized enrichment scores (NES), gene ratio and p  value28. A p < 0.05 and FDR ≤ 0.25 were considered as 
statistical significance.

Statistical analysis. Gene expression profiles acquired from TCGA and GTEx were analysed by Students’ 
t-test. Spearman’s correlation analysis was applied to evaluated the correlation between TIGIT expression and 
the abundance of TIICs and scores of immune cells. All analyses were performed with the R package (ggplot2, 
circlize, clusterProfiler, DOSE and enrichplot) (http:// www.r- proje ct. org/) to visualize the results. A p < 0.05 
indicated statistical significance.

https://tcga.xenahubs.net
https://tcga.xenahubs.net
http://commonfund.nih.gov/GTEx/
http://commonfund.nih.gov/GTEx/
http://gepia2.cancer-pku.cn/#index
https://cistrome.shinyapps.io/timer/
http://sangerbox.com/
http://www.r-project.org/
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Results
Pan‑cancer expression landscape of TIGIT. Comparison of expression of TIGIT between normal and 
tumor samples across TCGA cancer types and the combined datasets based on integrated database of GTEx and 
TCGA datasets were conducted and showed in Fig. 1. Consistent upregulated expression of TIGIT were seen 
in BRCA, CHOL, ESCA, GBM, HNSC, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, STAD, USEC compared with 
normal tissues based on both comparisons as shown in Fig. 1A,B. The TIGIT expression was downregulated in 
THCA based on TCGA datasets. On the contrary, the integrated database showed that TIGIT expression was 
significantly higher in THCA than in normal tissues. Besides THCA, patients with ACC, CESC, COAD, LAML, 
OV, PAAD, PRAD, TGCT also exhibited significantly higher expression of TIGIT in integrated database.

The expression level of TIGIT in tumor samples of BRCA, CHOL, ESCA, GBM, HNSC, KIRP, KIRC, LGG, 
LIHC, LUAD, LUSC, STAD were significantly higher than in normal tissues based on both comparisons as shown 
in Fig. 1A,B, and the expression level of TIGIT were also significantly increased in ACC, BLCA, CESC, CHOL, 
COAD, ESCA, GBM, HNSC, KIRC, LAML, LGG, LUSC, OV, PAAD, PRAD, SKCM, STAD, TGCT, THCA, UCS 
compared with normal tissues based on the integrated database.

Prognostic value of TIGIT in cancers. Figure 2 summarized the results of overall survival (OS) analyses 
of TIGIT expression across the 33 cancer types. Cox regression model showed that high expression of TIGIT in 
tumor samples correlates with poor prognosis in KIRC (HR, 1.05, 95% CI 1.02–1.08), KIRP (HR, 1.14, 95% CI 
1.06–1.22), LGG (HR, 1.18, 95% CI 1.01–1.36), UVM (HR, 1.2, 95% CI 1.04–1.38), and with favorable prognosis 

Figure 1.  TIGIT expression levels in different types of human cancers. The expression level of TIGIT between 
tumor and normal tissues were compared in twenty cancer types based on the TCGA database (A) and twenty-
seven cancer types based on the integrated database from TCGA and GTEx datasets (B). *p < 0.05, **p < 0.01, 
and ***p < 0.001.
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in BRCA (HR, 0.96, 95% CI 0.93–1), CECS (HR, 0.9, 95% CI 0.84–0.97), HNSC (HR, 0.95, 95% CI 0.91–0.98), 
SKCM (HR, 0.96, 95% CI 0.94–0.98) (Fig. 2A). Univariate analysis confirmed the prognostic impact of TIGIT in 
KIRC (p = 0.0057), KIRP (p < 0.0001) and UVM (p < 0.0001) with the same trend (Fig. 2B). In addition, based on 
the GEPIA2 dataset, we verified that TIGIT expression had a forceful positive correlation with advanced cancer 
stages in KIRC, KIRP and SKCM (p < 0.01, Fig. 3A and Supplementary File 1). More information was available 
in the Supplementary File 1.

Correlation between TIGIT and immune infiltration level. Considering several studies have revealed 
the regulatory function of TIGIT in TME, we analyzed its effect on the abundance of immune infiltration levels 
in tumors that harbor prognostic value. TIMER showed that TIGIT positively correlated with the abundance of 
CD8+ T cell in KIRC, KIRP, UVM and also positively correlated with the abundance of B cell, CD4+ T cell, Neu-
trophil, Macrophage and Dendritic cell in KIRC, KIRP, while TIGIT negatively correlated with the abundance 
of B cell in UVM (Fig. 4). These results suggested the association between TIGIT and immune cells infiltration, 
which might influence the progression of the tumors and patients’ prognoses.

As activated and exhausted T cells would upregulate the expression of TIGIT, we assessed the correlation 
between TIGIT expression and the signatures of effector T cells, exhausted T cells and effector  Tregs. Similar to 
TIMER data analysis, we also found that there was a significant positive correlation of TIGIT with the signatures 
of effector T cells (CX3CR1, FGFBP2, FCGR3A), exhausted T cells (HAVCR2, TIGIT, LAG3, PDCD1, CXCL13, 
LAYN) and effector  Tregs (FOXP3, CTLA4, CCR8, TNFRSF9) in KIRC, KIRP, UVM (Fig. 3B), LGG, UVM, BRCA, 
CECS, HNSC, SKCM (Supplementary File 2).

We calculated the immune, stromal and estimate scores respectively through ESTIMATE method. Later we 
evaluated the correlation between TIGIT expression and immune/stromal/estimate scores in three cancer types. 
As shown in Fig. 5, TIGIT expression was significant correlated with the stromal, immune and estimate scores 
in all these cancers (all value of p < 0.05). These results indicated that the content of immune or stromal cells 
elevated and the purity of tumors reduced along with the escalation of the TIGIT expression.

To further investigate the underlying mechanism of immune inhibition of TIGIT signaling, we analyzed the 
relationship of TIGIT expression with multiple immune checkpoint markers across 33 cancer types (Fig. 6). 
Generally, our results showed that TIGIT expression was significantly correlated with many immune checkpoints 
in diverse immunocytes and distinct T cells, such as the positive correlation of TIGIT with CTLA4, PDCD1 
(PD-1), CD274 (PD-L1), ICOS in most of the cancer types, implying a comprehensive co-expressing landscape.

Correlation analysis on TMB, MSI, MMR and DNMT. Moreover, we evaluated the association of 
TMB/MSI with TIGIT expression (Fig. 7). We found that TIGIT expression was positively correlated with the 

Figure 2.  Selected Kaplan–Meier plots and forest plot comparing the high and low expression of TIGIT on 
overall survival (OS) across different cancers (A) Forest plot exhibiting the influence of high expression of 
TIGIT on OS across thirty three cancer types using Cox regression model. (B) Kaplan–Meier survival curves 
comparison of high and low expression of TIGIT for the OS analysis for BRCA, CECS, HNSC, KIRC, KIRP, 
LGG, SKCM and UVM.
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TMB in BRCA (p < 0.0001), CESC (p = 0.0058), COAD (p < 0.0001), LAML (p = 0.021), SARC (p = 0.0034), 
SKCM (p = 0.042), THYM (p = 0.0016), UCEC (p < 0.0001), USC (p = 0.071) while negatively correlated with 
the TMB in BLCA (p = 0.00013), PAAD (p = 0.0062), THCA (p = 0.0063), as shown in Fig. 7A. Moreover, TIGIT 
expression was found to be positively correlated to the MSI in COAD (p < 0.0001), READ (p = 0.046), UCEC 
(p < 0.0001) while negatively correlated to the MSI in ESCA (p = 0.0063), HNSC (p = 0.00024), KIRP (p = 0.015), 
LUSC (p = 0.028), OV (p < 0.0001), SKCM (p = 0.0029), TGCT (p < 0.0001), as presented in Fig. 7B.

Furthermore, we analyzed the correlation of TIGIT with the expression of MMR genes (MLH1, MSH2, 
MSH6, PMS2) and EPCAM as the upstream gene of MSH2. In 11 of the 33 cancer types TIGIT was positively 
correlated with the expression of at least one MMR genes. And in 16 types of cancers TIGIT was negatively cor-
related with the expression of MMR genes (Fig. 8A). Besides, we also performed a correlation analysis between 
TIGIT expression and DNMTs expression (DNMT1, DNMT2, DNMT3A, and DNMT3B). As shown in Fig. 8B, 
TIGIT was positively correlated with at least one DNMTs expression in 17 types cancers, TIGIT was negatively 
correlated with DNMTs expression in 5 cancer types.

Functional analysis by GSEA. GSEA was performed to explore the biological role of the TIGIT. Gener-
ally, the top three negatively enriched KEGG terms in high TIGIT subgroup were cytokine-cytokine recep-
tor interaction, chemokine signaling pathway and natural killer cell mediated cytotoxicity (Fig. 9A) and the 
top three negatively enriched HALLMARK terms included allograft rejection, interferon-gamma response and 
IL6-JAK-STAT3 signaling (Fig.  9C). The top positively enriched terms were oxidative phosphorylation and 
propanoate metabolism (Fig. 9B,D). These results suggested the possible signaling pathway and mechanism of 
TIGIT function on immune and metabolic function.

Discussion
The present work illustrated a comprehensive workflow for pan-cancer analysis and thoroughly investigated the 
role of TIGIT in cancers. The results showed the prognostic impact of TIGIT across the different cancer types. 
TIGIT expression mediated infiltrated immune cells and positively correlated with the expression of LAG3, 
CTLA4, PDCD1 (PD-1), CD274 (PD-L1), PDCD1LG2 (PD-L2) in most of the cancer types. TIGIT expression 
was also correlated with TMB/MSI/DNMTs/MMR genes in multiple cancers. GSEA results demonstrated the 
high TIGIT patient group negatively enriched terms including cytokine-cytokine receptor interaction, chemokine 
signaling pathway, natural killer cell mediated cytotoxicity, allograft rejection, interferon gamma response and 
IL6-JAK-STAT3 signaling.

Our study showed the great prognostic values of TIGIT across different cancer types. Upregulated TIGIT 
expression has been reported in  KIRC29,  LGG30 and correlated to poor prognosis, which was consistent with our 

Figure 3.  The correlations of TIGIT with pathological stages (A) and the signatures of effector T cells, 
exhausted T cells and effector  Tregs (B) in KIRC, KIRP, UVM by GEPIA2 analysis.
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results. Our results also revealed the correlation of TIGIT with pathological stages in KIRC, KIRP, and UVM 
these 3 cancer types with prognostic values. Previous studies and our results both indicated that TIGIT could 
serve as a potential prognostic biomarker in multiple types of  cancers4,6,31.

To our knowledge, TIGIT expression would be upregulated along with the activation of T cells and NK 
 cells3. In addition, under the chronic antigen stimulation, T cells become dysfunctional/exhausted and would 
also upregulate the expression of some IRs including TIGIT and PD-112,13,32–34, consistent with our results that 
TIGIT expression was positively correlated to the effector T cells, exhausted T cells and  Tregs. Several studies have 
revealed the wide suppressive impact of TIGIT on a wide range of immune cells and immune  function35,36, gener-
ally through (1) binding CD155 and triggering direct inhibitory signals on T/NK  cells3,37, (2) binding CD155 on 
APC to produce more anti-inflammatory  cytokines3, (3) binding CD155 competing with  CD2262 and disrupting 
CD226 homodimerization to impede CD226-mediated T cell  activation33, (4) stabilizing and enhancing the 
immunosuppressive functions of  Tregs36,38, (5) binding Fap2 from the gut bacteria Fusobacterium nucleatum 
and triggering inhibitory  signals39. The tumor tissues with the upregulated expression of TIGIT also exhibited 
aberrant immune characteristics. For example, in colorectal tumor tissues, TIGIT+ CD8+ T cells exhibited sig-
nificantly higher infiltration and an exhausted phenotype with lower expression of proinflammtory cytokines 
and higher expression of inhibitory receptors such as PD-1, LAG-3, and TIM-3 on the  surface40. Interestingly, 
according to our GSEA analysis, TIGIT was also shown the capability for driving the negative regulation on 
immune-related function and pathway, such as cytokine-cytokine receptor interaction, chemokine signaling 
pathway and natural killer cell mediated cytotoxicity, interferon-gamma response and IL6-JAK-STAT3 signaling. 
Our results revealed the positive correlation between TIGIT and TIICs in 3 cancer types with poor prognosis. 
There are several studies reported that the status of high TIICs may lead to poor  prognosis41,42, which could be 

Figure 4.  Correlation of TIGIT expression with immune infiltration level in KIRC, KIRP and UVM (A–C).
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explained that some of the infiltrated immune cells, such as macrophages, would promote or result in tumor 
initiation, development and metastasis especially in the immunosuppressive  microenvironment41,43, confirming 
our findings that TIGIT overexpression is related to the poor prognosis in certain cancers. While TIGIT was 
negatively correlated with B cells in UVM, contrast to the results in KIRC and KIRP. There was a study reported 
that high-infiltrated B cells are related to the better prognosis in  UVM41, which concorded with our results. The 
discrepancy of infiltrated B cells may result from the different subtypes and the various functions of B cells, which 
leads to the different prognosis in different cancer  types44,45. More detailed researches could be further carried 
on, such as single-cell sequencing. Different results in the same analysis of correlations depending on the cancer 
 types46 may attribute to inter-tumor heterogeneity, exhibiting different TME, tumor immunogenicity, TMB and 
microsatellite states across different caner  types47–49, which is also the potential mechanism of the discrepancy 
in response to the ICBs. Given all the information above, it is likely that the immunosuppressive effect of TIGIT 
leads to the tumor cells survival and escape, influencing the initiation and development of the cancers and the 
patients’ prognosis.

To further investigate the underlying mechanism of the relationship between TIGIT and tumors, we con-
ducted analyses on the correlation between TIGIT and TMB, MSI, MMR genes, DNMTs. MSI is the molecular 
fingerprint and a frequent phenomenon in cancers as the consequence of MMR genes  mutations50,51. Emerging 
evidence revealed that most of the tumors with MSI-H/dMMR status exhibited high  TMB52,53. These features are 
related to the increased neoantigen, affecting tumor-infiltrating lymphocytes and response to ICBs, thus could 
predict the response to immunotherapies  independently54–56. TIGIT was reported to be positively correlated with 
MSI/dMMR in the colorectal  cancer57. Our results not only showed the positive correlation of TIGIT with MSI/
TMB in COAD, but also revealed more correlations between TIGIT expression and MSI/TMB in multiple other 
cancer types at pan-cancer level, such as in UCSC. However, the correlations of TIGIT expression with MSI and 

Figure 5.  Correlation of TIGIT expression with Immune Score, Estimate Score and Stromal Score in KIRC, 
KIRP and UVM (A–C).
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TMB didn’t coincide in some of the same cancer types, which could be explained by 2 reasons. First, though 
studies have shown the TMB elevation in tumors with MSI-H status, the correlation between MSI and TMB is 
still variable, which leads to the studies integrating the statuses of MSI and TMB for predicting the response to 
ICBs  reported58,59. Studies focusing on the correlation between TIGIT and TMB in tumors are also lacking, which 
could be further investigated. Second, using different datasets and the peculiarities of each data collection method 
could lead to the different correlations of TIGIT with MSI and TMB in the same type of cancer. Besides genetic 
mutations, epigenetic alterations also impact the growth, proliferation, metastasis and immunosuppression of 
the tumors profoundly. DNA methylation is one of the most important epigenetic regulation. Aberrant levels 
of DNA methylation were associated with tumorigenesis and immune evasion in  cancers60. Our results found 
certain positive and negative correlations between DNMTs and TIGIT expression in different cancer types, sug-
gesting DNA methylation may also participate in the modulation of TIGIT, as previous studies  reported61,62. Its 
mechanism is related to the reduced expression of the genes concerned with tumor suppression and anti-tumor 
immunity by DNA hypermethylation and overexpression of the genes responsible for tumorigenesis and immune 
suppression by DNA  hypomethylation63,64. Altogether, different kinds of tumors and its immune microenviron-
ment are driven by different methylation patterns, which is complicated and needs deeper investigation in the 

Figure 6.  Correlation of TIGIT expression with expression of immune checkpoint genes across 33 cancer types. 
*p < 0.05, **p < 0.01, and ***p < 0.001.
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future. The relationship between DNMTs and TIGIT also indicates the possible strategy to target these checkpoint 
by methylation modulators or combine methylation modulators with ICBs to elevate the response  rates65,66.

Considering all the results in different omics above, we could speculate that the genetic and epigenetic aber-
rant alterations initiate the tumorigenesis, which activates T cells and NK cells and gets infiltrated by immune 
cells. Then some T cells and NK cells upregulate TIGIT expression, which inhibits the immune function and 
leads to the immunosuppressive microenvironment in the tumors, promoting the development and metastases 
of the tumors and resulting in the poor prognosis.

As one of the most commonly targeted immune  checkpoint67 and the core of a complex regulatory network 
included CD96, CD112R, CD226, CD155 and  CD2267, TIGIT has been considered as a potential ICBs to develop 
novel immunotherapy strategies. Several preclinical studies have shown that TIGIT blockade alone could impede 
the growth and proliferation of the  tumors68–70, even in anti-PD-1 resistant tumor  model8. Moreover, combining 
the TIGIT blockade with PD-1  blockade71,72, IL-15  stimulation73 or optimized fractionated  radiotherapy74, could 
promote the response to immunotherapy and increase the survival in animal models. Multiple clinical trials 
are also ongoing to test whether TIGIT blockade could translate into an actual benefit for patients with cancers 
(NCT04354246, NCT04150965, NCT04570839).

In this study, we showed the pan-cancer landscape of aberrant TIGIT expression across different tumors for 
the first time. Our findings will allow us to take the next step into a further functional investigation of TIGIT and 
clinical application of TIGIT blockade in specific cancers, providing new insights and options for the patients 
with cancers. Our study has several limitations. First, there’s no experimental validation of the predicted results. 
The relationship between the TIGIT expression and the nature of the tumors are needed to be validated in 
future experiments using the standardized methods. Second, more data from other public datasets are needed 
to validate our results.

Figure 7.  Radar map displaying the correlations between TIGIT expression and Tumor mutation burden (A), 
as well as the correlations between TIGIT expression and microsatellite instability, (B) across 33 cancer types.

Figure 8.  The correlations between TIGIT expression and five mismatch repair genes (A), as well as the 
correlations between TIGIT expression and DNA methyltransferase (B) across 33 cancer types. *p < 0.05, 
**p < 0.01, and ***p < 0.001.
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Data availability
The datasets for this study can be found in the TCGA Research Network (https:// www. cancer. gov/ tcga), GTEx 
(http:// commo nfund. nih. gov/ GTEx/), and GEO (https:// www. ncbi. nlm. nih. gov/ geo/).
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