
ClusTRace, a bioinformatic pipeline 
for analyzing clusters in virus phylogenies
Ilya Plyusnin1,2*  , Phuoc Thien Truong Nguyen2, Tarja Sironen1,2, Olli Vapalahti1,2,3, Teemu Smura2,3† and 
Ravi Kant1,2† 

Background
Emerging pathogens are a constant threat to mankind, as illustrated by the West Africa 
Ebola [1] and Zika [2] virus outbreaks in 2014 and 2015, respectively, and the ongoing 
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic. These 
viruses are of zoonotic origin, like the majority of emerging pathogens [3–5]. Wild 
animals host a vast reservoir of pathogens and these can spill over to human popula-
tions under adequate conditions [4, 5]. Anthropogenic disturbances in high biodiver-
sity regions, new forms of land use, increasing human and production animal densities, 
climate change, travel and globalization have dramatically increased this risk [4, 6]. 
The impact on human healthcare and economics has been illustrated by SARS-CoV-2 
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pandemic that has caused numerous deaths and human suffering, delivery and work-
force shortages, travelling limitations, and many other disturbances to both business and 
normal life activities [4].

All virus genomes change over time due to mutations introduced in the viral genome, 
primarily by errors made by viral polymerases during replication [7]. However, most 
changes have minor effect on the phenotype of viruses. However, some mutations may 
affect the key pathogenic properties of the virus, such as transmissibility and disease 
severity, or the performance of vaccines, therapeutic agents or diagnostic tools [7].

The rapid progress in sequencing technologies has provided an opportunity to study 
viral molecular epidemiology and evolution in nearly real-time [8]. The current COVID-
19 is the first pandemic with the pathogen being under surveillance using full genome 
sequencing on a global scale and over an extensive time period [9]. Surveillance of the 
pandemic creates demand for fast and scalable sequencing, genome assembling, viral 
strain assignment, phylogenetic analysis, variant calling and molecular epidemiology to 
inform contact tracing and non-pharmaceutical interventions. Although bioinformat-
ics offers an abundance of methods and tools for sequence analysis, their employment 
in virology and epidemiology can be hindered by the developer-user gap between bio-
informatics and other fields [10]. This gap can be bridged by pipelines tailored specifi-
cally for the analysis of viral sequences and equipped with intuitive interface and output 
reporting.

SARS-CoV-2 is the causative agent of coronavirus disease 2019 (COVID-19) [11]. 
The SARS-CoV-2 pandemic has already infected more than 437 million people in 224 
countries, causing nearly 6 million deaths globally as of 1st of March 2022 (https:// www. 
world omete rs. info/ coron avirus/).

SARS-CoV-2 is a global challenge, which is further complicated by the continuous 
emergence of new Variants of Concern (VOCs) or Variants of Interest (VOI). Variants 
that have carried VOC status include Alpha (B.1.1.7) [12], Beta (B1.351) [13], Gamma 
(P.1) [14], Delta (B.1.617.2) [15] and, as of writing this, we are experiencing the spread 
of Omicron variant (B.1.1.529) [16]. These VOCs pose an increased public health risk 
due to having one or more of the following characteristics: higher transmissibility [17], 
immune escape properties for antibodies from previous infection [18], lower response 
towards current vaccines compared to the original wild type strains these vaccines were 
based on [19]. Detecting and monitoring these novel variants is essential in SARS-CoV-2 
surveillance.

A number of bioinformatic software packages are already available to help with detec-
tion, tracking and tracing of SARS-CoV-2 variation e.g. Pangolin [20], Nextstrain [21], 
Nextclade [22], Jovian [23], HaVoC [24] and Lazypipe [25]. Such tools are certainly help-
ing the global effort for COVID-19 surveillance, but they are not void of limitations. 
Tools like Pangolin and Nextclade are primarily designed for tracking large accumula-
tions of mutation events that are rare and may be preceded by the less visible sub-lineage 
genetic changes. Nextstrain offers a comprehensive analysis, but is heavily dependent 
on sequence metadata and dataset pre-filtering. Here we introduce ClusTRace (https:// 
www2. helsi nki. fi/ en/ proje cts/ clust race), a novel bioinformatic pipeline for Unix/Linux 
environments that complements the existing toolkits with unsupervised clade or clus-
ter analysis, intuitive visualizations and reporting. ClusTRace can help with surveillance 

https://www.worldometers.info/coronavirus/
https://www.worldometers.info/coronavirus/
https://www2.helsinki.fi/en/projects/clustrace
https://www2.helsinki.fi/en/projects/clustrace
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of the current ongoing COVID-19 pandemic and for any upcoming future epidemic or 
pandemic.

Implementation
ClusTRace is a bioinformatic software package implemented primarily in Perl. Clus-
TRace supports several tasks that can be executed one by one or combined into pipe-
lines (Fig. 1).

The analysis starts with consensus genomic sequences output by a given sequenc-
ing platform (e.g., Illumina). In the first step, ClusTRace assigns genomic sequences to 
a dynamic Pango lineage classification with Pangolin [20]. Then, ClusTRace collects 
sequences assigned to different lineages into separate multi-fasta files, so that each 
multi-fasta contains all sequences assigned to a given Pango lineage. Although we use 
Pangolin as the default lineage assigner, classification file can be produced with any 
method preferred by the user (the pipeline will accept any csv-file that conforms to Pan-
golin output format). All downstream analyses are performed separately for each lineage 
represented by a multi-fasta file.

Multi-fasta files are then pruned from outliers with SeqKit [26]. By default, we remove 
all sequences that deviate more than 10% from the median length of the sequence set or 
that have more than 10% gaps (these parameters can be modified on the command line 
with –minlen, –maxlen and –maxgap).

In the next step, filtered sequence sets for each lineage are aligned with MAFFT v7 
[27]. Multiple sequence alignments (MSAs) are then trimmed for gaps with trimAl [28]. 
Trimmed alignments are used to construct phylogenetic trees with IQ-TREE 2 [29]. 
IQ-TREE 2 supports a wide range of substitution models and will, by default, use Mod-
elFinder to determine the best-fitting model [29]. The user can choose to create boot-
strapped consensus trees with IQ-TREE 2 Ultra-Fast Bootstrapping (ClusTRace–ufboot 
option) [30]. For very large sequence sets, the user can choose to run VeryFastTree 
[31] with GTR model (ClusTRace–tree vftree option). By default, ClusTRace will use 
COVID-19 reference genome (NCBI acc NC_045512.2) as an outgroup sequence to re-
root all output phylogenetic trees. There is also an option to specify a separate outgroup 
sequence for each run.

In the next step, sequence clusters are extracted with TreeCluster [32]. Clusters 
are extracted with MaxClade-method at several pairwise distance cut-offs. We use 
two cut-off thresholds that are scaled to the size of the input reference genome (e.g. 

Fig. 1 ClusTRace flowchart. VFT, VeryFastTree
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SARS-CoV-2) and roughly correspond to twenty and thirty mutations between pairs 
of sequences. MaxClade-method and cut-off thresholds (0.0007 and 0.001) were 
selected ad hoc based on our previous work with SARS-CoV-2 phylogenies [33]. These 
values can be easily modified by the user. Next, ClusTRace creates custom nexus trees 
in which sequences are assigned labels and colours according to the assigned cluster.

ClusTRace can read date annotations from sequence ids and will accept common 
date formats (e.g. “|YYYY-MM-DD|”). For date annotated sequences ClusTRace 
will trace the speed of growth for the extracted clusters. This is done by assigning 
sequences to time periods (calendar months or weeks) and by tracing the number of 
sequences that are assigned to each cluster and that are dated up to the given time 
period. For each lineage ClusTRace will print a separate cluster summary file with 
detailed information on the extracted clusters. These spreadsheet summaries include 
clustSeqN, clustSeqId and clustGR data sheets. The first and second data sheets report 
the number and ids of sequences in each cluster for each time period, while the third 
reports cluster size, median and maximal growth rates, and support value for the cor-
responding sub-phylogeny for each cluster. Separate clustGR data sheets are printed 
for each cluster cut-off threshold (by default twenty and thirty). Median and maximal 
growth rates are measured based on absolute increment in sequence number assigned 
to each cluster between consecutive time periods.

In the last step, ClusTRace extracts MSA(s) and runs variant calling for the 
extracted clusters. Nucleotide mutations are called from these against a reference 
genome with MsaToVcf [34]. Nucleotide variants are filtered to exclude 100 nucleo-
tides (nt) from the start and the end of the genome (to avoid noise related to sequenc-
ing errors commonly seen in terminal regions), as well as any regions that have over 
30 nt continuous stretches of below 75% coverage (these are also assumed to represent 
sequencing errors) using trimAl [28]. We also exclude variants with support below 
50%. These filtering options are specified in the pipeline default options and can be 
modified. Amino acid (aa) variants are called with snpEff [35]. Finally, aa variants in 
all clusters are parsed and added to the cluster spreadsheet summaries as clustMuta-
tions and clustMutationTable data sheets. The clustMutations sheet reports nt and aa 
mutations for each cluster, reference aa mutations and non-reference aa mutations. 
Reporting reference and non-reference mutations requires supplying reference muta-
tions in a separate file. For genes of interest non-reference mutations can be reported 
separately (current version reports mutations for the S-gene). The clustMutationTable 
sheet reports aa mutations for the fastest growing clusters in a binary matrix. The top 
row lists aa mutations in genomic order with non-reference mutations highlighted in 
bold.

ClusTRace also supports extracting nt and aa, reference aa and non-reference aa 
mutations for lineage MSA(s) or for any other collection of MSA(s). Lineage muta-
tions are reported with spreadsheet summary tables similar to the cluster mutation 
summaries.

ClusTRace also offers an interface to g3viz R library [36]. Using this interface in R, 
the user can generate interactive mutation plots for both cluster and lineage vcf-files. 
These interactive plots can be saved in the form of simple html files to complement 
spreadsheet reports.
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Results
To illustrate the intended use of ClusTRace we analyzed a dataset of SARS-CoV-2 full 
genome sequences from patient samples collected in Finland from January to June 2021. 
We started by running ClusTRace Pangolin mapping to obtain 5379 sequences assigned 
to Alpha and 1051 sequences assigned to Beta variants of concern (VOC) (GISAID 
accessions are available in Additional file 1: Table S1). We then run ClusTRace multi-
fasta construction, outlier filtering, alignment, phylogeny with ultrafast bootstrapping 
(–ufboot option), default clustering and variant calling for these two lineages. As our 
outgroup sequences we used EPI_ISL_601443 for the Alpha variant and EPI_ISL_660190 
for the Beta variant. All files output by ClusTRace for this analysis are available in Addi-
tional file 2.

To get a quick summary on the lineage mutations, we start with g3viz visualisation 
(Fig.  2, interactive version available in Additional file  2). For Alpha we see that most 
high frequency aa mutations follow mutations that have been reported as characteris-
tic for this lineage [37] (Fig. 2A). These include T1001I, A1708D, I2230T, 3675_3677del 
and P4715L in ORF1ab, 69_70del, N501Y, A570D, D614G, P681H, T716I, S982A and 
D1118H in S, D3L and S235F in N. For Alpha, there are just five aa variants specific for 
Finnish data with frequency 10% or higher: K5784R and E6272G in ORF1ab, N119H in 
ORF3a and G96S and RG203KP in N.

Fig. 2 Amino acid mutations for Finnish Alpha (A) and Beta (B) datasets. Plotting all mutations found in 
at least ten sequences in Alpha (5379 sequences) and Beta (1051 sequences). Mutations that have been 
reported as characteristic for a given lineage [37, 38] are plotted in purple, all other mutations are plotted in 
green. Numbers in cirles indicate the number of sequences with the given mutation. Graphics were created 
with the ClusTRace interface to g3viz [36]
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For Beta, approximately half of mutations with frequency 10% or higher were not cov-
ered by mutations that have been reported as characteristic for this lineage [38] (Fig. 2B). 
Mutations matching characteristic mutations for Beta were: T265I, K1655N, K3353R 
and P4715L in ORF1ab, D80A, D614G and A701V in S, Q57H and S171L in ORF3a, 
P71L in E, T205I in N, while the non-characteristic aa mutations with at least 10% fre-
quency were: T3058I, A3209V, A3235S, D4459A, T5912I and A6976V in ORF1ab, T19I 
and I896L in S, M24V, I26V and I27V in ORF7b, K44R and I121L in ORF8. Note that 
Beta has non-characteristic mutations in Spike protein, which may potentially affect 
their receptor binding: T19I in 789 (75%) and I896L in 175 (16.7%) sequences.

Cluster analysis with TreeCluster [32] yielded 108 clusters for Alpha and nineteen 
clusters for Beta (Figs. 3 and 4, full consensus trees with clusters highlighted are avail-
able in files B.1.1.7.con.tree.mr = 30.nex and B.1.351.con.tree.mr = 30.nex in Additional 
file 2). We used the MaxClade method with a cut-off set to 0.001. Here we take a closer 
look at the ten clusters for Alpha and Beta that had the highest per month growth rate 
peaks over the analysed time period.

We start by discussing Alpha clusters. The ten fastest growing clusters covered 3,146 
(58.5%) of all Alpha sequences. Cluster size varied in these ten clusters between 100 
(1.9%) and 479 (8.9%) sequences (Fig. 5). Maximal growth rates ranged between 74 and 
310 sequences per month and peak growth was during February and March. Number 
of non-characteristic aa mutations introduced in these clusters ranged from one to six. 
Solitary non-characteristic mutations in S-gene were found in clusters 56 (D80Y), 38 
(D287G) and 22 (A701V) (Table 1).

Fig. 3 Consensus tree for Finnish Alpha dataset with clusters collapsed. Bar plots on the right indicate the 
number of sequences in each cluster. For clarity, clusters with less than ten sequences and singletons were 
removed. Inner nodes with no large cluster descendants are plotted in grey
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The ten fastest growing clusters covered 979 (94.5%) of Beta sequences. Clus-
ter size was between fourteen (1.3%) and 259 (24.6%) sequences (Fig.  6). Maximal 
growth rates ranged between 11 and 148 sequences per month and maximal growth 
was during February (clusters 3 and 8), March (clusters 1, 4, 7, 10, 17, 18 and 19) 
and April (cluster 9). Number of non-characteristic aa mutations introduced in these 
clusters ranged from three to eight. Several clusters had non-characteristic muta-
tions in S-gene: L18F (cluster 1), T19I (clusters 8–10, 17 and 19) and I896L (cluster 9) 
(Table 2).

Fig. 4 Consensus tree for Finnish Beta dataset with clusters collapsed. Bar plots on the right indicate the 
number of sequences in each cluster. For clarity, clusters with less than ten sequences were removed

Fig. 5 Growth rates for the ten fastest growing clusters in Alpha (B.1.1.7)
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Benchmarking time and memory efficiency

We benchmarked ClusTRace performance on two datasets with default settings on 
a Red Hat Enterprise Linux Server 7.9 on a single node with 32 × 2.1 GHz cores. The 
first dataset included 6,430 SARS-CoV-2 genomic sequences from patient samples 
collected in Finland from January to June 2021 (GISAID accession ids are available 
in Additional file 1: Table S1). This run completed in 48 h and 6 min and consumed 
83.26 GB of memory. The second dataset included 3,568 genomic sequences for Delta 
variant sequenced from Finnish patient samples later the same year (GISAID acces-
sion ids are available in Additional file 3: Table S2). This run completed in 14 h and 
16  min and consumed 75.44  GB of memory. Most time was spent within IQ-Tree 
calls. We see that execution time does seem to scale nonlinearly with dataset size but 
is kept within acceptable limits for moderately large datasets. The required memory 
usage for these datasets was well below available limits.

Discussion
The years 2020 and 2021 could arguably be referred to as a turning point in the his-
tory of global health. The COVID-19 pandemic has demonstrated that emerging path-
ogens can cause havoc in our globalised world. On the other hand, the pandemic has 
also accelerated the development of better sequencing technologies, bioinformatic 
tools, diagnostic tests, vaccines and many other fields. The ongoing pandemic has 
emphasised the need for fast, scalable and, ideally pipelined, analysis of viral genomic 
sequences. For health authorities, it is important to be able to streamline process-
ing large amounts of genomic sequence data into various summaries and reports 
that can help to make rational decisions concerning e.g. restrictions, non-pharma-
ceutical interventions and border control measures to minimize further spread of 
SARS-CoV-2. Researchers also struggle with the continuous inflow of SARS-CoV-2 

Fig. 6 Growth rates for the ten fastest growing clusters in Beta (B.1.351)
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sequences that need to be organized into lineages, alignments and phylogenetic trees 
in order to make sense of the constantly evolving pandemic.

Here, we have presented ClusTRace, a novel bioinformatic pipeline for fast and scal-
able analysis of large collections of SARS-CoV-2 sequences. ClusTRace supports many 
types of relevant analyses. These include assigning sequences to lineages, collecting 
sequences by lineage, filtering outliers, creating multiple sequence alignments, creat-
ing phylogenetic trees, extracting phylogeny-based sequence clusters, estimating cluster 
growth rates, calling nt and aa variants for both lineages and clusters, as well generating 
a number of table-based and interactive reports. Although most of these steps can be 
performed separately with designated bioinformatic tools, pipelining with a high-level 
interface helps to cut down on the learning and operating costs of complex bioinfor-
matic analysis. Several authors have commented on the developer-user gap between 
bioinformatics and other fields in biology and biomedical research [10]. In this context, 
high-level pipelines that are tailored to the need of virus research are an important way 
to bridge this gap.

Popular pipelines for tracking viral outbreak phylodynamics include Augur, Auspice, 
Nextstrain, Nextclade and Pangolin [20–22, 39]. Here, we reflect on key similarities 
and differences of ClusTRace to these toolkits. Pangolin and Nextclade are primarily 
concerned with classifying viral genomes into lineages or clades, while ClusTRace is 
designed to track mutations within lineages. Nextclade also offers mutation calling for 
large clades, which is similar to ClusTRace mutation calling for lineages. Nextstrain is 
an integration of several toolkits, including Augur for analysing sequence and phylogeo-
graphical data, and Auspice for visualising results. Like ClusTRace, Augur offers func-
tionalities for filtering, aligning, phylogenetic reconstruction, re-rooting and refinement 
of the obtained phylogenies, and offers functionalities to estimate mutation frequencies. 
Unlike ClusTRace, Augur also infers sequences and ancestral traits for the ancestral tree 
nodes. Auspice is designed to visualise phylogenetic and phylogeographic data output 
by Augur in an interactive webpage format. In ClusTRace, we provide different visu-
alizations, namely spreadsheet summaries and interactive g3viz plots for high growth-
rate and/or mutation-rate clades. Unlike Nextstrain/Auspice visualizations, ClusTRace 
focuses directly on parts of the phylogeny that are picked out by the unsupervised clus-
ter analysis and provides no details on the likely origin of the mutations in the tree. 
However, this approach has its advantages, such as simplicity and speed; unlike Next-
strain/Augur, ClusTRace has no need for down sampling the sequence sets. ClusTRace 
analysis is also largely unsupervised, i.e. clades are selected and examined for mutations 
and growth-peaks automatically, in effect filtering clades with alarming features that can 
then be checked manually more in detail.

In this work, we illustrated the intended scenario for ClusTRace usage on Finnish 
Alpha and Beta variants of concern. Presented approach can be described as an unsuper-
vised phylogeny-based cluster analysis and variant calling. ClusTRace uses automated 
unsupervised clustering coupled with cluster growth rate analysis and variant calling 
to scan through the phylogeny. Clusters that display elevated growth rates, elevated 
non-reference mutation content or mutations in genomic regions that are of accentu-
ated concern, such as the S-gene, can then be  flagged for downstream analysis. In this 
paper we focus on describing the method and do not attempt to link identified cluster to 
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epidemiologic seeding events. However, in our other work on monitoring SARS-CoV-2 
spread in Finland we have appleid identical clustering with some success. For example, 
in [33] we monitored clusters for Alpha and Beta lineages and in that work clustering 
suggested that these lineages have spread to Finland via multiple seeding events. In our 
analysis of Finnish Omicron sequences we were able to identify a single large cluster that 
most likely corresponded to a super-spreading event (n = 236, which is 27.1% of all Finn-
ish cases) as well as numerous smaller clusters that indicate multiple seeding points [40].

The current SARS-CoV-2 pandemic might endure to the foreseeable future, and new 
viral variants will likely continue to emerge. Therefore, the global response must con-
tinue to adapt and improve to mitigate the costs of the pandemic. The progress made 
since the start of the pandemic in early 2020 with the global implementation of full 
genome sequencing can be consolidated by developing efficient and scalable bioinfor-
matic tools that are specifically tailored for genomic surveillance of viral pathogens. 
These tools must deliver fast, scalable and, ideally, unsupervised analysis and reporting 
on the pandemic events of concern. Our pipeline, ClusTRace, adds to the available tool-
box the option for fast, scalable and unsupervised screening and reporting of the within 
or local lineage events of concern, such as elevated growth and mutation rates. Clus-
TRace can also be adapted for the surveillance of viral pathogens other than the SARS-
CoV-2, which may prove useful in future epidemic emergencies.

Availability and requirements

Project name: ClusTRace.
Project home page: https:// bitbu cket. org/ plyus nin/ clust race/ src/ master/;
https:// www2. helsi nki. fi/ en/ proje cts/ clust race/
Operating system: Linux.
Programming language: Perl.
License: GNU GPL.
Other requirements: listed on project home page.
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