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Abstract
Seven ligands bind to and activate the mammalian epidermal growth factor
(EGF) receptor (EGFR/ERBB1/HER1): EGF, transforming growth factor-alpha
(TGFA), heparin-binding EGF-like growth factor (HBEGF), betacellulin (BTC),
amphiregulin (AREG), epiregulin (EREG), and epigen (EPGN). Of these, EGF,
TGFA, HBEGF, and BTC are thought to be high-affinity ligands, whereas
AREG, EREG, and EPGN constitute low-affinity ligands. This focused review is
meant to highlight recent studies related to actions of the individual EGFR
ligands, the interesting biology that has been uncovered, and relevant
advances related to ligand interactions with the EGFR.
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Introduction
Although the role of the epidermal growth factor receptor (EGFR) 
in the generation of biological responses has been reviewed exten-
sively, an analysis of EGFR ligands, crucial initiators of these 
responses, has not been reviewed recently1–8. All EGFR ligands 
are synthesized as type 1 transmembrane precursors that undergo  
extracellular domain cleavage to release soluble ligands, which then 
bind to and activate the EGFR. This cleavage event is usually  
mediated by members of the a disintegrin and metalloprotease 
(ADAM) family. Understanding how these ligands are trafficked 
within the cell and released at the cell surface has the potential 
to produce significant new insights in cell biology. For example,  
the role of a trafficking adaptor for the transforming growth  
factor-alpha (TGFA) precursor (see ‘Transforming growth  
factor-alpha’ section) and the role of exosomal ligands in mediating  
receptor activation (see ‘Amphiregulin’ section) have been identi-
fied during these studies.

Aspects of individual ligands
In the following paragraphs, recent advances for each of the seven 
EGFR ligands are discussed. Although in this section we discuss 
the ligands individually, we point out that these ligands do not act 
in isolation but rather affect the behavior of each other to accomplish  
a diverse repertoire of biological responses through EGFR signal-
ing. From a focused view in this section, the next section highlights 
the differences, similarities, and cross-talk among the ligands.

Epidermal growth factor
EGF is the prototypic and founding member of the EGFR ligand 
family, first identified from submaxillary gland extracts during  
nerve growth factor studies9. The EGF-EGFR ligand-receptor  
system has greatly enhanced our understanding of receptor tyrosine 
kinase signaling, as evidenced by more than 70,000 publications for 
EGF alone. A recent review has distilled our current understand-
ing of EGF and its actions3. More recently, a study uncovered that 
EGF-induced EGFR signaling enhances production of intracellular  
reactive oxygen species (ROS) by dual oxidase 1 (DUOX1)10. This 
nicely complements earlier studies in which ROS were shown 
to enhance EGFR signaling by modulating both positive and  
negative regulators of EGFR signaling (ADAMs and protein 
tyrosine phosphatases)11–14. In another recent study, urinary EGF  
has been shown to be an independent risk factor for progression 
of chronic kidney disease, substantiating earlier findings by Harris  
and colleagues15–18.

Transforming growth factor-alpha
A historical perspective of key advances for TGFA, including TGFA 
regulation at the level of expression, trafficking, and processing, 
has been provided in a recent review7. Studies with transmembrane 
TGFA precursor (pro-TGFA) uncovered a novel interaction with 
Naked2 (NKD2) and showed that NKD2 acts as a cargo recogni-
tion and targeting (CaRT) protein for pro-TGFA19,20. In polarized 
epithelial cells, NKD2 envelops pro-TGFA-containing exocytic 
vesicles and directs them to the basolateral surface where the vesi-
cles dock and fuse in an NKD2 myristoylation-dependent manner19.  
In Madin-Darby canine kidney (MDCK) cells expressing  
myristoylation-deficient NKD2 (glycine at the second position 
is replaced by an alanine, G2A-NKD2), the vesicles accumu-
late at the basolateral “corner” and pro-TGFA is trapped in the  

cytoplasm20. Basolateral delivery of pro-AREG and pro-EREG, 
unlike pro-TGFA, is unaffected in G2A-NKD2-expressing MDCK 
cells, suggesting utilization of alternate trafficking machinery21,22. 
More recently, the Schekman lab has demonstrated that cornichon-1 
(CNIH) acts as a cargo receptor for pro-TGFA in the early secretory  
pathway23. These findings indicate that each ligand has distinct 
nuances as to its biosynthetic trafficking, cell surface delivery, 
and ectodomain cleavage. Upstream of regulation at the protein  
trafficking level, TGFA can be regulated at the level of transla-
tion by microRNAs (miRs) directly or indirectly (for example, by  
miR-374a24 and miR-50525 directly and by miR-124 through 
Slug26, in addition to other miRs reported earlier7,27). miR-203 
has been noted to be a broad EGF family regulator that binds to  
3′ untranslated regions of AREG, EREG, and TGFA mRNA and 
regulates their stability28.

Amphiregulin
A recent review has highlighted our current understanding of 
AREG2. During pro-AREG studies, a new mode of EGFR ligand 
signaling via exosomes was discovered29. pro-AREG is packaged 
into exosomes, and pro-AREG-containing exosomes increase the 
invasiveness of recipient breast cancer cells. Exosomal uptake is 
partially dependent on ligand-receptor interaction as treatment of 
recipient cells with EGFR blocking monoclonal antibody attenu-
ated the uptake of pro-AREG-containing exosomes. We have 
termed this new mode of EGFR activation by exosomal ligands 
as ExTRAcrine (exosomal targeted receptor activation) signaling. 
As noted in Figure 1, ExTRAcrine signaling has features of auto-
crine, paracrine, and juxtacrine signaling. It is possibly involved in 
endocrine signaling as well, since EGFR and pro-AREG can be 
detected in human plasma exosomes30.

There is accumulating evidence that AREG is produced in a number 
of cells other than epithelial cells and fibroblasts. Artis and col-
leagues have identified roles for AREG in immune surveillance31. 
Damaged epithelial cells release interleukin-33 (IL-33), IL-25, and 
thymic stromal lymphopoietin (TSLP), which can activate group 2 
innate lymphoid cells to release AREG, as well as IL-5, IL-9, and 
IL-13. It is thought that AREG ameliorates injury by binding to 
epithelial EGFR and stimulating proliferation and repair. This does 
not exclude an effect of AREG on EGFR-expressing, non-epithelial 
cells, including fibroblasts, polymorphonuclear cells, and Fox3+ 
regulatory T cells; the latter two have been reported to express 
EGFR by flow cytometry31,32. A difficulty in studying the actions of 
the ligands in the mouse is the lack of robust antibodies to examine 
mouse EGFR by immunofluorescence or immunohistochemistry, 
or both.

A variety of stresses, such as inflammation (with lipopolysaccha-
rides), ischemia, and hypoxia, induce AREG and EREG expres-
sion in the brain (cortex, striatum, and hippocampus). Under these 
stresses, glial cells show upregulation of EREG and AREG, which, 
when released, may protect against neuronal cell death. In Neuro2a 
cells, administration of EREG or AREG inhibits tunicamycin-
induced endoplasmic reticulum (ER) stress and cell death33. 
Recent work by Elder’s group continues to implicate a role for the 
C-terminal domain of AREG in promoting keratinocyte  
proliferation34. In addition, Yarden’s group has shown preclinical 
efficacy for an AREG neutralizing antibody in ovarian cancer35.
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Epiregulin
EREG binds to and activates EGFR and ERBB4. EREG is weakly 
expressed in normal adult tissues but is overexpressed in diseases 
like cancer. Multiple roles for EREG in normal physiology and 
disease states have been reviewed recently4. However, the basic 
biological processes, such as the polarized distribution of pro-
EREG within cells and the subsequent spatial control of EGFR 
activity, have been understudied. We have identified a new mode of 
epithelial transformation by apical mistrafficking of pro-EREG22. 
In polarized MDCK cells, pro-EREG is delivered to the basolateral 
membrane and its delivery is dependent on a tyrosine-based 

(YXXΦ) sorting motif. Disruption of this motif leads to complete 
apical delivery; however, pro-EREG basolateral sorting is inde-
pendent of the usual YXXΦ-recognizing clathrin adaptor, AP1B22. 
This apical rerouting of pro-EREG leads to activation of apical 
EGFR signaling, which has a different activation profile compared 
with basolateral EGFR signaling. MDCK cells expressing an apical 
mistrafficking mutant of EREG (Y156A) are more transforming 
than their wild-type, basolateral EREG-expressing counterparts 
when injected subcutaneously in nude mice. Additionally, there are 
mutations in human cancers that would disrupt the sorting motifs of 
the majority of EGFR ligands, including pro-EREG36. In a recent 
study with breast epithelial MCF10A cells, EREG expression was 
shown to contribute to tumor progression during early stages of 
cancer37. A comprehensive understanding of pathways that govern 
spatial compartmentalization of the EGFR ligands might reveal 
alternate approaches to treat cancer.

Recently, additional functions of EREG have been uncovered. In 
circulating monocytes, EREG is upregulated acutely during short 
bursts of exercise and intermittent hypoxia in rat aortic smooth  
muscle cells. These facts may have implications for  
atherosclerosis38. Additionally, EREG is shown to assist in the  
proliferation, repair, or regeneration (or a combination of these) 
in liver, colon, and salivary gland acinar cells39–42. EREG also 
plays a role in odontogenesis by enhancing proliferation of dental  
apical papilla stem cells and inducing oral epithelial cell  
differentiation by dental papilla cells43.

Wrana and colleagues have identified EGFR-dependent Yap sig-
naling in the intestine which contributes to regeneration and 
tumorigenesis44. They reported that EREG, but not EGF or AREG, 
is able to maintain growth of organoids generated from Yap null 
mice; however, it should be noted that the concentration of recom-
binant mouse EREG given was very high and the source of the 
other ligands was unclear.

Betacellulin
Betacellulin (BTC) is a dual-specificity ligand that binds to and 
activates EGFR and ERBB4. In a recent review, structural details 
and key functions of BTC gleaned from knockouts, transgenic ani-
mals, patient samples, and in vitro studies have been reviewed8. 
Recently, it has also been shown that pro-BTC localizes to the 
basolateral membrane45. pro-BTC basolateral sorting is dependent 
on a cytoplasmic EEXXXL motif, and disruption of this motif, or 
introduction of a human cancer mutation (E156K) within this motif, 
leads to pro-BTC mistrafficking. An analogous EEXXXL motif is 
also responsible for basolateral sorting of pro-AREG21. This report 
also demonstrated that pro-BTC mistrafficking induces an EGFR-
dependent hepatic polarity phenotype (apical surfaces on the 
side, between two cells) in otherwise columnarly polarized  
MDCK cells, a finding not observed with any of the other EGFR 
ligands.

Recent publications have uncovered additional functions of BTC. 
BTC transgenic mice display high cortical bone mass46. Addition-
ally, in bone metastases associated with castration-resistant pros-
tate cancer, BTC is upregulated in osteoblasts and contributes to 
osteoblastic activity47. BTC transgenic mice also develop urothelial  
hyperplasia and show sex-dependent reduction in urinary protein 

Figure 1. Modes of signaling via epidermal growth factor 
receptor (EGFR) ligands. Autocrine signaling occurs when a 
ligand is released from a cell and binds to EGFR on that same 
cell. Paracrine signaling refers to the released ligand acting on 
a nearby cell, usually a different cell type. Juxtacrine signaling 
occurs when a non-cleaved, transmembrane ligand binds to EGFR 
on an adjacent cell; this is best documented for heparin-binding 
epidermal growth factor-like growth factor (HBEGF). Amphiregulin 
(AREG), transforming growth factor-alpha (TGFA), and HBEGF, 
as well as EGFR, can be packaged into signaling competent 
exosomes. Uptake of exosomal AREG by recipient cells is, at least 
in part, dependent on EGFR, leading to the term exosomal targeted 
receptor activation (ExTRAcrine). ExTRAcrine signaling has features 
of autocrine, paracrine, and juxtacrine signaling as well as possibly 
endocrine signaling since EGFR and AREG can be detected in 
human plasma exosomes30. Adapted from Singh and Coffey36.
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content, which appears to be independent of EGFR signaling, sug-
gesting a role for ERBB448. BTC has also been identified as a novel 
modulator of interferon (IFN) response and enhances the anti-
viral action of IFN49. In a large cytokine and chemokine screen to  
modulate IFN responses, BTC was identified as one of the most 
potent modulators of the IFN response. Moreover, miR-200 has 
been shown to control BTC (and AREG) translation50.

Heparin-binding epidermal growth factor-like growth factor
Roles for heparin-binding EGF-like growth factor (HBEGF) in 
multiple cellular processes in normal and disease states have been 
recently reviewed5. Among the EGFR ligands, pro-HBEGF has the 
longest residency time at the cell surface, perhaps explaining why 
pro-HBEGF functions as a receptor for the B fragment of Diph-
theria toxin. Since the toxin binds only to human and monkey 
pro-HBEGF, mouse modelers have exploited this selective binding 
by introducing human pro-HBEGF into the ATG start site of mouse 
genes expressed in selected cell types, which can then be eliminated 
by administration of the toxin38,39. However, when repurposing pro-
HBEGF in this way, possible “side effects” of human HBEGF (that 
can bind to mouse EGFR and ERBB4) need to be considered51.

Local administration of HBEGF helps mice recover from chronic 
suppurative otitis media, a chronic inflammation of the middle ear52. 
Delivery of EGF or FGF2 was not effective53. It is unclear whether 
auto- or cross-induction (or both) of other ligands play a role in 
this process54,55. HBEGF mRNA is also a target for miR-132, both 
of which play a major role in wound healing56. During the transi-
tion from inflammation to proliferation in wound healing, miR-132 
expression was upregulated together with a concomitant decrease 
in HBEGF levels. Surprisingly, HBEGF downregulation coincided 
with the proliferative phase during wound healing and increased 
receptor activity. Other miRs (for example, miR-96, miR-212, and 
miR1192) have also been shown to target HBEGF57–59.

Epigen
Epigen (EPGN), the most recently discovered EGFR ligand, 
seems to be a low-affinity EGFR ligand. The localization of pro-
EPGN in polarized epithelial cells is not known and its cytoplas-
mic domain lacks any recognized basolateral sorting motifs36.  
Schneider and Yarden have recently reviewed EPGN structure and 
function6. EPGN knockout mice do not display an obvious  
phenotype60; however, transgenic overexpression of EPGN during 
embryonic development induces sebaceous gland hyperplasia61. 
Interestingly, activation of the transcription factor Nrf2, a master 
regulator of cellular anti-oxidant defense, causes sebaceous gland 
enlargement in an EPGN-dependent manner62. Pharmacologic acti-
vation of Nrf2 has been employed as a cancer prevention strategy 
and this is due in part to its role in ROS detoxification63. However, 
Nrf2 activation-induced EPGN upregulation and subsequent EGFR 
activation might actually be pro-tumorigenic and act counter to its 
anti-cancer effects. EGFR signaling also regulates Nrf2 activity; 
in cortical neurons, astragaloside IV (extracted from Astragalus 
membranaceus) induces HBEGF-dependent EGFR transactiva-
tion that leads to Ser40 phosphorylation of Nrf2 and its nuclear  
translocation64. EPGN transgenic mice also show a peripheral demy-
elinating neuropathy, leading to late-onset muscular dystrophy65.

Different ligands, differing functions
EGFR can be activated by seven related, but distinct, ligands. 
Multiple publications have noted the capacity of these different 
ligands to act in a “functionally selective” manner (that is, to pro-
duce quantitatively and, to a lesser extent, qualitatively distinct cel-
lular responses66–68). It is important to note that EGFR is one of 
four members of a family of related receptors. The others are desig-
nated as ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4. Of the 
ligands that bind to the EGFR, three (EREG, HBEGF, and BTC) 
are known to bind to and activate ERBB4. None of the EGFR 
ligands is known to interact with ERBB2 or ERBB3. A family of 
EGF-related ligands, termed neuregulins, binds to ERBB3 and 
ERBB4. There is no known ligand for ERBB2.

In some cases, the ligand functional selectivity could be due to the 
capacity of some of the ligands to activate ERBB4; however, dif-
ferences also exist in cells that do not express detectable levels of 
ERBB4. As noted above, four ligands (EGF, TGFA, AREG, and 
EPGN) interact solely through EGFR, yet they do not produce iden-
tical biological responses. In particular, AREG is often regarded as 
a low-affinity ligand for the EGFR. Crystallographic studies have 
described high-resolution ligand:ectodomain structures for EGF:
EGFR, TGFA:EGFR, and NRG-1β:ERBB469. However, these stud-
ies do not provide an explanation for downstream differences in 
biological activity.

Recently, a comparative study70 of EGF, TGFA, AREG, and BTC 
binding to the EGFR and subsequent dimer formation has made  
clear that EGF and TGFA have a distinct preference to pro-
duce EGFR:ERBB2 heterodimers compared with EGFR:EGFR 
homodimers, but that BTC and AREG produced dimers of both 
types equally. In addition, AREG produced significantly (50%) 
fewer dimers of either type compared with the other ligands. These 
initial data point to dimerization-competent, conformation-based 
receptor differences provoked by different ligands as a potential 
basis for heterogeneity in signaling and biological outcomes. These 
data and the related issues of receptor methylation and receptor 
antagonists (discussed below) will need to be evaluated.

Another fact, sometimes forgotten or ignored, is that EGFR ligands 
can auto- and cross-induce one another, adding a layer of com-
plexity to studies of an individual ligand54,55. In addition, the often 
observed co-expression of EPGN, EREG, AREG, and BTC, which 
may be due to their chromosomal clustering on human 4q13-21 and 
5E1 in the mouse, further complicates our understanding of the role 
of individual ligands in biological processes55. ExTRAcrine signal-
ing and auto- and cross-induction of EGFR ligands are variables 
that merit consideration in systems biology approaches to the merg-
ing fields of autocrine signaling and quorum sensing, as reviewed 
elsewhere71.

Interestingly, exogenous administration of ligands has recently been 
used as a treatment strategy for certain disease conditions in mice. 
Table 1 lists distinct actions recently observed for individual EGFR 
ligands in vivo. Once again, this is a highly selective compilation 
and we apologize for any omissions. We have chosen to highlight 
studies that identify new functions of the individual ligands.
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Ligand processing and delivery to the cell surface
As noted above, all seven mammalian EGFR ligands are syn-
thesized as a type 1 transmembrane precursor and are processed 
through biosynthetic compartments common to other secretory and 
cell surface proteins. We have mentioned earlier that mammalian  
ligands are usually cleaved by ADAMs. Owing to the focus on 
EGFR ligands in this review, we have not elaborated on ADAM  
activity in cleavage of EGFR itself. ADAM-mediated EGFR cleav-
age acts as a negative feedback for EGFR signaling and acts in  
concert with the positive feedback through ligand shedding72.  
Drosophila genetics has identified the involvement of particular 
gene products (Rhomboid, Star) for intracellular trafficking of 
the fly EGFR ligands. Recent work in mammalian cells has found 
at least two novel roles for inactive rhomboids (iRhoms) in the 
processing of EGFR ligand precursors73.

Rhomboid gene products are known to be seven membrane- 
spanning molecules, which function as intramembrane serine pro-
teases that cleave various transmembrane molecules within the 
cell or at the cell surface73. The rhomboid family also includes 
catalytically inactive proteins termed iRhoms. Although rhomboid  
cleavage of the fly EGFR ligand precursor is required for process-
ing to the cell surface, the presence of iRhoms in the biosynthetic  
pathway prevents this cleavage and leads to intracellular degrada-
tion of EGFR ligand precursors74. iRhoms localize to the ER. In 
this way, iRhoms block the cell surface expression of multiple 
EGFR ligands, several of which are not substrates for the catalytic 
rhomboids. Hence, the iRhoms may not just compete with rhom-
boids, but rather regulate EGFR ligand levels by an independent  
mechanism, suggesting that the iRhom gene may have evolved a  
distinct regulatory function. Consistent with this idea, during 
evolution the iRhoms have acquired large segments of sequence 
not shared with the catalytic rhomboids. In flies, the independent  

mechanism that regulates intracellular ligand levels is identified as 
the ER-associated protein degradation pathway that leads to proteo-
somal degradation73.

A second, less direct, mechanism by which iRhoms control the pro-
duction of bioactive secreted EGFR ligands is through control of 
the ultimate step in processing: the metalloprotease-mediated, cell-
surface cleavage of the ligand precursor. This step is executed by 
members of the ADAM protease family of which ADAM17 is prob-
ably the most significant member for EGFR ligands. ADAMs are 
single-pass transmembrane proteins that are trafficked through the 
ER and Golgi before reaching the cell surface, where the ectodo-
main proteolytically cleaves the ectodomain of substrates, such as 
EGFR ligand precursors. During intracellular trafficking, ADAMs 
are converted by furin-dependent proteolytic processing in the Golgi 
from an inactive form to a mature active species, and this requires 
iRhoms75–78. When mammalian iRhoms are deleted or knocked 
down, no mature cell surface ADAM17 molecules are produced and 
in turn ADAM17 substrates, such as EGFR ligand precursors are 
not cleaved. In mammals, there are two iRhoms (RHBDF1/iRhom1 
and RHBDF2/iRhom2), which seem to have overlapping effects on 
ADAM17 maturation, depending on the cell type. iRhom effects, 
however, are selective toward ADAM17. Since ADAM17 also 
cleaves the inflammatory tumor necrosis factor precursor, iRhoms 
may influence both cell proliferation and inflammatory pathways. 
Interestingly, dominant iRhom2 mutations have been detected in an 
inherited syndrome, tylosis (thickening of the palms and soles), in 
patients with esophageal cancer79. The disorder appears to be due 
to mutations in the N-terminal cytosolic domain of iRhom2 that 
stabilize the protein. These mutations have been linked to increased 
release of AREG (and HBEGF) and increased EGFR activity. The 
impact of these mutations on ADAM17 activity is unsettled79–81. A 
spontaneous recessive mutation in this domain of iRhom2 has been 

Table 1. In vivo administration of epidermal growth factor receptor ligands as treatment 
strategies.

Ligand Mode of administration Effect Reference

EGF One-week perfusion with 
ciliary neurotrophic factor 
via mini-osmotic pump

Acinar to beta cell transdifferentiation for 
up to 248 days in adult mice with chronic 
hyperglycemia

88

HBEGF Intranasal Reduced oligodendrocytic death when 
given immediately after injury in a mouse 
model of pre-term brain injury

89

HBEGF HBEGF-containing hydrogel 
injected through the 
external auditory canal

Regeneration of chronic tympanic 
membrane perforations in mice

52

HBEGF Topical application Accelerated wound healing in a diabetic 
mouse model

90

Exogenous administration of the soluble epidermal growth factor receptor ligands for the treatment of various 
disease states in animal disease models. EGF, epidermal growth factor; HBEGF, heparin-binding epidermal 
growth factor-like growth factor.

Page 6 of 11

F1000Research 2016, 5(F1000 Faculty Rev):2270 Last updated: 08 SEP 2016



identified in a mouse with a hairless phenotype called curly bare 
(cub)82. Of interest, there is a suppressor of Cub, Mcub, in which 
there is a loss-of-function mutation in mouse AREG82.

Ligand interactions with receptors
Although the complexities presented by multiple ligands binding 
to multiple ErbB receptors are described above and in more detail 
elsewhere68,70, a few recent publications give additional param-
eters to consider. First, an antagonist has now been described for 
the mammalian receptors83, which adds to the negative control 
of ligand receptor interaction described some time ago for the  
Drosophila EGFR system. In flies, the secreted molecule Argos 
is able to associate with fly EGF and prevent ligand bind-
ing to the Drosophila EGF receptor (DER)84,85. Although an 
Argos equivalent has not been detected in mammals, Zheng and  
colleagues83 report that migration inhibitory factor (MIF), which 
is O-glycosylated and secreted, binds to EGFR and blocks EGF 
binding. This antagonist is, therefore, mechanistically distinct 
from Argos. The report does show that MIF blocks EGF binding 
to its receptor in cell culture, preventing activation of the recep-
tor and downstream signaling pathways, and that recombinant MIF  
interacts with the recombinant EGFR ectodomain in a purified 
system, but there are a few missing pieces to this provocative and 
potentially significant report. Does MIF interact with the EGFR 
at biologically significant concentrations? What is the receptor 
interaction site for MIF and does it overlap with the known ligand 
binding sites? Is there specificity to the MIF interaction within the 
ERBB system or unrelated receptors? Importantly, this study also 
shows that EGF activation of its receptor induces the secretion of a 
metalloprotease (MMP 13) that degrades MIF and thus provides a 
feedback loop to this EGFR antagonist.

The EGFR is subject to a variety of co- and post-translational 
modifications that have significant roles in the capacity of the 
receptor to transduce second messenger systems following ligand  
binding. Recently, the role of methylation in mediating high- 
affinity ligand binding has been described86. Methylation at R198 
and R200 within the EGFR ectodomain is reported to mediate 
high-affinity EGF binding. When receptor methylation is pre-
vented by mutagenesis of the two Arg residues or by knockdown 
of the relevant methyltransferase (PRMT1), dissociation constant 
(Kd) values are altered approximately threefold to reflect a loss 
of higher affinity binding compared with the wild-type receptor. 
Decreased ligand-dependent receptor dimerization, activation, and 
downstream signaling, including tumorigenesis, are observed in the 
absence of receptor methylation, compared with wild-type receptor. 
Similarly, exogenous expression of PRMT1 increased high-affinity 
ligand binding to the EGFR, as well as receptor-mediated down-
stream signaling events. The study also provides evidence that a 
pool of PRMT1 is localized within the ER.

The EGFR ectodomain is often subdivided into four regions (D1, 
D2, D3, and D4) with EGF binding requiring molecular contacts 
with D1 and D3. In untreated cells, over 90% of the receptor exists 
in an inactive or “tethered” state involving interaction of residues 
in D2 and D4 that sterically prevent ligand binding to the D1 and 
D3 regions. Methylation of R198 and R200, located in D2, is 

proposed on the basis of molecular modeling to destabilize the teth-
ered conformation and thereby increase receptor in the extended 
conformation, which allows high-affinity binding to D1 and D3. 
In the past, the basis of high-affinity binding has been attributed to 
receptor heterogeneity or negative cooperativity87. Recent studies 
that have supported these mechanisms may have to be adjusted to 
include receptor methylation status. The level of methylated recep-
tor is estimated to be approximately 10% of the EGFR population, 
which is about the same as the high-affinity binding receptor pool. 
Since methylation of the EGFR ectodomain is reported to occur 
within the lumen of the ER/Golgi during biosynthesis, the authors 
concluded that the level of PRMT1 activity in that compartment 
may determine the size of the high-affinity receptor pool. If the 
above studies are confirmed, methylation may also contribute to 
high-affinity binding.

Analyses of colorectal tumor tissue showed an increased level of 
methylated EGFR compared with control tissue. Methylated recep-
tor was correlated with a worse overall patient survival and higher 
recurrence rate. Cetuximab, an EGFR neutralizing monoclonal 
antibody, is used to treat certain cancers, particularly colon cancer. 
This antibody binds to the D3 region of the EGFR, thereby blocking 
ligand binding. Methylation not only increased high-affinity EGF 
binding but also decreased the capacity of cetuximab to interfere 
with ligand binding. In tissues of patients with cancer, the presence 
of methylated receptor was a predictor of poor patient response to 
this therapeutic agent.

In summary, study of the EGFR and its ligands, since their discovery 
more than fifty years ago, continues to yield important insights into 
multiple biological processes. From oocyte maturation, blastocyst 
implantation, and embryonic development to organ development 
and maintenance and diseases like cancer, this line of investigation 
continues to be broadly relevant and clinically important.
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