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Difference in spectral power density 
of sleep EEG between patients 
with simple snoring and those with 
obstructive sleep apnoea
Jae Myeong Kang1,6, Seon Tae Kim2,6, Sara Mariani3, Seo-Eun Cho1, John W. Winkelman5, 
Kee Hyung Park4,7* & Seung-Gul Kang1,7*

Patients with simple snoring (SS) often complain of poor sleep quality despite a normal apnoea-
hypopnoea index (AHI). We aimed to identify the difference in power spectral density of 
electroencephalography (EEG) between patients with SS and those with obstructive sleep apnoea 
(OSA). We compared the absolute power spectral density values of standard EEG frequency bands 
between the SS (n = 42) and OSA (n = 129) groups during the non-rapid eye movement (NREM) sleep 
period, after controlling for age and sex. We also analysed partial correlation between AHI and the 
absolute values of the EEG frequency bands. The absolute power spectral density values in the beta 
and delta bands were higher in the OSA group than in the SS group. AHI also positively correlated with 
beta power in the OSA group as well as in the combined group (OSA + SS). In conclusion, higher delta 
and beta power during NREM sleep were found in the OSA group than in the SS group, and beta power 
was correlated with AHI. These findings are microstructural characteristics of sleep-related breathing 
disorders.

Obstructive sleep apnoea (OSA) is the most prevalent manifestation of sleep disordered breathing (SDB) charac-
terised by repeated episodes of complete or partial collapse of upper airway during sleep1. Clinical manifestation 
of OSA includes snoring, disturbed sleep, fatigue, daytime sleepiness, loss of concentration, memory decline, and 
neuropsychiatric symptoms2–5. OSA is diagnosed using overnight polysomnography (PSG) when the apnoea 
or hypopnoea occurs five or more times per hour (apnoea-hypopnoea index [AHI] ≥ 5)6. In the spectrum of 
SDB, snorers with AHI < 5 are defined as having simple snoring (SS), which has less pathological and clinical 
significance7–9.

SS is a preclinical condition that requires no treatment. However, patients with SS may suffer from daytime 
sleepiness, insomnia, and psychiatric symptoms despite a normal AHI10,11. Although SS is differentiated from 
OSA by AHI on PSG, there is a weak association between AHI and symptomatology in SDB12–18. Some studies 
reported that patients with SS have more severe psychiatric symptoms and poorer subjective sleep quality than 
those with OSA12,19. This paradoxical association between AHI, subjective sleep quality, and psychiatric symp-
toms suggests that other factors besides AHI influence such symptoms, and it may be necessary to study differ-
ences in microstructure in addition to classical PSG measurements (e.g., sleep stage ratio or sleep efficiency) and 
macrostructures.

Researchers have previously attempted to investigate the microstructure of PSG-derived sleep as well as 
waking quantitative electroencephalography (qEEG) in SDB20–24. It has been generally accepted that wake EEG 
slowing is more pronounced in patients with OSA than in good sleepers, and the slowing is associated with 
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daytime sleepiness and attention or vigilance dysfunction25–31. Studies using sleep EEG derived from PSG have 
documented significant differences in spectral power or sleep spindles during non-rapid eye movement (NREM) 
sleep between patients with OSA and controls32–35. Although previous spectral analysis studies have investigated 
EEG and oximetric spectral features to improve OSA detection21, little is known about differences in sleep qEEG 
between patients with SS and those with OSA.

Our goal was to study differences in qEEG between SS and OSA to understand the association between qEEG 
and AHI in SDB. The aims of this study were 1) to compare the power spectral density of qEEG frequency bands 
during NREM sleep between the SS and OSA groups and 2) to investigate the correlation between AHI and qEEG 
power in patients with SDB.

Results
Demographic and PSG characteristics of participants.  Among the 171 participants, 129 (75.4%) were 
classified into the OSA group and 42 (24.6%) were classified into the SS group. Demographic and PSG character-
istics of participants are presented in Table 1. There were no significant differences between the groups in terms 
of age and sex. As expected, the groups differed in body mass index (BMI), AHI, and arousal index and all values 
were higher in the OSA group than in the SS group. PSG data differed in the ratio of sleep stages N1 and N2 but 
did not differ in most other PSG measures (the ratio of stage N3 and REM and all sleep and wake time data, 
including total sleep time and sleep efficiency) between the groups.

Comparison of absolute spectral EEG power between groups.  Table 2 and Fig. 1 provide the com-
parison of the absolute spectral power in central electrodes during NREM sleep between the SS and OSA groups. 
There were significant differences in the spectral power in the delta and beta frequency bands between the groups 
after controlling for age and sex. The absolute spectral power in the delta (1–4 Hz, F = 10.54, p = 0.001, p corrected 
= 0.006) and beta (15–20 Hz, F = 7.64, p = 0.006, p corrected = 0.036) bands during NREM sleep was higher in 
the OSA group than in the SS group. Comparative results during N2, N3 and REM sleep are presented in Table S1 
in the supplementary information.

Table 3 presents results for comparisons of the absolute spectral power in central electrodes among SS, mild 
OSA (5 ≤ AHI < 15), moderate OSA (15 ≤ AHI < 30), and severe OSA (30 ≤ AHI) groups to reveal differences in 
the EEG power according to the severity of AHI. There were significant differences in the spectral power of the 
beta frequency bands between the groups after controlling for age and sex. The absolute spectral power of the beta 
(F = 4.41, p = 0.005, p corrected = 0.031) band during NREM sleep was higher in the severe OSA group than in 
the SS group following post-hoc analysis.

Partial correlation analyses between AHI, arousal index and absolute power spectral density.  
Table 4 presents partial correlation analyses results between AHI and absolute power spectral density after con-
trolling for age and sex in the SS, OSA, and total participants. AHI positively correlated with absolute beta power 

Variable SS (n = 42) OSA (n = 129) Statistics‡

Demographics

   Age, years 44.2 ± 12.4 46.4 ± 11.0 t = –1.04, p = 0.299

   Sex, male 34 (81.0%) 110 (85.3%) χ2 = 0.44, p = 0.505

   Body mass index, kg/m2 24.2 ± 2.9 26.2 ± 3.5 t = –3.36, p = 0.001

Polysomnographic data

  Sleep and wake time

   Time in bed, min 416.8 ± 26.3 410.7 ± 30.0 t = 1.19, p = 0.237

   Total sleep time, min 340.2 ± 57.0 337.8 ± 55.8 t = 0.24, p = 0.809

   Sleep latency, min 13.4 ± 19.5 13.4 ± 22.6 t = 0.00, p = 0.996

   Sleep efficiency, % 81.9 ± 14.5 82.2 ± 13.3 t = –0.11, p = 0.914

   WASO, min 63.3 ± 58.7 58.8 ± 45.0 t = 0.55, p = 0.584

   REM sleep latency, min 132.5 ± 71.4 124.3 ± 62.6 t = 0.72, p = 0.475

  Sleep stage, %

   N1 18.1 ± 9.1 30.5 ± 16.3 t = –6.18, p < 0.001

   N2 61.3 ± 8.9 50.3 ± 14.8 t = 5.82, p < 0.001

   N3 4.3 ± 6.3 3.1 ± 5.3 t = 0.13, p = 0.202

   R 16.3 ± 7.0 15.6 ± 7.2 t = 0.66, p = 0.596

  Respiration

   AHI, event per hour 1.8 ± 1.4 31.7 ± 21.2 t = –15.92, p < 0.001

   Arousal index 17.76 ± 8.36 35.47 ± 17.98 t = –8.67, p < 0.001

Table 1.  Demographic, clinical, and polysomnographic characteristics of subjects. Data are mean ± standard 
deviation or n (%) values. ‡Independent t test or χ2 test; SS, simple snoring; OSA, obstructive sleep apnoea; 
WASO, wake time after sleep onset; REM, rapid eye movement; N1, non-REM (NREM) stage 1; N2, NREM 
stage 2; N3, NREM stage 3; R, REM stage; AHI, apnoea hypopnoea index.
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in the OSA group (r = 0.251, p = 0.004, p corrected = 0.027; Fig. 2a) and total participants (SS + OSA; r = 0.340, 
p < 0.001, p corrected <0.001; Fig. 2b).

Table S2 in supplementary information presents partial correlation analyses results between the arousal index 
and absolute power spectral density after controlling for age and sex in the SS, OSA and total participants. The 
arousal index positively correlated with absolute beta power in all participants (SS + OSA; r = 0.282, p < 0.001, p 
corrected <0.001; Fig. S1).

Discussion
We conducted spectral power analysis of sleep EEG derived from PSG in patients with suspected OSA. The 
major finding of the present study is the spectral power difference in the delta and beta frequency bands of sleep 
EEG between the SS and OSA groups (Table 2). We found increased delta and beta activity36 in the OSA group 
compared to the SS group. In addition, the beta power positively correlated with AHI in the OSA group and total 
participants.

We attribute this seemingly paradoxical result—an increase in delta activity, which predominates in slow wave 
sleep, in patients with higher AHI—as (1) a compensatory EEG slowing response to arousal or (2) precedence 
of slow waves over respiratory arousal in patients with OSA. Studies on the hypothesis of compensatory EEG 
slowing response have been previously published37,38. Previous studies reported that the delta band amplitude 
increased in patients with OSA starting few seconds after apnoea onset during NREM sleep38. Another study 
reported that consecutive respiratory events restoring process was related to higher spectral power of the delta 
band37. These findings may implicate that the slowing of EEG in OSA and slow waves, including the delta band, 
play a role in recovery from altered respiration and complement arousal event during sleep. On the other hand, 
there is an opinion that the increase of delta is not compensating for arousal due to respiratory disturbance, but 
more hypopnea related arousal response occurs after slow wave sleep in OSA patients. Previous studies have 
shown that arousals in NREM sleep were consistently preceded by increase in the transient delta power in both 
normal and pathological NREM sleep39.

Spectral bands SS (n = 42) OSA (n = 129) Statistics* (ANCOVA)

Slow oscillation (0.5–1 Hz) 2.07 ± 0.36 2.06 ± 0.37 F = 0.32, p = 0.572, p corr > 0.999

Delta (1–4 Hz) 1.14 ± 0.18 1.20 ± 0.19 F = 7.64, p = 0.006, p corr = 0.036

Theta (4–8 Hz) 0.57 ± 0.20 0.64 ± 0.22 F = 6.30, p = 0.013, p corr = 0.078

Alpha (8–12 Hz) 0.28 ± 0.27 0.36 ± 0.23 F = 4.48, p = 0.036, p corr = 0.216

Sigma (12–15 Hz) 0.07 ± 0.21 0.13 ± 0.22 F = 3.19, p = 0.076, p corr = 0.456

Beta (15–20 Hz) −0.48 ± 0.22 −0.36 ± 0.22 F = 10.54, p = 0.001, p corr = 0.006

Table 2.  Comparison of the absolute spectral power density§ during NREM sleep between SS and OSA 
groups after controlling age and sex. Data are mean ± standard deviation. §log-transformed spectral power 
density (log10 μV2); EEG, electroencephalography; NREM, non-rapid eye movement; SS, simple snoring; OSA, 
obstructive sleep apnoea; *Controlling for age and sex; ANCOVA, analysis of covariance; p corr, p value after 
Bonferroni correction (uncorrected p value × 6) for correction of multiple comparisons. The number in bold 
indicates significance after Bonferroni correction (p < 0.05).

Figure 1.  Comparisons of the absolute power spectral density during NREM sleep between the SS and OSA 
groups. *p < 0.05 in ANCOVA controlling for age and sex after Bonferroni correction (uncorrected p value 
× 6) for correction of multiple comparisons. Bars denote mean ± standard deviation. NREM, non-rapid eye 
movement; SS, simple snoring; OSA, obstructive sleep apnoea; ANCOVA, analysis of covariance.
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The lower delta power in the SS group than in the OSA group may be the underlying cause of subjective 
symptoms in patients with SS or subjective-objective mismatch in sleep perception in SDB, as shown in previous 
studies10–13. In other words, reduced delta power in the SS group may induce poor sleep perception and eventu-
ally develop poor psychiatric symptoms. Although the severity of SDB continuum is defined as mild form of SS 
to severe form of OSA9, a weak or no relationship between AHI and accompanying psychiatric symptoms, such 
as depression and anxiety, has been reported16. We also found increased psychiatric symptoms12 and perception 
of nocturnal SDB symptoms40 in the SS group compared to those in the OSA group. Bianchi et al. reported 
subjective-objective mismatch in sleep perception in patients with sleep apnoea and insomnia and concluded that 
mismatch was not attributable to commonly measured PSG measures and that further insight into the advanced 
signal processing technique would help explain this mismatch41. Thus, further elaborate investigations into the 
relationship among sleep EEG spectral power, sleep perception, and psychiatric symptoms in SDB would be 
necessary.

We found higher beta power in the OSA group than in the SS group (Table 2) and the absolute beta power 
density positively correlated with the AHI and arousal index in all participants (Table 4 and Table S2). Beta band 
is associated with emotional and cognitive processes and arousal during sleep42 and is enhanced during the N1 
and N2 sleep stages and decreased during deeper sleep36. Higher beta power in patients with OSA in our study 
can be explained by the higher background brain activity in patients with OSA than in those with SS. This study 
also showed a significant correlation between the arousal index and beta power, which means sleep disturbance 
of SDB. Positive correlation between beta power in NREM sleep and AHI is consistent with recent data24. Our 
result replicated this data and had the same association in the suspected OSA (SS + OSA groups). In addition, 
we believed that the increase in both beta and delta powers during NREM sleep in the OSA group was due to 
cyclic alternating patterns, which are considered to be indicators of arousal instability43. The A phase in the cyclic 
alternating patterns was reported to be associated with increase in beta power and preceding delta power39. Our 
results exhibiting positive correlation between beta power and the arousal index in NREM sleep may also support 
this cyclic alternating pattern.

Our study was limited by the small sample size of the SS group. Further, the sample sizes between the SS and 
OSA groups were unequal owing to the clinical characteristics of the participants. However, as this is the largest 
investigation of spectral power comparison between the SS and OSA groups to date, this study is meaningful. 
Future studies with a larger sample size are needed involving patients with SS and OSA as well as normal controls.

Spectral bands SS (n = 42)
Mild OSA 
(n = 36)

Moderate OSA 
(n = 29)

Severe OSA 
(n = 64) Statistics * (ANCOVA)

Slow oscillation (0.5–1 Hz) 2.07 ± 0.36 2.05 ± 0.35 2.02 ± 0.28 2.10 ± 0.40 F = 0.30, p = 0.827, p corr > 0.999

Delta (1–4 Hz) 1.14 ± 0.18 1.20 ± 0.21 1.20 ± 0.22 1.20 ± 0.18 F = 2.57, p = 0.056, p corr = 0.336

Theta (4–8 Hz) 0.57 ± 0.20 0.65 ± 0.26 0.68 ± 0.22 0.62 ± 0.20 F = 2.20, p = 0.090, p corr = 0.539

Alpha (8–12 Hz) 0.28 ± 0.27 0.39 ± 0.26 0.38 ± 0.22 0.32 ± 0.21 F = 1.73, p = 0.163, p corr = 0.978

Sigma (12–15 Hz) 0.07 ± 0.21 0.14 ± 0.24 0.11 ± 0.19 0.13 ± 0.22 F = 1.59, p = 0.193, p corr > 0.999

Beta (15–20 Hz) −0.48 ± 0.22 −0.38 ± 0.24 −0.37 ± 0.21 −0.34 ± 0.22 F = 4.41, p = 0.005, p corr = 0.031

Table 3.  Comparison of the absolute spectral power density§ during NREM sleep among SS, mild OSA, 
moderate OSA, and severe OSA groups after controlling age and sex. Data are mean ± standard deviation. 
§log-transformed spectral power density (log10 μV2); EEG, electroencephalography; NREM, non-rapid eye 
movement; SS, simple snoring; OSA, obstructive sleep apnoea; *Controlling for age and sex; ANCOVA, analysis 
of covariance; p corr, p value after Bonferroni correction (uncorrected p value × 6) for correction of multiple 
comparisons. The number in bold indicates significance after Bonferroni correction (p < 0.05).

Variables

Total (n = 171) SS (n = 42) OSA (n = 129)

r* p value p corr r* p value p corr r* p value p corr

Slow oscillation 0.101 0.192 >0.999 0.036 0.826 >0.999 0.098 0.274 >0.999

Delta 0.151 0.051 0.360 0.035 0.830 0.906 0.026 0.769 >0.999

Theta 0.126 0.103 0.618 0.146 0.369 >0.999 −0.016 0.861 >0.999

Alpha 0.090 0.247 0.024 0.039 0.812 >0.999 −0.044 0.629 >0.999

Sigma 0.161 0.036 0.216 −0.170 0.295 >0.999 0.087 0.334 >0.999

Beta 0.340 <0.001 <0.001 −0.071 0.663 >0.999 0.251 0.004 0.027

Table 4.  Partial correlation between AHI and absolute spectral power density during NREM sleep after 
controlling for age and sex. AHI, apnoea-hypopnea index; EEG, electroencephalography; NREM, non-rapid eye 
movement; SS, simple snoring; OSA, obstructive sleep apnoea; r, Pearson’s r. *Log transformation for spectral 
EEG was performed before Pearson correlation analysis when both variables deviate from normal distribution. 
p corr, p value after Bonferroni correction (uncorrected p value × 6) for correction of multiple comparisons. 
The number in bold indicates significance after Bonferroni correction (p < 0.05).
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Conclusions
In summary, we found that qEEG spectral power in the delta and beta bands of NREM sleep differ between the 
SS and OSA groups. The higher delta and beta power were found in the OSA group than SS group and beta power 
was correlated with AHI in combined group. This study reports differences in microstructures of PSG-derived 
sleep EEG between SS and OSA and how these differences in microstructures may reveal areas that were not 
previously explained by macrostructure and traditional parameters in PSG. The current finding of the increased 
delta power in the OSA group might explain previous reports on the lack of an association between the AHI and 
subjective symptoms in patients with SDB10–13. Future investigations need to focus on the characterisation of fea-
tures of SDB in both conventional and microstructural aspects of PSG in order to clarify the neural mechanism 
of SDB and explain clinical phenomena not explained by conventional PSG.

Methods
Participants.  Adults (age: 18–65 years) with suspected OSA were recruited from the sleep clinic of Gil 
Medical Center from March 2012 to February 2016. Among 205 participants who were recruited through struc-
tured clinical interviews and screening scales, 171 participants were finally included in the analyses. All partic-
ipants had symptoms of SS or OSA, such as frequent snoring, witnessed apnoea, experience of choking during 
sleep, and daytime sleepiness. They met the breathing-related sleep disorder diagnostic criteria of the Diagnostic 
and Statistical Manual of Mental Disorders (fourth edition, text revision)44. Subjects were interviewed and eval-
uated by medical doctors (i.e., board-certified medical doctors in the department of psychiatry, neurology, and 
Otolaryngology) with over 5 years of experience in OSA and sleep medicine.

The exclusion criteria for participants were as follows: (i) comorbidity of severe medical or surgical conditions; 
(ii) major psychiatric disorders; (iii) previous diagnosis with OSA; (iv) history of uvulopalatopharyngoplasty; and 
(v) suspected as having other major sleep disorders such as restless legs syndrome, REM sleep behaviour disorder, 
circadian rhythm sleep disorder, or narcolepsy.

Written informed consent was obtained from all participants prior to inclusion in the study, and the 
Institutional Review Board of Gil Medical Center approved all study protocols. All experiments were performed 
in accordance with relevant guidelines and regulations.

Polysomnography.  In-laboratory and monitored nocturnal PSG were conducted for all participants. 
Standard PSG recordings included six electroencephalogram leads (F3, F4, C3, C4, O1, and O2), one electro-
cardiography channel, two electrooculogram channels (E1-M2 and E2-M2), and three electromyography 
channels (chin and both anterior tibialis muscles) and were conducted according to the recommendations of 
American Academy of Sleep Medicine (AASM)45. PSG was conducted using COMET systems (Grass-Telefactor 
Corporation), and PSG results were scored based on the criteria in the AASM manual45. We used the recom-
mended rules of hypopnea (≥30% reduction in nasal pressure signal excursions from baseline that lasted ≥10 s 
and were associated with ≥4% desaturation from the pre-event baseline) during sleep in the AASM manual45 and 
OSA was defined as an AHI ≥ 5 and SS as AHI < 5. Experienced PSG technologists who completed the interscorer 

Figure 2.  Partial correlations between AHI and absolute beta power during NREM sleep. (a) Partial correlation 
between AHI and absolute beta power during NREM period controlling for age and sex in the OSA group 
(r = 0.251, p corr = 0.027). (b) Partial correlation between AHI and absolute beta power during NREM 
period controlling for age and sex in total participants (r = 0.340, p corr <0.001). AHI, apnoea-hypopnea 
index; NREM, non-rapid eye movement; OSA, obstructive sleep apnoea; r, Pearson’s r; Log transformation for 
spectral EEG was performed before Pearson correlation analysis when both variables deviate from the normal 
distribution. p corr, p value after Bonferroni correction (uncorrected p value × 6) for correction of multiple 
comparisons.
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reliability program of the AASM (http://www.aasmnet.org/isr/) scored PSG recordings using the AASM sleep 
scoring criteria45. All PSG data were confirmed by a sleep specialist medical doctor (K.H.P.).

Spectral analysis.  Power spectra were computed for each EEG frequency band: slow oscillation (0.5–1 Hz), 
delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), sigma (12–15 Hz), and beta (15–20 Hz). For the present analysis, 
data derived from stages N2, N3, REM and the average NREM central EEG electrode (i.e., [C3/A2 + C4/A1]/2) 
were used.

SpectralTrainFig was used for power spectral analysis. This program is an automated open-source Matlab 
graphic interface for the spectral analysis of sleep EEG in PSG. It detects and deletes epochs with artifact automat-
ically and generates summary figures for visual adjudication46,47. It was developed by the National Sleep Research 
Resource (https://github.com/nsrr/SpectralTrainFig)48,49. In accordance with Welch’s method, the spectral power 
density was calculated using 10 overlapping 4-s sub-epochs for each 30-s epoch, with a 50% tapered cosine win-
dow. The artifact due to electrocardiogram interference was removed using a template subtraction method50. 
Manual visual adjudication was performed by a researcher who was blinded to the subject group, and spectra 
data with significant artifacts were excluded manually. In spectral analysis using the SpectralTrainFig program 
and visual adjudication, 34 subjects were excluded due to excessive PSG artifacts.

Statistical analysis.  G*Power 3.1.9.2 software was used for sample size calculation. The minimum sample 
size yielded from this program was 134 (34 for group 1 and 100 for group 2). In the power analysis, a medium 
effect size of 0.5, power of 0.8 and α error probability of 0.05 were applied with group allocation ratio of 3 
(OSA:SS = 3:1) based on the previous works12,13.

IBM SPSS for Windows software (version 23.0, IBM Corp, Armonk, NY, USA) was used for data analysis. 
Chi-square test was used for categorical variables, and independent t-test analysis of variance or analysis of covar-
iance was used to compare the demography, PSG characteristics, and absolute spectral EEG power between the 
groups. Pearson correlation analysis was used to assess the correlation between AHI, arousal index and absolute 
spectral EEG power. Log transformation of spectral EEG power was conducted before Pearson correlation anal-
ysis when both variables showed deviation from normal distribution. P < 0.05 after Bonferroni correction was 
considered statistically significant.
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