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Pan-cancer molecular subtypes revealed by mass-
spectrometry-based proteomic characterization of
more than 500 human cancers
Fengju Chen1, Darshan S. Chandrashekar2,3, Sooryanarayana Varambally2,3,4 & Chad J. Creighton 1,5,6,7*

Mass-spectrometry-based proteomic profiling of human cancers has the potential for pan-

cancer analyses to identify molecular subtypes and associated pathway features that might

be otherwise missed using transcriptomics. Here, we classify 532 cancers, representing six

tissue-based types (breast, colon, ovarian, renal, uterine), into ten proteome-based, pan-

cancer subtypes that cut across tumor lineages. The proteome-based subtypes are obser-

vable in external cancer proteomic datasets surveyed. Gene signatures of oncogenic or

metabolic pathways can further distinguish between the subtypes. Two distinct subtypes

both involve the immune system, one associated with the adaptive immune response and

T-cell activation, and the other associated with the humoral immune response. Two addi-

tional subtypes each involve the tumor stroma, one of these including the collagen VI

interacting network. Three additional proteome-based subtypes—respectively involving

proteins related to Golgi apparatus, hemoglobin complex, and endoplasmic reticulum—were

not reflected in previous transcriptomics analyses. A data portal is available at UALCAN

website.
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In this age of advanced molecular-profiling technologies, can-
cer molecular subtype discovery has been one of the more
common exercises utilizing transcriptomic or proteomic data

on human tumors. Molecular subtypes can deepen our under-
standing of cancer as representing a collection of diseases rather
than a single disease. Molecular subtypes can provide insights
into the pathways appearing deregulated within tumor subsets,
which may suggest therapeutic opportunities, as well as being
indicative of what pathways, as characterized in the experimental
setting, would seem particularly relevant in the human disease
setting. Historically, most subtype discovery studies in cancer
have involved transcriptomic rather than proteomic data, as the
advent of DNA microarrays over 20 years ago began the wide-
spread use of transcriptomics among laboratories1. In contrast,
proteomics is typically more challenging at a technical level and
requires dedicated laboratories with the right expertise. In a
recent study, using transcriptome data by RNA sequencing
(RNA-seq) from The Cancer Genome Atlas (TCGA) consortium,
we classified more than 10,000 cancers, representing 32 major
types, into 10 molecular-based classes that cut across tumor
lineages and cancer types2. At the same time, while protein
abundance levels typically correlate with those of the corre-
sponding mRNA, widespread discordant expression patterns
between protein and mRNA are also observable3.

The Clinical Proteomic Tumor Analysis Consortium (CPTAC)
aims to accelerate the understanding of the molecular basis of
cancer through the application of proteomic technologies and
workflows to clinical tumor samples4. While past TCGA con-
sortium efforts involved targeted proteomics involving a set of
~180–250 protein features5,6, CPTAC proteomic profiling has
been mass-spectrometry-based, profiling on the order of more
than 10,000 protein features. Initial studies led by CPTAC per-
formed mass-spectrometry-based profiling on a subset of cases
from TCGA—involving breast, colorectal, and ovarian cancers—
which allowed for integrative analysis studies between protein
expression and other data types including mRNA and mutation7–9.
Subsequent Confirmatory and Discovery datasets generated by
CPTAC profile cancer cases not represented in TCGA10,11, with
these data—representing several tissue-based cancer types—being

made publicly available to the research community for secondary
analyses.

Mass-spectrometry-based proteomic-profiling data of human
cancers, as recently provided by CPTAC for hundreds of cases,
have the potential for pan-cancer analyses to identify molecular
subtypes and associated pathway features that previous tran-
scriptomics analyses might have missed. Whereas the initial
CPTAC-led marker analysis studies were each focused on a
specific cancer type7–11, our present study aims to define pan-
cancer proteome-based subtypes that would transcend tissue-
based type across the CPTAC cohorts. We also examine cancer
proteomic and transcriptomic datasets outside of CPTAC, for
patterns of manifestation of our proteome-based subtypes. For
each of the subtypes identified, we explore the top differential
protein features for associated functional classes and pathways, to
help us understand what these subtypes represent.

Results
CPTAC mass-spectrometry-based proteomic tumor datasets.
The primary focus of this study was on a set of mass-
spectrometry-based proteomic profiles from the CPTAC Con-
firmatory/Discovery cohort, of 532 cancer cases (cases not
represented in TCGA), comprised of 125 breast cancer cases, 97
colon10, 100 ovarian, 110 renal (primarily clear cell renal cell
carcinoma)11, and 100 uterine (Supplementary Data S1). This
CPTAC Confirmatory/Discovery dataset was used to define
proteome-based pan-cancer subtypes cutting across tissue-
specific differences between the cancer types. Additional pro-
teome and transcriptome datasets of TCGA cancer cases, which
shared no cases with the CPTAC Confirmatory/Discovery cohort,
were used to independently confirm the observations initially
made using CTPAC Confirmatory/Discovery dataset (Fig. 1a). In
the CPTAC-TCGA proteome dataset, a subset of 364 cases from
TCGA—involving breast, colorectal, and ovarian cancers (105,
90, and 169 cases, respectively, Supplementary Data S1)—was
also profiled by mass-spectrometry-based proteomics7–9. TCGA
RPPA dataset represented 7663 TCGA cases and 31 cancer types
profiled for a focused panel of proteins (involving 211 protein
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Fig. 1 Proteomic and transcriptomic human tumor datasets and associated gene features used in this study. a We used the CPTAC Confirmatory/
Discovery dataset, of 532 cancer cases (cases not represented in TCGA)10 for proteome-based, pan-cancer subtype discovery (see Fig. 2). For the
following datasets of TCGA cases, we classified cases according to the CPTAC Confirmatory/Discovery-based subtypes (see Fig. 3): CPTAC-TCGA
dataset (TCGA cases for which mass-spectrometry-based proteomic profiling by CPTAC was carried out), TCGA RPPA dataset (TCGA cases profiled for a
focused panel of proteins by RPPA platform), and TCGA pan32 mRNA dataset (TCGA cases with RNA-sequencing data). For TCGA datasets, Venn
diagram represents shared cases. b Among CPTAC Confirmatory/Discovery, TCGA RPPA, and TCGA pan32 mRNA datasets, numbers of shared gene
features (protein or mRNA levels). CPTAC proteomic and TCGA transcriptomic data, as provided by their respective public data portals, were processed at
the gene level, rather than at the protein isoform or mRNA transcript levels. See also Supplementary Data S1 and Supplementary Fig. 1.
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features6 or 169 unique genes) by antibody-based reverse-phase
protein array (RPPA) platform12. TCGA pan32 mRNA dataset
featured 10,224 cases and 32 cancer types with RNA-sequencing
data. The CPTAC Confirmatory/Discovery total protein dataset
represented a total of 12,247 genes, of which 9764 had detection
in at least three of the five cancer types (Fig. 1b). For all proteome
and transcriptome datasets, we normalized expression values
within each cancer type, whereby neither tissue-dominant dif-
ferences nor inter-laboratory batch effects would drive the
downstream analyses2,5,13.

Previous work had identified 10 molecular-based pan-cancer
classes based on transcriptome data from TCGA2. Using a
previously defined classifier of 854 mRNAs2, we found these
transcriptome-based pan-cancer classes to be reflected in the
proteome, based on analysis of both CPTAC-TCGA and CPTAC
Confirmatory/Discovery datasets (Supplementary Fig. 1a–c).
Within the CPTAC-TCGA cohort, correlations between mRNA
and protein expression across tumors were generally positive for
the proteins surveyed, though with Pearsons’s correlation r-values
much less than 1 (Supplementary Fig. 1a).

De novo proteome-based pan-cancer molecular subtypes. We
sought to determine what molecular subtypes would be dis-
coverable from the proteome, as opposed to pan-cancer subtypes
previously identified using the transcriptome2. We used mass-
spectrometry-based proteomic data from the CPTAC Con-
firmatory/Discovery cohort to define 10 different subtypes of
cancer (Table 1 and Supplementary Fig. 2a–d) across the 532
cases and five tissue-based cancer types represented. We found
several of these proteome-based subtypes to highly overlap with
specific mRNA-based pan-cancer classes2 as applied to the same
cohort (Fig. 2a and Supplementary Fig. 1c). The 10 proteome-
based pan-cancer molecular subtypes, referred to here as k1
through k10, were each characterized by widespread molecular
patterns (Fig. 2b and Supplementary Fig. 2e, f and Supplementary
Data S2 and S3). For each proteome-based subtype, we identified
the top proteins most differentially expressed in the given subtype
versus the rest of the tumors (Fig. 2b), including both total and
phospho-protein features (Supplementary Fig. 3a, b).

We sought to further explore the relationship between our
previously defined mRNA-based pan-cancer classes2 and the
proteome-based subtypes of the present study. We assigned each
transcriptome profile from TCGA pan32 cohort (n= 10,224 cases

and 32 major cancer types) a CPTAC-based pan-cancer subtype.
This involved mapping expression values from the top 100 over-
expressed proteins for each subtype (Fig. 2b, 1000 protein in
total) to the corresponding normalized mRNA values in TCGA
dataset. Similar to the above observations in the CPTAC
Confirmatory/Discovery cohort (Fig. 2a), several proteome-
based subtypes overlapped significantly (one-sided Fisher’s exact
test) with specific mRNA-based pan-cancer classes (Fig. 2c). In
particular, proteome-based versus mRNA-based subtyping2

associations, respectively, included (proteome-based) k1 to
(mRNA-based) c1, k2 to both c3 and c10, k3 to c3, k4 to c5,
k5 to c6, k6 to c7, and k7 to c8. The previously identified
neuroendocrine-associated c4 class2 was not well represented
among the proteome-based subtypes (Supplementary Fig. 1c). We
might attribute this to the most common c4-associated cancer
types in TCGA (e.g., cervical, head-and-neck, lung squamous,
bladder) not being represented in the CPTAC cohorts. We found
each of the proteome-based pan-cancer subtypes to span cases
from multiple cancer types (Fig. 2d), with the notable exceptions
of k4, which represented the basal-like breast cancer molecular
subtype (Supplementary Fig. 4a), and k9, which consisted entirely
of clear cell renal cell carcinoma cases. Within the top
differentially expressed proteins underscoring each pan-cancer
subtype, specific gene categories (by Gene Ontology, or GO,
annotation) were over-represented (Fig. 2e and Supplementary
Data S4), which associations we further explored below.
Differentially expressed proteins within k2, k3, k6, and
k7 subtypes in particular represented components of the tumor
microenvironment (Supplementary Fig. 4b), which we also
further explored below.

In summary, regarding de novo subtype discovery, here we
identified 10 pan-cancer subtypes in CPTAC Discovery/Con-
firmatory cohort, using mass-spectrometry-based proteomics data.
To some extent, seven of these ten subtypes are reflected in
previously described mRNA-based, pan-cancer subtypes (Table 1).

Proteome-based subtypes are observable in external datasets.
We examined proteomic and transcriptomic datasets external to
the CPTAC Discovery/Confirmatory dataset, for evidence of the
manifestation of our proteome-based pan-cancer subtypes. For
this we used the top set of 1000 total proteins distinguishing
between our 10 subtypes (Fig. 2b) as a classifier (consisting of the
top 100 over-expressed proteins per subtype). The subtypes were

Table 1 Proteome-based pan-cancer molecular subtypes in CPTAC Confirmatory/Discovery cohort.

Subtype n (%) Associated TCGA mRNA-
based class

Description and notable features

k1 22 (4.1) c1 Over-expression of proteasome complex proteins, glycolysis proteins, and pentose phosphate
pathway proteins.

k2 38 (7.1) c3,c10 Adaptive immune system-related; associated with T-cell activation; expression of major
histocompatibility complex proteins

k3 54 (10.2) c3,c10 Innate immune system-related; over-expression of complement system proteins; involvement
of eosinophils, neutrophils, mast cells, and macrophages; hypoxia signature.

k4 29 (5.5) c5 Represents basal-like breast cancer; over-expression of YAP1 and MYC targets.
k5 113 (21.2) c6 Epithelial signature; normoxia signature; over-expression of YAP1 and MYC targets; over-

expression of oxidative phosphorylation and TCA cycle proteins.
k6 61 (11.5) c7 Stromal-related; over-expression of matrix metallopeptidases; Wnt and Notch pathway

signatures; hypoxia signature.
k7 95 (17.9) c8 Stromal-related; over-expression of collagen VI proteins; Wnt and Notch pathway signatures.
k8 43 (8.1) – Over-expression of Golgi apparatus-related proteins; Ras pathway signature.
k9 29 (5.5) – Found in clear cell renal cell carcinoma cases only; over-expression of hemoglobin complex

proteins.
k10 48 (9.0) – Over-expression of endoplasmic reticulum-related proteins and steroid biosynthesis pathway

proteins.
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observable in the independent CPTAC-TCGA cohort (Fig. 3a and
Supplementary Figs. 4c, d and 5a–c), which we had not used in the
subtype discovery. In addition to our classifying the TCGA pan32
mRNA profiles according to proteome-based subtype (Fig. 2c and
Supplementary Fig. 6a), we also classified 7694 TCGA cases with
RPPA data according to proteome-based pan-cancer subtype,
based on protein expression (Fig. 3b). Evidence of the presence of
specific proteome-based subtypes in the external cohorts came
from observations of subtype calls as made by different data
platforms showing significant overlap, e.g., CPTAC-TCGA pro-
teomic subtyping based on mass-spectrometry versus RPPA
(Fig. 3c), and TCGA pan32 subtyping based on mRNA versus
RPPA (Fig. 3d). Where subtypes did not significantly overlap

between data platforms (e.g. k1 and k9 subtypes), we might
attribute this to a number of factors. These factors would include
differences of the cohort considered from that of CPTAC Con-
firmatory/Discovery (e.g., CPTAC-TCGA had no renal cases
which were exclusively associated with k9 subtype) and platform-
specific differences12 (e.g., RPPA platform had few available fea-
tures specific to k8–k10 subtypes, Fig. 3b). We could identify the
k4 basal-like breast cancer subtype in external cohorts; still, as the
associated proteomic classifier was enriched for cell cycle proteins
(Fig. 2e), other tumors that were not breast could also manifest a
k4-associated signature pattern. To some degree, several
proteome-based subtypes appeared manifested in vitro in cancer
cell lines (Supplementary Fig. 6b–d). Permutation testing

0 3015

Relative enrichment
–log10 (p-value)

c1
c2
c3
c4
c5
c6
c7
c8
c9

c10

k1 k2 k3 k4 k5 k6 k7 k8 k9 k1
0

CPTAC protein-based class assignments
(CPTAC confirmatory/discovery cohort)

19
24
48
21
39
94
95
91
51
50

n

22 38 54 29 11
3 61 95 43 29 48n

T
C

G
A

 m
R

N
A

-b
as

ed
pa

n3
2 

cl
as

s 
as

si
gn

m
en

ts

a

b
k1 k2 k3 k8 k9k4 k6 k7 k10k5

 1
00

0 
cl

as
s-

sp
ec

ifi
c 

pr
ot

ei
ns

CPTAC Confirmatory/Discovery proteomic profiles (n = 532)

5
0
2
2
2
1
2
2
4
2

2
1
15
1
1
1
3
1
0
13

2
0
17
0
3
2
9
5
2
14

0
0
1
0
27
0
0
0
1
0

3
8
3

10
2

69
1
0
9
8

1
0
3
1
0
0

46
7
1
2

1
8
1
2
0
2

12
63
6
0

1
4
2
0
0

13
4
0
11
8

2
1
2
1
2
3
4
7
7
0

2
2
2
4
2
3

14
6

10
3

Breast Colon Ovarian  Renal Uterine Lower
–1SD

+1SD
Higher

D
iff

er
en

tia
l

ex
pr

es
si

on

CALM1
PSMA2
PSMA5
PSMA6
BTK
CD3E
CD3G
CD4
CD38
CSK
FCER1G
HLA-B
ISG20
ITGAL
PIK3CD
PRKCB
PTPN1
PTPN6
WAS
C5
CDA
CDC42
CYBB
F2
IGHG1
ITGB2
MMP9
NCF2
NCF4
NCF1
MMP2
CXCL12
TGFB3
FSTL1
DCN
ERBB4
INSR
KRT8
PRKAA2
PSMB8
MUC16
PSMB4
SLC9A6
IGF2R
NSDHL

0

10
050

Relative enrichment
–log10 (p -value)

c1
c2
c3
c4
c5
c6
c7
c8
c9

c10

847
2202
1348
411
187
1179
1153
948
732
1217

n

33
9

10
33

12
58 98

7

28
63

14
31

15
64 34

0

12
8

28
1n

T
C

G
A

 m
R

N
A

-b
as

ed
pa

n3
2 

cl
as

s 
as

si
gn

m
en

ts

c

136
51
33
7
2
11
42
3
9
45

61
103
415

8
4
4
22
26
9

381

143
133
552
21
4
3
54
144
108
96

68
186
58
61

161
45

121
4

54
229

306
882
31

149
7

1043
22
2

103
318

24
67
128
57
8
6

702
289
97
53

59
463
90
75
1

21
115
477
251
12

24
159
29
7
0

10
15
0

46
50

21
35
5
8
0

15
7
2

31
4

5
123
7

18
0

21
53
1

24
29

REG of UBQ-protein transferase activity
Extracellular exosome
Regulation of protein catabolic process
mRNA splicing, via spliceosome
Proteasome complex
Ribonucleoprotein complex
Regulation of lymphocyte activation
T cell activation
Adaptive immune response
B cell receptor signaling pathway
MHC protein binding
Regulation of immune response
Immune system process
Leukocyte activation
Extracellular region
Secretory granule lumen
Humoral immune response
Vesicle-mediated transport
Innate immune response
Regulation of coagulation
Complement activation
Cell cycle process
Chromosome organization
Cell division
Mitochondrial part
Mitochondrial inner membrane
Ribosomal subunit
Ribonucleoprotein complex
Translation
Growth factor binding
Insulin-like growth factor binding
Collagen metabolic process
Extracellular matrix
Cell adhesion
Collagen binding
Basement membrane
Integrin binding
Focal adhesion
Adherens junction
Cell junction
Muscle contraction
Cytoskeleton
COPI vesicle coat
Golgi apparatus part
Glycosylation
Epidermis development
Hemoglobin complex
Oxygen transport
Heme binding
Iron ion binding
Intrinsic component of membrane
Endoplasmic reticulum
Steroid biosynthetic process
Alcohol biosynthetic process
Lipid biosynthetic process
Sterol biosynthetic process

k1 k2 k3 k4 k5 k6 k7 k8 k9 k1
0

e

p > 0.05

Cancer
type

k1
k2
k3
k4
k5
k6
k7
k8
k9

k10

k1 k2 k3 k4 k5 k6 k7 k8 k9 k1
0

CPTAC protein-based class assignments
(TCGA pan32 cohort)

p > 0.05

5

GO term enrichment
within top differential proteins

p -value (–log10)

0 10

p > 0.05

No
data

k1
k2
k3
k4
k5
k6
k7
k8
k9

k10 5
00

 p
ho

sp
ho

-p
ro

te
in

s

KRT8:S59
BAD:S99
CD44:S697
ITGA4:S1021
LAT:S195
PRKCB:T641
CYBA:T147
HCK:Y390
FCER1G:Y76
MYC:S77
FLNA:S2128
FLNA:S2414
FLNA:T2599
MYL12A:T18
MYL12A:S19
NME2:T94
ROCK1:S1105

29

12

31

14

2

30

20
10

4

20

13

35

11
6

7

29 12

20
29

15

21

13

2
1512

16

18

18

d

Breast — 125 cases Colon — 97 cases Ovarian — 100 cases Renal — 110 cases Uterine — 100 cases

5

18

14
3

9 5

7

1

5

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13528-0

4 NATURE COMMUNICATIONS |         (2019) 10:5679 | https://doi.org/10.1038/s41467-019-13528-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


demonstrated that the overall strengths of the proteome-based
subtype associations in the external datasets were non-random
(Supplementary Fig. 7a, b).

In summary, regarding analysis of external profiling datasets of
TCGA cases in the context of our proteome-based pan-cancer
subtypes, we find most of these subtypes to be observable in
TCGA cohort, when considering cases profiled using mass-
spectrometry-based proteomics (CPTAC-TCGA), RPPA, or
RNA-seq data platforms.

Pathway-level differences across proteome-based subtypes. To
gain insight into pathways that would distinguish between the
various proteome-based pan-cancer subtypes, we applied several
pathway-associated gene signatures to CPTAC proteomic
expression profiles, as well as to TCGA mRNA expression profiles
(Fig. 4a). Many pathways appeared more or less active for dif-
ferent pan-cancer subtypes, as further explored below. Overall,
there was broad correspondence in patterns observed between
CPTAC proteomic and TCGA mRNA datasets, indicative of
associations that would span multiple cohorts and molecular
levels, including the associations of hypoxia with k3 and k6
tumors, YAP1 and MYC targets with k4 and k5 tumors, and Wnt
and Notch pathways with k6 and k7 tumors. However, there were
some notable differences between protein-based and mRNA-
based results as well. For example, proteins involved in fatty acid
metabolism, glycolysis and gluconeogenesis, pentose phosphate
pathway, and tricarboxylic acid (TCA) cycle all were elevated in
k1 tumors in CPTAC Confirmatory/Discovery dataset but not in
the TCGA pan32 mRNA dataset (Fig. 4a and Supplementary
Fig. 8). As another example, oxidative phosphorylation genes
appeared elevated at the mRNA level but not at the protein level
in k1 tumors. The previously identified c1 pan-cancer class,
associated in this study with k1 (Fig. 2c), did, however, show
elevation of all of the above metabolic pathways at the mRNA
level2. As our previous study highlighted the c1, c6, and c8
mRNA-based pan-cancer classes as involving metabolism path-
ways2, the k1, k5, and k7 proteome-based subtypes were exam-
ined in this present study in a similar manner, by pathway
diagram (Fig. 4b). This diagram highlighted both common and
distinctive patterns involving individual proteins and mRNAs,
including the overall patterns described above.

In summary, regarding associated pathways, we find that each
proteome-based subtype is characterized by distinctive pathway-
level alterations and enriched functional gene categories.
Pathway-level differences include those involving metabolism.

Immune-related differences across proteome-based subtypes.
The k2 and k3 proteome-based subtypes both involved the

immune system, including protein expression patterns attributable
to immune cell infiltrates, with k2 associating with the adaptive
immune response and T-cell activation, and with k3 associating
with the humoral immune response. The k2 and k3 subtypes were
each associated with both the c3 and c10 immune-related mRNA-
based classes2 (Fig. 2a, c). However, while c3 and c10 appeared
similar to each other overall, k2 and k3 each involved differential
protein expression patterns and associated gene categories that
revealed the two subtypes as being quite distinct from each other
(Fig. 2b, e). Differentially over-expressed proteins in both k2 and
k3 involved GO annotation categories of “regulation of immune
response,” “immune system process,” and “leukocyte activation.”
Also, k2 but not k3 was enriched for other categories including “T
cell activation,” “adaptive immune response,” and “MHC protein
binding”; and k3 was enriched for different categories that
included “humoral immune response,” “vesicle-mediated trans-
port,” and “complement activation.”

For CPTAC Confirmatory/Discovery dataset, visualization of
the expression patterns for a select set of 162 immune-related
proteins, including proteins involving the above GO categories,
further demonstrated both common and distinctive expression
patterns involving k2 and k3, with a number of the proteins being
expressed specifically in immune-related tissues according to
Human Protein Atlas14 (Fig. 5a). Analysis of both gene signatures
of infiltrating immune cell types15 (Fig. 5b) and canonical immune
cell markers (Fig. 5c) also revealed differences between k2 and k3.
For example, k2 was enriched for signatures and markers of T-
cells and antigen-presenting cells, and k3 was enriched for
signatures and markers of macrophages, mast cells, eosinophils,
and neutrophils. Activation of the complement system in k3
tumors involved both classical and alternative pathways (Fig. 5d).
In general, the above associations were also observable in the
independent CPTAC-TCGA proteomic and TCGA pan32 mRNA
datasets, although k2 and k3 differences were not as distinguish-
able at the mRNA level (Supplementary Fig. 9a–c).

In summary, regarding immune system-related differences,
k2 subtype involved the adaptive immune response and T-cell
activation, and k3 subtype involved the humoral immune
response. Proteins that distinguish k2 from k3 subtypes include
markers of T-cells (high in k2) and markers of mast cells,
neutrophils, or macrophages (all high in k3), as well as
complement system pathway proteins (high in k3). These
distinctions between k2 and k3 were not evident in previous
mRNA-based subtyping2, where k2 and k3 tumors associated
together as a single group.

Stroma-related differences across proteome-based subtypes.
The k6 and k7 proteome-based subtypes both involved the tumor

Fig. 2 De novo pan-cancer molecular subtypes as defined by mass-spectrometry-based proteomics. a By ConsensusClusterPlus32 of 532 proteomic
profiles in the CPTAC Confirmation/Discovery cohort, 10 proteomic-based subtypes—k1 through k10—were identified (columns). For these same cases,
pan-cancer class assignments—c1 through c10—based on the previous pan32 mRNA-based discovery2 were also made (rows, mapping the previous pan32
mRNA classifier to CPTAC protein expression patterns). Significances of overlap between the two sets of classifications are represented. P-values by one-
sided Fisher’s exact test. b For CPTAC Confirmation/Discovery cohort, differential expression patterns (values normalized within each tissue-based cancer
type; SD, standard deviation from the median) for a set of 1000 proteins (top heat map) and for a set of 500 phospho-proteins (bottom heat map) found to
best distinguish between the 10 proteome-based subtypes (see the “Methods” section, top 100 over-expressed proteins for each subtype). Proteins
highlighted by name have GO annotation “cell surface receptor signaling pathway” and DrugBank association (lists provide examples of differentially
expressed proteins but these would not necessarily have more importance over the other proteins in the heat map, full lists provided in Supplementary
Datas 2 and 3). c For the TCGA pan32 cohort (n= 10,224 cases), we made CPTAC-based pan-cancer subtype assignments (columns, mapping the CPTAC
protein expression patterns to TCGA mRNA patterns). Significances of overlap between the CPTAC-based subtypes (columns, k1 through k10) to the
previous pan32 mRNA-based pan-cancer class assignments2 (rows, c1 through c10) are represented. P-values by one-sided Fisher’s exact test. d For each
cancer type represented in CPTAC Confirmation/Discovery cohort, distributions by proteome-based subtype. e For the top over-expressed proteins
associated with each subtype (from part b, top panel), represented categories by GO were assessed, with selected enriched categories represented here.
P-values by one-sided Fisher’s exact test. See also Supplementary Figs. 2–4 and Supplementary Data S2 and S3 and S4.
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stroma, including protein expression patterns likely attributable
to non-cancer cells and the tumor microenvironment2. The k6
and k7 subtypes were, respectively, associated with the c7 and c8
stroma-related mRNA-based classes2 (Fig. 2a, c), further rein-
forcing the notion of the distinctions between these subtypes
representing various biological roles for the stromal component
in human cancer2. Differentially over-expressed proteins in both
k6 and k7 involved GO annotation categories (Fig. 2e) of
“extracellular matrix,” “cell adhesion,” “collagen binding,” and
“basement membrane.” Also, k6 but not k7 was enriched for

other categories including “growth factor binding,” and k7 was
enriched for different categories that included “muscle contrac-
tion” and “cytoskeleton.” For CPTAC Confirmatory/Discovery
dataset, visualization of the expression patterns for a select set of
606 extracellular matrix-related proteins, including proteins
involving the above GO categories, further demonstrated both
common and distinctive expression patterns involving k6 and k7
(Fig. 6a). In general, associations involving the 606 proteins were
also observable in the independent CPTAC-TCGA proteomic
and TCGA pan32 mRNA datasets, although the differences were
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not as distinguishable at the mRNA level (Supplementary
Fig. 10). Also, k6 tumors showed under-expression for proteins
related to the TCA cycle and oxidative phosphorylation (Fig. 4a
and Supplementary Fig. 8) and over‐expression of matrix
metallopeptidases including MMP11, MMP13, and MMP14
(Fig. 6a). Integration of the set of proteins high in either k6 or k7
tumors with public databases of protein–protein interactions
generated protein interaction networks (Fig. 6b and Supplemen-
tary Data S5), which allowed visualization of the potential rela-
tionships involving these proteins. While k6 and k7 over-
expressed many of the same proteins, one feature distinguishing
k7 from k6 was over-expression of collagen VI members, with
many collagen VI interacting proteins16 also being preferentially
higher in k7 tumors (Fig. 6c).

In summary, regarding tumor stroma-related differences, k6
and k7 subtypes showed both common and distinctive expression
patterns with respect to each other, involving the influence of the
tumor microenvironment. Protein markers that distinguish k6
from k7 subtypes include: FN1, IGFBP3, ITGAV, LOX, LOXL2,
MMP11, MMP13, MMP14, and THBS1 (all high in k6, Fig. 6a);
and collagen VI and associated proteins (high in k7, Fig. 6c). The
distinctions between k6 and k7 are reflected in profiling datasets
external to CPTAC, including RNA-seq-profiling datasets.

Proteome-based subtypes not reflected in the transcriptome.
Interestingly, the k8, k9, and k10 proteome-based subtypes as
discovered in the CPTAC Confirmation/Discovery cohort were
not well-represented in the other proteomic and transcriptomic
datasets examined (Fig. 2c, d and Supplementary Fig. 6d). For k8
and k10, however, there was some significant overlap (p < 1E−6
and p < 0.001, respectively, one-sided Fisher’s exact test) between
RPPA-based and mRNA-based subtype calling in TCGA pan32
cohort (Fig. 3d). The k9 subtype consisted entirely of clear cell
renal cell carcinoma cases, which cancer type was not represented
in the CPTAC-TCGA cohort. Besides, the RPPA platform had
few available features specific to k8, k9, and k10 subtypes
(Fig. 3a), which could complicate assigning proteome-based
subtype to RPPA profiles. Nevertheless, significant numbers of
top differentially expressed proteins—with associated GO cate-
gories being over-represented—underscored each of the above
subtypes (Fig. 1e, f), indicative of the subtypes representing actual
biology. Proteins high in k8 included Golgi-apparatus-related
proteins (Figs. 1e and 7a), proteins high in k9 included hemo-
globin complex proteins (Figs. 1e and 7b), and proteins high in
k10 included endoplasmic reticulum (ER)-related proteins and
proteins involved in steroid biosynthesis (Figs. 1e, 7c, d). Typi-
cally, sterols are synthesized in the ER and transported by non-
vesicular mechanisms to the plasma membrane17. Ras pathway

signature also appeared manifested in k8 tumors (Fig. 4a). Inte-
gration of the set of proteins high in k8, k9, or k10 tumors with
public databases of protein–protein interactions generated pro-
tein interaction networks (Fig. 7e), where a number of the
interacting proteins showed concordant patterns in the CPTAC-
TCGA proteomic and TCGA pan32 mRNA datasets.

In summary, regarding the proteome-specific subtypes, k8
involved Golgi apparatus‐related proteins, k9 (specific to renal
cases) involved hemoglobin complex proteins, and k10 involved
ER‐related proteins and steroid biosynthesis pathway proteins.

A portal for visualizing proteomic associations by subtype. To
facilitate access to CPTAC proteomic results by the general bio-
medical research community, we have integrated CPTAC data
with the UALCAN data portal18. Across tumor and normal
samples in the CPTAC Confirmatory/Discovery datasets, the
UALCAN interface (http://ualcan.path.uab.edu) allows the user
to analyze relative expression levels of a query protein or set of
proteins across specified tumor sub-groups. These pre-defined
tumor sub-groups may include cancer stage, tumor grade, race, or
other clinicopathologic features. Proteome-based subtype com-
parisons (k1–k10), either across all five cancer types surveyed
(“pan-cancer” view) or within a given cancer type, can also be
carried out for a given protein. The analysis results (e.g., box
plots) can be printed directly or downloaded in several file for-
mats compatible with presentations or figures for publication.
Users can also examine TCGA datasets in UALCAN, for differ-
ential patterns involving mRNA or DNA methylation features
corresponding to the proteins of particular interest arising from
the analysis of CPTAC data.

Discussion
Our proteome-based, pan-cancer subtypes represent another view
into the molecular landscape of cancer, distinct in many ways
from previous transcriptome-centered views. These proteome-
based subtypes provide a framework for examining pathways or
processes that, at the protein level, would cut across individual
cancer types. The molecular landscape of human cancer can help
guide us as to what pathways that have been extensively studied
in the experimental setting would be particularly relevant in the
setting of human disease. In this present study, many such
pathways are found to be differentially expressed or manifested
within specific subtypes of human cancers. Other pathways not
examined here may also be explored in the context of our
proteome-based subtypes. To this end, we have added the
CPTAC datasets to the UALCAN data portal18, as well as pro-
vided protein-level statistics for all proteins in the supplementary
data of this study, allowing researchers to look up proteins of

Fig. 3 Observation of CPTAC pan-cancer proteome-based subtypes in additional multi-cancer protein expression profiling datasets. a The 364 TCGA
cases with mass-spectrometry-based proteomic data from CPTAC were classified according to proteome-based pan-cancer subtype as originally defined
using CPTAC Confirmatory/Discovery cohort. Expression patterns for the top set of 757 proteins distinguishing between the 10 subtypes (from Fig. 2a,
based on available data) are shown for both CPTAC Confirmatory/Discovery and CPTAC-TCGA proteomic datasets (values normalized within each tissue-
based cancer type; SD, standard deviation from the median). Gene patterns in the CPTAC-TCGA sample profiles sharing similarity with a subtype-specific
signature pattern are highlighted. b The 7694 TCGA cases with reverse-phase protein array (RPPA) data were classified according to proteome-based pan-
cancer subtype. Expression patterns for a top set of 99 proteins distinguishing between the 10 subtypes (see the section “Methods”, based on available
data) are shown for both CPTAC Confirmatory/Discovery and TCGA RPPA proteomic datasets. Gene patterns in the RPPA sample profiles sharing
similarity with a subtype-specific signature pattern are highlighted. Proteins highlighted by name were individually significantly associated with the given
subtype (P < 0.001, t-test) in TCGA RPPA dataset. c Significances of overlap between the proteome-based subtype assignments made for the CPTAC-
TCGA dataset (columns), with proteome-based subtype assignments for the TCGA RPPA dataset (rows), based on the 345 cases represented in both
datasets. P-values by one-sided Fisher’s exact test. d Significances of overlap between the proteome-based subtype assignments made for the TCGA RPPA
dataset (columns), with subtype assignments for the transcriptome profiles in TCGA pan32 cohort (rows, mapping the CPTAC protein expression patterns
to TCGA mRNA patterns), based on the 7206 cases represented in both datasets. P-values by one-sided Fisher’s exact test. Patient-level subtyping and
cancer type information for all datasets represented are provided in Supplementary Data 1. See also Supplementary Figs. 5–7.
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individual interest. In this way, our study and the associated data
provide an excellent resource for future studies.

Four of the 10 proteome-based subtypes represent the invol-
vement of non-cancer cells, two subtypes (k2 and k3) involving
immune cells and the other two subtypes (k6 and k7) involving
the tumor stroma or reactive stroma19. While it is understood

that tumor sample purity factors into the global expression pro-
file20, the above four subtypes all appear very distinct from each
other. This indicates that the associated non-cancer proteomic
patterns represent true biology rather than a purely technical
artifact involving sample procurement. Also, multiple processes
that we would associate with the tumor microenvironment are
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manifested within distinct subtypes of tumors, indicating that
these processes are acting independently from each other. While
the recent surge of interest in cancer immunotherapy is mainly
focused on T cell function or numbers, which cells appear most
present within our k2 subtype, relatively less attention has been
placed on the complement activation pathway, represented in our
k3 subtype. Activation of the complement system is an important
component of tumor-promoting inflammation, which in turn has
an important role in carcinogenesis and cancer progression21, and
which involves macrophages and neutrophils. Notably, hypoxia
was found here to be elevated in the k3 subtype, while elsewhere
hypoxia is known to alter the regulation of complement proteins
in different cellular components of the tumor microenviron-
ment22. Previous surveys of TCGA data for immune cell invol-
vement at the transcriptomic level2,23 appear to have missed the
complement pathway as representing an important player. On the
other hand, collagens, which appear to have a role in our k6 and
k7 subtypes, constitute the scaffold of the tumor microenviron-
ment. Collagens affect this microenvironment such that it reg-
ulates extracellular matrix remodeling by collagen degradation
and re-deposition, and promotes tumor infiltration, angiogenesis,
invasion, and migration24.

Three additional proteome-based subtypes—k8, k9, and k10—
were not reflected in previous pan-cancer transcriptomics ana-
lyses2 and relatively few of the >10,000 cases in TCGA could be
assigned to them based on gene transcription, suggesting that
these subtypes might be unique to the proteome. The classes of
proteins associated with these subtypes may suggest pathways or
processes that may not be as commonly associated with human
cancer, but for which links to cancer can be found in the litera-
ture. Regarding the k8 subtype, many studies have demonstrated
the essential roles of the Golgi in cellular activities as a stress
sensor, apoptosis trigger, lipid/protein modifier, mitotic check-
point, and a mediator of malignant transformation25. Regarding
the k9 subtype, specific to renal cell carcinoma in the CPTAC
cohort, increased hemoglobin has been associated elsewhere with
VEGF inhibitor treatment in advanced renal cell carcinoma26,
and elevation in hemoglobin on VEGF-directed therapy has been
associated with worse clinical outcomes27. Regarding the
k10 subtype, tumor cells are often exposed to intrinsic and
external factors that alter protein homeostasis, thus producing ER
stress. ER stress, in turn, may be activated by a variety of factors
and triggers the unfolded protein response (UPR), which restores
homeostasis or activates cell death28,29. In the future, as greater
numbers of human cancer cases are profiled using mass-
spectrometry-based proteomics, additional subtypes and asso-
ciated pathways may be uncovered and explored. Such findings
could represent key biological insights and potential therapeutic
opportunities involving appreciable subsets of human cancer.

In summary, our study has uncovered proteome-based pan-
cancer subtypes on the basis of mass-spectrometry-based pro-
teomics, which platform offers far more protein features over

other proteomic platforms such as RPPA5. Where specific
proteome-based subtypes are found reflected in subtypes defined
on the basis of mRNA patterns2, the existence of such subtypes in
human cancer has even stronger support with these independent
observations involving the proteome in addition to the tran-
scriptome. On the other hand, our study also uncovers cancer
subtypes not found in previous transcriptome-based studies.
Observations specific to the proteome include two different
immune system-related subtypes (reflected as a common subtype
in the transcriptome), one involving the adaptive immune
response and the other involving the humoral immune response.
The pathway associations according to proteome-based subtype
may help in drawing attention to pathways and processes, pre-
viously examined in the laboratory setting, which are shown here
to be involved in appreciable subsets of human cancer. In addi-
tion to the more heavily studied pathways, such as cancer
metabolism and T cell signaling, other pathways and processes to
be considered further in the context of cancer would include
those involving complement activation, collagen VI, Golgi
apparatus, hemoglobin complex, and ER.

Methods
CPTAC datasets. The National Cancer Institute CPTAC30 generated the mass
spectrometry-based proteomic data used in this publication. The CPTAC Con-
firmation/Discovery cohort, used to define proteome-based molecular subtypes,
consisted of five separate datasets: CPTAC Uterine Corpus Endometrial Carcinoma
(UCEC) Discovery Study (comprising n= 100 cases), CPTAC Clear Cell Renal Cell
Carcinoma (CCRCC) Discovery Study (n= 110)11, CPTAC Breast Cancer Con-
firmatory Study (n= 125), CPTAC Ovarian Cancer Confirmatory Study (n= 100),
and CPTAC Colon Cancer Confirmatory Study (n= 97)10. The CPTAC-TCGA
datasets, used here for independent observations or validations, involved 364 cancer
cases in TCGA—including 90 colorectal9 cases, 105 breast8 cases, and 169 ovarian7

cases. The mass-spectrometry-based proteomics methods for profiling CPTAC-
TCGA tumors have been previously reported in the associated CPTAC-led studies,
as well as broadly summarized below. Tumor samples from CCRCC and UCEC were
analyzed by global proteomic and phosphoproteomic mass spectrometry using the
10-plexed isobaric tandem mass tags (TMT-10), following the CPTAC reproducible
workflow protocol published by Mertins et al. 31. Breast, colon, and ovarian samples
were analyzed with liquid chromatography–tandem mass spectrometry (LC–MS/
MS) global proteomic and phosphoproteomic profiling. Proteomic-profiling data
were generated through informed consent as part of CPTAC efforts and analyzed per
CPTAC data use guidelines and restrictions. For CPTAC Confirmatory/Discovery,
we obtained processed protein expression data from the CPTAC Data Portal4. For
CPTAC-TCGA, we obtained processed protein expression data from the supple-
mentary tables of the associated publications. CPTAC proteomic data, as provided
by the CPTAC Data Portal and related publications, were processed at the gene level,
rather than at the protein isoform level; as a simplification, we did not consider
different isoforms for the same protein in the present study.

Taking the expression values provided in the Protein Report provided by
CPTAC Data Portal, we normalized CPTAC Confirmatory/Discovery proteomic
data for downstream analyses in the following manner. First, within each
proteomic profile, we normalized logged expression values to standard deviations
from the median. We carried out the above as, for some cancer types, there was an
observed high variability in within-profile expression median or standard deviation
across samples, which could influence unsupervised analysis results. Next, we
normalized expression values across samples to standard deviations from the
median. In the same manner, we separately normalized both total protein and
phospho-protein datasets for a given cancer type. For the Colon Confirmatory

Fig. 6 Tumor stroma-related differences underscore k6 and k7 proteome-based subtypes. a For a set of 606 extracellular matrix-related proteins (FDR <
5% for either k6 or k7 subtypes and association with one of the indicated GO annotation categories), heat maps of differential protein expression patterns
(expression values normalized within cancer type; SD, standard deviation from the median), across CPTAC Confirmatory/Discovery proteomic profiles,
ordered by subtype. Purple-cyan heat map denotes t-statistics for comparing the given subtype versus the other tumors (bright purple/cyan, highly
significant; black, not significant; shades close to black, borderline significant). Selected proteins of interest are listed by name. b Protein–protein interaction
networks involving the top proteins over-expressed in k6 tumors (top network, using cutoff of FDR < 1E−6) and the top proteins over-expressed in k7
tumors (bottom network, using cutoff of FDR < 1E−14). Nodes represent proteins that were found over-expressed in either k6 or k7 subtypes as indicated.
Red node coloring denotes significantly higher expression in k6 or k7 subtypes as indicated, and blue coloring denotes significantly lower expression. A line
between two nodes signifies that the corresponding protein products of the genes can physically interact (according to the literature, from Entrez gene
interactions database). Colored edges (other than gray) denote a common GO term annotation shared by both of the connected proteins. c Diagram of
collagen VI interactions and associated proteins16. Red denotes significantly higher expression in k6 or k7 subtypes as indicated, and blue denotes
significantly lower expression. FDR false discovery rate. See also Supplementary Fig. 10 and Supplementary Data S5.
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Fig. 7 Overview of k8, k9, and k10 proteome-based subtypes. a For a set of 59 Golgi apparatus-related proteins elevated in the k8 subtype (FDR < 5%),
heat maps of differential protein expression patterns (expression values normalized within cancer type; SD, standard deviation from the median), across
CPTAC Confirmatory/Discovery proteomic profiles ordered by subtype. Listed proteins are the subset highest in k8 over all other subtypes. b For a set of
nine hemoglobin complex proteins elevated in the k9 subtype (FDR < 1%), heat maps of differential protein expression patterns, across CPTAC
Confirmatory/Discovery proteomic profiles ordered by subtype. c For a set of 154 endoplasmic reticulum-related proteins elevated in the k10 subtype
(FDR < 1%), heat maps of differential protein expression patterns, across CPTAC Confirmatory/Discovery proteomic profiles ordered by subtype. Listed
proteins are those among the top 50 most over-expressed for the k10 subtype. d Diagram of steroid biosynthesis pathway and associated proteins (from
KEGG database48). Red denotes significantly higher expression in the k10 subtype. e Protein–protein interaction networks involving the top proteins over-
expressed in k8 tumors (top network), the top proteins over-expressed in k9 tumors (middle network), and the top proteins over-expressed in k10 tumors
(bottom network). Nodes represent proteins that were found over-expressed in the given subtype. Nodes are colored according to patterns of differential
expression in additional cohorts (left, protein data from CPTAC-TCGA cohort; right, mRNA data from TCGA pan32 cohort). A line between two nodes
signifies that the corresponding protein products of the genes can physically interact (according to the literature, from Entrez gene interactions database).
Colored edges (other than gray) denote a common GO term annotation shared by both of the connected proteins. FDR false discovery rate.
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dataset, we used the data from Pacific Northwest National Laboratory (PNNL) in
the analysis. For the Ovarian Confirmatory dataset, we averaged normalized values
for PNNL and Johns Hopkins University (JHU) in instances where there were
duplicate profiles for the same sample. As intended, by normalizing expression
within each cancer type and within each CPTAC dataset, neither tissue-dominant
differences nor inter-laboratory batch effects would drive the downstream
unsupervised subtype discovery.

For the CPTAC Confirmatory/Discovery total protein dataset, a total of 12,247
unique genes by Entrez Identifier comprised the compiled dataset of all five cancer
types. For unsupervised subtype discovery and selecting top protein features for the
subtype classifier, we considered for this analysis the subset of 9764 unique proteins
represented in at least three of the five cancer types. For the CPTAC Confirmatory/
Discovery phospho-protein dataset, we considered for this analysis the set of
protein features detected in more than half of cases for at least three cancer types.
For the CPTAC-TCGA total protein dataset, we considered for this analysis the set
of 5863 unique genes/proteins by Entrez identifier, which proteins were
represented in all three cancer types.

TCGA datasets. Results are based in part upon data generated by TCGA Research
Network (http://cancergenome.nih.gov/). We aggregated TCGA transcriptomic
and RPPA data from public repositories, listed in the “Data availability” section.
RNA-seq expression data were processed by TCGA at the gene level, rather than at
the transcript level. Tumors spanned 32 different TCGA projects, each project
representing a specific cancer type, listed as follows: LAML, acute myeloid leuke-
mia; ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; LGG,
lower grade glioma; BRCA, breast invasive carcinoma; CESC, cervical squamous
cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma;
CRC, colorectal adenocarcinoma (combining COAD and READ projects); ESCA,
esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck
squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear
cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LIHC, liver hepato-
cellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell car-
cinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; MESO,
mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic ade-
nocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate
adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, sto-
mach adenocarcinoma; TGCT, testicular germ cell tumors; THYM, thymoma;
THCA, thyroid carcinoma; UCS, uterine carcinosarcoma; UCEC, uterine corpus
endometrial carcinoma; UVM, uveal melanoma. Cancer molecular profiling data
were generated through informed consent as part of previously published studies
and analyzed per each original study’s data use guidelines and restrictions.

Pan-cancer molecular subtype discovery. ConsensusClusterPlus R-package32

was used to identify the structure and relationship of the samples. For unsupervised
clustering analysis, we selected the top 2000 most variable proteins from the
CPTAC Confirmatory/Discovery total protein dataset (taken from the set of 9764
unique proteins represented in at least three of the five cancer types), according to
average standard deviation (using log-transformed expression values centered to
standard deviations from the median within each cancer type) across the five
CPTAC projects. Consensus ward linkage hierarchical clustering identified k= 2 to
k= 15 subtypes, with the stability of the clustering increasing with increasing k.
Consistent with what was carried out for our previous studies2, we selected the k=
10 clustering solution for further investigation. By additional clustering solutions
more subtypes may potentially be discoverable, although these additional subtypes
would involve fewer numbers of cases and would represent less of the global
variation (Supplementary Fig. 2).

Analysis of external multi-cancer datasets. We examined external, multi-cancer
gene expression profiling datasets, classifying each external tumor profile by pan-
cancer class/subtype as defined by TCGA or CPTAC data. Within each cancer type
of the external dataset being classified, we normalized log-transformed genes or
proteins to standard deviations from the median. As a classifier, we used either the
top set of mRNAs (from TCGA-based pan32 study, Fig. 1a and ref. 2) or the top set
of proteins (from the present study, Fig. 2) distinguishing between the pan-cancer
subtypes, as noted. For each pan-cancer subtype, we computed the average nor-
malized value for each gene or protein, based on the centered expression data
matrix. We then computed the Pearson’s correlation between each external profile
and each pan-cancer subtype averaged profile. We assigned each external cancer
case to a pan-cancer subtype, based on which subtype profile showed the highest
correlation with the given external dataset profile. Supplementary Data 3 provides
example calculations in Excel, by which the CPTAC-TCGA proteomic profiles are
classified according to proteome-based pan-cancer subtype. We re-classified the
CPTAC-TCGA mRNA profiles according to TCGA mRNA-based molecular class,
with the same set of 198 class-specific features shared between protein and mRNA
datasets being used; we assigned profiles for which the best class fit had a Pearson’s
correlation of >0.05 to the c2 class (the class lacking strongly associated expression
patterns according to the original Chen et al. 2 study).

By the above approach, the CPTAC total protein datasets (both CPTAC-TCGA
and CPTAC Confirmatory/Discovery) were separately classified according to TCGA

mRNA-based pan-cancer class (Fig. 1). The previously defined mRNA-based
classifier consisted of 854 genes, of which 198 were represented in the CPTAC-
TCGA dataset (taking from the set of 5863 unique genes/proteins represented in all
three cancer types), and 532 were represented in CPTAC Confirmatory/Discovery
dataset (taking from the set of 12,247 unique genes represented in any one of the
five cancer types). We classified TCGA pan32 mRNA profiles (n= 10,224 cases)
according to proteome-based subtype as derived using the CPTAC Confirmatory/
Discovery dataset (Fig. 2c and Supplementary Fig. 6a, using 990 out of 1000 features
in Fig. 2b classifier with available data), mapping protein features to mRNA by
Entrez gene identifier. We classified the CPTAC-TCGA proteomic profiles
according to the subtype originally derived from the CPTAC Confirmatory/
Discovery dataset (Fig. 3a, using 757 out of 1000 features with available data). We
classified Cancer Cell Line Encyclopedia (CCLE) mRNA profiles according to
subtype derived from CPTAC Confirmatory/Discovery, similarly to that of TCGA
pan32 mRNA profiles (Supplementary Fig. 6c). We also classified tumors and cell
lines profiled by RPPA according to subtype derived from CPTAC Confirmatory/
Discovery, the tumor dataset from TCGA5,6 (Fig. 3b) and the cell line dataset from
CCLE33 (Supplementary Fig. 6b). For the RPPA datasets, we used as a classifier the
set of represented total protein features from which a significant association with a
particular subtype was observable in the CPTAC Confirmatory/Discovery dataset
(p < 0.001 by t-test, based on logged and centered protein expression values).

Differential expression and pathway analyses. Differential expression between
comparison groups was assessed using t-tests on log-transformed values (base 2).
False discovery rates (FDRs) were estimated using the method of Storey and
Tibshirani34. Significantly enriched GO annotation categories were computed using
one-sided Fisher’s exact tests and SigTerms software35, based on the entire set of
9764 unique proteins represented in at least three of the five cancer types. Protein
interaction network analysis used the entire set of human protein–protein inter-
actions cataloged in Entrez Gene (downloaded June 2017). Entrez gene interactions
with yeast two-hybrid experiments providing the only support for the interaction
were not included in the analysis. Graphical visualization of networks was gener-
ated using Cytoscape36.

Gene signature analyses. We computed gene expression signature scores asso-
ciated with pathway (e.g., scores for EMT, NRF2/KEAP1, hypoxia, KEGG: Gly-
colysis/Gluconeogenesis, KEGG: Pentose Phosphate pathway, KEGG: Fatty Acid
metabolism, KEGG: TCA Cycle, and KEGG: Oxidative Phosphorylation or OX-
PHOS, k-ras, MYC, YAP1, WNT, and NOTCH) as follows. We normalized log
base 2-transformed values for proteins in the CPTAC dataset within each cancer
type (standard deviations from the median of the given cancer type). For NRF2/
KEAP1, hypoxia, WNT, NOTCH, and KEGG signatures, we computed the average
expression of the set of genes within a given signature. For k-ras, MYC, and
YAP1 signatures, normalized expression profiles were scored for the above sig-
natures using our t-score metric37. We generated gene signature scores of NRF2/
KEAP1 pathway as described38, based on four different signatures39. The hypoxia
signature was the set of canonical HIF1A targets from Harris40. We generated gene
transcription signature scores of YAP1 pathway, based on four different sig-
natures39. MYC signature (from data by Coller et al. 41) was from ref. 42, and the
Settleman k-ras sensitivity signature was from ref. 43 WNT signature was taken
directly from ref. 44 (summing up values for WNT antagonist, agonist, and target
genes). NOTCH signature was taken from ref. 45 For TCGA pan32 cohort (n=
10,224 RNA-seq profiles), gene expression signature scores associated with the
above pathways were also computed as described above, based on transcription
data, in a previous study2. For visual display, we normalized pathway signature
scores across samples to standard deviations from the median.

Statistical analysis. All p values were two-sided unless otherwise specified. All
tests were performed using log2-transformed expression values. Visualization using
heat maps was performed using both JavaTreeview (version 1.1.6r4)46 and
matrix2png (version 1.2.1)47.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data used in this study are publicly available. The CPTAC datasets (both
Confirmatory/Discovery and CPTAC-TCGA) referenced during the study are available
from the CPTAC data portal website (https://cptac-data-portal.georgetown.edu/
cptacPublic/). TCGA data RNA-seq data are available through the Genome Data
Commons (https://gdc.cancer.gov/) and the Broad Institute’s Firehose data portal
(https://gdac.broadinstitute.org). The TCGA RPPA dataset is available from the TCPA
portal (http://tcpaportal.org/tcpa/). Cancer Cell Line Encyclopedia (CCLE) datasets are
available from the CCLE website (http://www.broadinstitute.org/ccle). The source data
underlying Figs. 1–7 are provided as a Source Data file. All the other data supporting the
findings of this study are available within the article and its supplementary information
files and from the corresponding author upon reasonable request. A reporting summary
for this article is available as a Supplementary Information file.
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Code availability
R source code written for this study is provided as part of Supplementary Data 6.
Example Excel calculations by which the CPTAC-TCGA proteomic profiles were
classified according to proteome-based pan-cancer subtype (Fig. 3a) are provided in
Supplementary Data 3.
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