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Reactive oxygen species (ROS) and dissolved oxygen play key roles across many
biological processes, and fluorescent stains and dyes are the primary tools used to
quantify these species in vitro. However, spatio-temporal monitoring of ROS and dissolved
oxygen in biological systems are challenging due to issues including poor photostability,
lack of reversibility, and rapid off-site diffusion. In particular, ROS monitoring is hindered by
the short lifetime of ROS molecules and their low abundance. The combination of
nanomaterials and fluorescent detection has led to new opportunities for development
of imaging probes, sensors, and theranostic products, because the scaffolds lead to
improved optical properties, tuneable interactions with cells and media, and ratiometric
sensing robust to environmental drift. In this review, we aim to critically assess and highlight
recent development in nanosensors and nanomaterials used for the detection of oxygen
and ROS in biological systems, and their future potential use as diagnosis tools.
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INTRODUCTION

Molecular oxygen has an important impact upon a broad range of biological processes, ranging from
its central roles in cellular respiration (Gnaiger et al., 1995; Bartz and Piantadosi, 2010) and
enzymatic processes in aerobic organisms (Adeva-Andany et al., 2014) to its activity as a poison to
anaerobes (Lungu et al., 2009; Botheju and Bakke, 2011). If oxygen levels fall below cellular
requirements, referred to as hypoxia, aerobic cells can experience oxidative stresses due to the
increased production of reactive oxygen species (Clanton, 2007; Tafani et al., 2016; Jaitovich and
Jourd’heuil, 2017). ROS are a highly reactive oxygen-containing class of small molecules, which can
cause a myriad of problems, including irreversible DNA damage (Wiseman and Halliwell, 1996; Yu
and Anderson, 1997), protein denaturation (Stadtman and Berlett, 1997) and cell apoptosis (Simon
et al., 2000). Examples of ROS molecules include hydrogen peroxide (H2O2), superoxide anion (O2

•-

), hydroxyl radical (•OH), singlet oxygen (1O2), hypochlorite (ClO
−) and peroxynitrite (ONOO−)

ions. Hypoxia and subsequent ROS generation play important roles in the progression of many
human diseases and impact upon all of the major organ systems, including renal/kidney disease
(Heyman et al., 2008; Honda et al., 2019), cardiovascular disease (Giordano, 2005), and
neurodegenerative disorders (Emerit et al., 2004; Angelova and Abramov, 2018) such as
Alzheimer’s (Huang et al., 2016) and Parkinson’s diseases (Dias et al., 2013; Umeno et al.,
2017). While there have been numerous accounts investigating fundamental links between
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hypoxia, ROS and disease progression (Görlach et al., 2015;
Tafani et al., 2016), dynamic and real-time monitoring
between the three components in in vitro and in vivo
biological systems has continued to be a challenge.

The detection and monitoring of oxygen in biological fluids has
been well-developed since the 1950s with the creation of the Clark
electrode (Clark et al., 1953; Severinghaus and Astrup, 1986), an
electrochemical sensor that dynamically measures the levels of
dissolved oxygen. Due to the design of the Clark electrode, the
measured oxygen level is relative to the bulk fluid concentration,
rather than a localized “point”measurement (Diepart et al., 2010),
and hence cannot provide the spatial resolution required for
effective monitoring in 2/3D biological systems. The detection
of ROS has additional complications, due to their naturally low
abundance and short lifetime in vitro and in vivo (Schmitt et al.,
2014). Although there have been reports describing electrochemical
devices for the detection and continuous monitoring of ROS in situ
(Chen et al., 2012), these methods again do not support 2/3D
spatial information, and are limited by biological fouling
(Wisniewski and Reichert, 2000; Harris et al., 2013; Ruiz-
Valdepeñas Montiel et al., 2018). Alternatively, non-invasive
fluorescence detection methods have been used extensively to
monitor dissolved oxygen and ROS for both in vitro and in vivo
(Zhang et al., 2017b) applications. However, despite high detection
sensitivity (Gomes et al., 2005), some fluorescence techniques can
suffer from poor fluorescence lifetime/photostability (Eggeling
et al., 1999), lack of specificity (Wardman, 2007), and issues
related to high background to signal ratio in biological tissue
(Monici, 2005). These drawbacks are particularly obvious when
the fluorophore is free in solution (O’Riordan et al., 2005) in
comparison to when they are encapsulated within a matrix, as
illustrated in Figure 1. As a result, there remains a need to develop
nanomaterial encapsulation strategies to detect and quantify
oxygen and ROS in 2D and 3D biological systems.

The blending of luminescent molecules with nanomaterials
shows great promise to support dynamic spatio-temporal
monitoring within 2D and 3D cellular systems, as described

schematically in Figure 1. Due to their small size and the
ability to readily modify physical and chemical properties
(Kairdolf et al., 2017), nanoparticles have been shown to
improve the optical properties of fluorescence molecules
(Koren et al., 2012) by increasing fluorescence intensity and
minimising photobleaching (Koo Lee et al., 2009; Lee and
Kopelman, 2009). The ability to tune their physio-chemical
properties allows tailoring imaging probes in terms of cell
permeability, reduced toxicity, improved solubility, and
minimizing off-site diffusion to allow spatio-temporal
monitoring. One key example is the ongoing development of
optical glucose biosensors, whereby the incorporation of
nanomaterials such as carbon nanotubes (Barone et al., 2005)
and graphene (Shehab et al., 2017), or using enzymes
encapsulated within a highly permeable polymeric microsphere
(Soda et al., 2018) have been shown to improve the
responsiveness of the sensors and could enable monitoring in
tissue locations not accessible to electrochemical sensors. This
approach has also been applied for the improvement of existing
oxygen and ROS sensors. For example, the development of
oxygen and ROS optode nanosensors was based on the
miniaturization of ion-selective electrodes (Hopf and Hunt,
1994; Wolfbeis, 2015a). Ruckh and Clark (2014) discussed the
challenges in adopting nanosensors as a feasible alternative to
existing technologies, highlighting that they need to display: 1)
dynamic reversibility and fast response time; 2) high analyte
selectivity and sensitivity; and 3) good biocompatibility within the
biological system.

In this review, we aim to provide a summary of current optical
techniques for both oxygen and ROS detection and their current
limitations, before discussing recent advances in optical oxygen
and ROS nanosensors in 2D and 3D systems, and finally
discussing potential alternative methods for dynamic and
deep-tissue imaging of ROS. As this review will focus on
optical techniques, we recommend the review by Seenivasan
et al. (2017), for a thorough description of electrochemical
nanosensors for ROS detection.

FIGURE 1 | Comparison between free dye-based biosensing versus nanoparticle-based biosensing. The advantages of using nanoparticle-based biosensing is a
stable signal from the dye, where it is less prone to photobleaching and dye leaching.
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BRIEF OVERVIEWOF ROS GENERATION IN
SITU

The link between oxygen, hypoxia and ROS generation has been
widely reported, whereby endogenous ROS production has been
primarily associated with the mitochondria (Chandel et al., 2000; Li
et al., 2013). Superoxide anions (O2

•-) are produced within the
inner membrane of the mitochondria from two protein complexes:
complex I and complex III. During the generation of adenosine
triphosphate (ATP), known as oxidative phosphorylation, electrons
are transported through themitochondria via the electron transport
chain. Leakages in complex I and complex III cause some electrons
to “leak” from the transport chain, to react with nearby oxygen
molecules, producing O2

•-. Under normal oxygenation conditions,
approximately 1–2% of electrons transported within the
mitochondria generate superoxides (Solaini et al., 2010). These
superoxide anions are short-lived and are converted into H2O2,

when O2
•- binds to either superoxide dismutase 1 (SOD1) or

superoxide dismutase 2 (SOD2).
Under low oxygen environments, ROS production in complex

III at the Q0 site increases (Bell et al., 2007). This in turn increases
the number of superoxide species released into the
intermembrane space of the mitochondria which are reduced
to hydrogen peroxide and escape into the cytosol (Guzy et al.,
2005). Transcription factors known as hypoxia-inducible factors
(HIF) are expressed and help mediate cellular survival and
activity. HIF-1α is the main HIF transcription factor
associated with hypoxia and the subsequent cellular response.
HIF-1α expression increases under hypoxic conditions (Jiang
et al., 1996) and is further stabilized by the presence of ROS.
Work conducted by Guzy et al. (2005). established that H2O2

levels increase under low oxygen environments, whereby
increased electron transport in complex III helps stabilize HIF-
1α in vitro. Additionally, overexpression of HIF-1α has been

associated with numerous cancers, including breast (Kimbro and
Simons, 2006; Gilkes and Semenza, 2013), prostate (Zhong et al.,
1998; Kimbro and Simons, 2006), lung (Volm and Koomägi,
2000), and ovarian cancer (Wong et al., 2003); and
neurodegenerative conditions (Merelli et al., 2018), such as
Alzheimer’s (Ogunshola and Antoniou, 2009) and Parkinson’s
diseases (Dias et al., 2013). Elevated levels of ROS have been
linked to DNA damage at the transcriptome level through DNA
methylation (Franco et al., 2008; Kietzmann et al., 2017),
apoptosis induction though cell signaling and the activation of
tumor necrosis factor (TNR) receptors (Simon et al., 2000; Redza-
Dutordoir and Averill-Bates, 2016), and protein oxidation
leading to denaturation (Stadtman and Berlett, 1997). The
relationship between hypoxia, overproduction of ROS and the
stabilization of HIF-1α is shown in Figure 2.

ROS generation is a fundamental process that occurs
naturally in situ and plays key roles in regulating cell fate
decisions (Ray et al., 2012), such as cell proliferation,
differentiation and survival, as well as having regulatory
effects on the anti-inflammatory response as a cell
signaling molecule. The presence of antioxidant
compounds help minimize ROS levels (Panieri and
Santoro, 2016) and facilitate the maintenance of
homeostasis. For example, peroxidases, such as glutathione
peroxidase and catalase present within cells can reduce levels
of H2O2 by reduction to water. In addition, cytochrome c, a
hemeprotein located within the inner membrane of the
mitochondria has been shown to oxidise O2

•- back into O2,
while reducing H2O2 back to •OH. Other sources of
endogenous ROS generation outside the mitochondria
include xanthine oxidase, which is used in the oxidation of
hypoxanthine and xanthine into uric acid, with H2O2 as a by-
product; and myeloperoxidase, which promotes the
production of OCl− during immune responses.

FIGURE 2 | Downstream effects of hypoxia in situ. Under low oxygen environments production of superoxides from complex III increases within the mitochondria.
The superoxide then reacts to form different ROS products, increasing the upregulation of HIF-1α, which has been linked to various intracellular and extracellular damage
associated with several physiological and neurological diseases.
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OPTICAL DYES CURRENTLY USED FOR
DETECTION AND MONITORING OF
OXYGEN AND ROS SPECIES
Fluorescence and phosphorescence molecular probes have a
well-established chemistry and are widely used to detect oxygen
and ROS in vitro (Yoshihara et al., 2017; Zhang et al., 2018) and
in vivo (Wilson and Cerniglia, 1992; Stepinac et al., 2005;
Baudry et al., 2008; Hall et al., 2012; Huntosova et al., 2014;
Huntosova et al., 2017). In addition they have high analyte
sensitivity, low cost, and a fast response time, enabling rapid,
spatially resolved measurements (Terai and Nagano, 2008;
Wolfbeis, 2015a). These optical indicators are explicitly
developed for one analyte only and are selective towards
specific reactions, the products of which are used for
quantitative signal analysis, either as a change in
luminescence intensity (Zhang et al., 2016), or as a red/blue
shift in emission spectra (Pap et al., 2000; Drummen et al., 2004;
Liu et al., 2014). Most commonly available oxygen and ROS
indicators report changes in luminescence intensity relative to
the target analyte concentration. While these methods allow for
easy and rapid detection, they required a necessary baseline
correction as they are prone to external environmental factors
and instrumentation errors, which affects the quantitative
analysis. On the other hand, the measurement of changes in
peak wavelength provides better accuracy as it does not suffer
from the same limitations as measurements of fluorescence
intensity (Zhu et al., 2017; Islam et al., 2019). Fluorescence
lifetime microscopy (FLIM) has been recently used for
monitoring spatio-temporal changes within biological
systems (Datta et al., 2020). Unlike steady-state fluorescent
detection techniques, where the concentration of dye and the
intensity of the light source can affect analyte quantification,
FLIM allows for time-resolved monitoring of fluorescence decay
of fluorophores, which is unaffected by the above factors (Chang
et al., 2007). As the fluorescence lifetime is highly dependent on
the microenvironment, FLIM has been used for the detection of
ROS levels in vitro (Bilan et al., 2013; Balke et al., 2018). While
fluorescence has been beneficial for the detection of oxygen and
ROS in biological studies, many of the dyes available fluoresce in
the visible light region (400–500 nm), limiting their applications
because cells and tissues autofluorescence within the same
wavelength range. Consequently, there has been growing
interest in the development of dyes which fluoresce within
the red/near-infrared region (>700 nm) (Li and Wang, 2018).

Metal-ligand complexes, such as metal porphyrins, are
commonly used in the development of reversible optical
oxygen sensors, including ruthenium (II), platinum (II),
palladium (II) and iridium (II) complexes. Ruthenium-based
porphyrins have been used as fluorescent oxygen-sensitive
dyes, due to their high photostability and quantum yield, and
fast response time. [Ru(dpp)3]

+2, [Ru(phen)3]
+2, and

[Ru(bpy)3]
+2 have been used extensively in the development of

commonly available fiber optical oxygen sensors (MacCraith
et al., 1993; Draxler et al., 1995; Choi and Xiao, 2000) for
in vitro (Choi et al., 2012) and in vivo (Paxian et al., 2004;
Zhang et al., 2017b; Guan et al., 2020) imaging of oxygen tension

in biological systems. One of the main challenges with these dyes
is their hydrophobicity and poor cellular uptake (Yoshihara et al.,
2017), which limits their direct use for dynamic monitoring in
aqueous solutions. These limitations can be mediated somewhat
by chemical modification (Khan et al., 2015), such as the addition
of hydrophilic functional groups. In addition, due to the visible
light fluorescent properties of ruthenium-based dyes,
phosphorescence oxygen-responsive dyes have been used to
circumvent issues with tissue autofluorescence. These
phosphorescence dyes, such as platinum (II) and palladium
(II) porphyrins are advantageous in that they can be used for
deep-tissue imaging, due to their large Stokes shift emitting
within the near-infrared region (Borisov et al., 2008; Pereira
et al., 2017). In addition, the use of these dyes has been
reported for imaging hypoxia during tumor progression in
vivo following encapsulation (Zhao et al., 2015; Lv et al.,
2018). A summary of common oxygen-responsive
fluorophores can be found in Table 1. A more in-depth
review on the various types of oxygen-responsive dyes can be
found in the review article authored by Quaranta et al. (2012).

With respect to ROS responsive dyes, there is also a range of
commercially available stains, as listed in Table 2. Fluorescence
quantification of in situ ROS concentration has been used
extensively due to the high sensitivity and rapid response time.
However, these dyes are limited by low specificity and cross-
reactivity with other ROS species (Henderson and Chappell,
1993; Crow, 1997; Kooy et al., 1997; Ischiropoulos et al., 1999;
Wrona et al., 2005), and that the chemistries used are not
reversible so these dyes cannot be applied to track target
molecules over time. These issues are connected to the
chemical structure of the dye, where the fluorophore
undergoes an oxidation reaction in the presence of ROS,
which changes the fluorescence properties. As this oxidation
reaction is non-selective and irreversible, continuous spatio-
temporal monitoring of ROS levels in situ remains a challenge
in 2D and 3D environments.

OPTICAL NANOSENSORS FOR
DETECTION AND MONITORING OF
OXYGEN AND ROS IN VITRO AND IN VIVO
Encapsulation of oxygen and ROS-sensitive dyes within
nanoparticle scaffolds has improved the stability and signal
intensity for imaging purposes. While there is no definitive
explanation on the mechanism for the enhancement of
fluorescence emission once dyes are encapsulated within
nanomaterials, it has been suggested that it could be due to
environmental/matrix-dependent fluorescence lifetime changes
(Muddana et al., 2009; Terrones et al., 2017), or fluorophore
protection from non-specific protein interactions and/or external
environmental factors (Wolfbeis, 2015b; Reisch and
Klymchenko, 2016). As discussed by Aylott (2003), Kopelman
(Lee et al., 2009), and Wolfbeis (2015b), the main advantages of
fluorescence/phosphorescence nanoparticles over their free dye
counterparts are: 1) the ability to encapsulate within a
biocompatible matrix which minimizes toxic effects from the
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free dye; 2) tuneable cellular uptake, which can be further enhanced
with nanoparticle surface modification; 3) a reduction in optical
interference from protein binding or external environmental effects;
4) improved photostability and signal intensity due to higher dye
loading; 5) in vivo calibration is near-identical when applied in vitro;
and 6) opportunities for ratiometric or multiplex sensing with the
additional dye loading. A wide variety of dyes with different signal
transduction mechanisms have been incorporated into
nanomaterials, as described in Figure 3. Importantly, while
changes in fluorescence intensity are most often conceptually
linked to imaging via microscopy etc., it is important to note that
a wide array of both imaging and spectroscopic approaches can also
be captured in modern microscopy experiments (Arandian et al.,
2019), and common spectral approaches involve wavelength-shifting
species and ratiometric sensing, including Förster Resonance Energy
Transfer (FRET) approaches.

Work by Kim et al. (2010b) showed that encapsulation of
dichlorofluorescein acetate, a non-selective ROS indicator, into a
silica scaffold improved the selectivity of the dye to H2O2, relative
to other ROS molecules. In addition, the incorporation of
fluorophores within nanoparticle scaffolds can help mitigate
undesirable traits associated with the dye, such as poor cell

permeability. (Ruiz-González et al., 2017) demonstrated
improvements for Singlet Oxygen Sensor Green (SOSG), a
commercially available stain for 1O2, by conjugation onto a
polyacrylamide nanoparticle surface. SOSG is a cell
impermeable stain (Prasad et al., 2018), whose fluorescence
properties are red-shifted in protein-containing solutions
(Gollmer et al., 2011), limiting application for real-time
monitoring in in vitro cell cultures. However, by encapsulating
the dye into a polyacrylamide scaffold, the authors were able to
stabilise the fluorescence wavelength shift associated with SOSG in
protein serum. In addition, by encapsulating SOSG within the
scaffold, good cell permeability was demonstrated. In this study,
E. coli was use as a model organism, in which the nanoprobes were
readily internalized, allowing monitoring of intercellular 1O2.

While incorporating optical dyes within nanosensors has
helped with performance and selectivity, there are still
practical limitations of single-labelled nanosensors. One key
issue is signal variation and environmental drift over
prolonged time periods, such as from photobleaching, light
scattering effects, or variations in nanosensor concentration
within a field of view or between experiments (Bigdeli et al.,
2019). To minimize these effects, dual-labelled or ratiometric

TABLE 1 | Summary of commonly used oxygen-responsive optical dyes for monitoring oxygen levels in biological systems.

Optical dye Peak λex (nm) | Optical
mechanism

Reversible or
irreversible

Intensity/Spectra change
upon

interaction
Peak λem (nm)

tris (4,7-diphenyl-1,10-phenanthroline) ruthenium(II) [Ru(dpp)3]
+2 463 | 618 Fluorescence Reversible Emission intensity change

tris (1,10-phenanthroline) ruthenium(II) [Ru(phen)3]
+2 444 | 596 Fluorescence Reversible Emission intensity change

tris (2,2′-bipyridyl) ruthenium(II) [Ru(bpy)3]
+2 450 | 630 Fluorescence Reversible Emission intensity change

Platinum (II) octaethylporphyrin PtOEP 382/536 | 649 Phosphorescence Reversible Emission intensity change
Platinum (II) 5, 10, 15, 20-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin
PtTFPP

390 | 647/710 Phosphorescence Reversible Emission intensity change

Platinum (II) tetrakis-(4-carboxyphenyl)-porphyrin PtTCPP 402 | 675 Phosphorescence Reversible Emission intensity change
Palladium (II) octaethylporphyrin PdOEP 546 | 670 Phosphorescence Reversible Emission intensity change
Palladium (II) 5, 10, 15, 20-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin
PdTFPP

406 | 738 Phosphorescence Reversible Emission intensity change

Palladium (II) tetrakis-(4-carboxyphenyl)-porphyrin PdTCPP 418 | 700 Phosphorescence Reversible Emission intensity change

TABLE 2 | Common commercially available fluorescence for ROS detections in biological systems.

Stain Target species Peak λex
(nm) |

Peak λem
(nm)

Optical mechanism Reversible or
irreversible

Intensity/Spectra change
upon interaction

Dichlorofluorescein diacetate Non-specific 488 | 530 Fluorescence Irreversible Emission intensity change
Dihydrorhodamine 123 Non-specific 505 | 534 Fluorescence Irreversible Emission intensity change
CellROX® Green/Orange/Deep Red Non-specific 485 | 520 Fluorescence Irreversible Emission intensity change

545 | 565
644 | 665

coumarin-3-carboxylic acid •OH 350 | 395 Fluorescence Irreversible Emission intensity change
Singlet Oxygen Sensor Green Reagent 1O2 504 | 525 Fluorescence Irreversible Emission intensity change
MitoSOX® Red Mitochondrial Superoxide O2

•- 510 | 580 Fluorescence Irreversible Emission intensity change
Dihydroethidium O2

•- 535 | 610 Fluorescence Irreversible Emission intensity change
Amplex® Red hydrogen peroxide •OH 571 | 585 Fluorescence Irreversible Emission intensity change
Aminophenyl fluorescein •OH, ClO−, ONOO− 490 | 515 Fluorescence Irreversible Emission intensity change
Hydroxyphenyl fluorescein •OH, ONOO− 490 | 515 Fluorescence Irreversible Emission intensity change
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fluorescent nanosensors have been developed (Doussineau et al.,
2010). The design of these ratiometric nanosensors involves the
addition of a secondary analyte-insensitive fluorophore to act as an
internal reference and minimize erroneous measurements, either
from signal drift or external environmental factors, while
improving the signal-to-noise ratio (Huang et al., 2018; Bigdeli
et al., 2019). Additionally, it has been reported that the particle
concentration does not affect the signal output within a broad
range (Robinson et al., 2018), making ratiometric sensors an
attractive alternative. These sensors comprise two fluorophores,
where both dyes are encapsulated separately within a nanoparticle
scaffold, or one fluorophore is chemically attached onto the surface
of a responsive nanoparticle (i.e. FRET-based nanosensors).

Fluorescent and Phosphorescent
Ratiometric Nanosensors for Oxygen and
ROS Detection
One of the earliest accounts of ratiometric nanosensors for ROS
(King and Kopelman, 2003; Kim et al., 2010b) and oxygen (Xu
et al., 2001; Cao et al., 2004; Lee et al., 2010) sensing was from the

Kopelman group, referred to as PEBBLE (probes encapsulated by
biologically localized embedding) nanosensors. PEBBLEs are a
class of optodes and were developed as an alternative to ion-
selective electrodes (ISEs). A key advantage is that the
miniaturization of the technology allows for non-invasive and
simplified analyte detection (Xie and Bakker, 2015). While ion-
selective electrodes depend on the immobilization of ionophores
within a polymeric membrane to transduce an electrical signal,
optodes encapsulate an ionophore and a chromophore within a
lipophilic nanoparticle for optical signal transduction. The key
advantage of PEBBLEs and similar nanoparticle-based sensors is
that they permit high spatial and temporal resolution within cell
culture systems, whilst ISEs are limited to changes surrounding
the electrode (Wolfbeis, 2008). While the Bakker (Xie et al., 2014;
Jarolímová et al., 2016) and Suzuki (Soda et al., 2018) groups have
developed optodes for biological sensing, the Kopelman group
and their associated PEBBLE design will be used as a key example
in this review, due to their exemplification of a wide array of
chemical sensors for biological monitoring of different analytes
(Clark et al., 1999; Xu et al., 2001; Cao et al., 2004; Dubach et al.,
2010).

FIGURE 3 | Examples of different nanoparticle-based optical techniques for monitoring oxygen and ROS. Nanoparticles can be either functionalized with (A)
organic or inorganic dyes for monitoring ROS (B) organometallic dyes for monitoring O2 levels, or (C) FRET pairs for monitoring ROS species.
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One example from the Kopelman group is the development of
optode-based nanosensors to monitor oxygen (Xu et al., 2001),
where Xu et al. (2001) encapsulated an oxygen sensitive dye
[Ru(dpp)3]

+2 and Oregon Green as a reference fluorophore to
monitor gaseous oxygen concentration and intracellular oxygen
levels within rat C6 glioma cells. This study demonstrated the key
sensor characteristics ideal for biosensing applications: good
reversibility and dynamic range, while displaying minimal dye
leaching and photobleaching and is therefore an approach that
could be further used to provide valuable information on key
biological processes related to intracellular oxygen. Additionally,
King and Kopelman (2003) developed a polyacrylamide-based
•OH nanosensor that utilized coumarin-3-carboxylic acid as the
ROS-responsive fluorophore, and Texas Red as the reference dye.
In the presence of •OH, the non-fluorescence coumarin dye was
converted to a fluorescent 7-hydroxycoumarin compound.
However, some reports suggest that the fluorescence signal of
7-hydroxycoumarin is pH-dependent (Fink and Koehler, 1970)
which coupled with the irreversible nature of the oxidation
reaction, may limit this system as an accurate and dynamic
sensor. Additionally, the selectivity of the nanoprobe against
other ROS molecules was not investigated. To further
investigate the selectivity of coumarin-3-carboxylic acid
nanosensors, outside work by Liu et al. (2016) developed a
similar silica-based sensor in which rhodamine was used as
the reference dye. By comparing the performance of the probe
against other ROS molecules and metal ions, it was confirmed
that this sensor was highly selective towards •OH and could be
used to tracked •OH generation within HeLa cells. Despite the
promise of this work, the authors noted that due to the limitations
of dynamic •OH fluorophores, the sensor could be limited to
monitoring changes in •OH homeostasis through continuous
addition of new nanosensors.

Ratiometric nanosensors have also been investigated for
imaging oxygen levels in vivo, highlighting the potential for
deep-tissue hypoxia imaging. Napp et al. (2011) used near-
infrared ratiometric oxygen nanosensors to image dynamic
tissue deoxygenation in real time. Due to the autofluorescence
of tissue, near-infrared optical indicators have been used to help
minimize background interference when quantifying oxygen
levels. Here, polystyrene nanoparticles containing palladium
porphyrin and a reference dye were used, where the large
Stokes shift of the metal porphyrin was used to report
dynamic changes in oxygen levels and distribution. This could
be measured within live and recently-culled mouse tissue in vivo
with minimal background tissue interference and showed the
potential for such an approach to image changing oxygen levels
within tumor-bearing mice. Similarly, the McShane group
developed a ratiometric oxygen microsensor to monitor
different oxygen levels in solution. Collier et al. (2011)
combined a carboxyl-functionalized platinum porphyrin and a
near-infrared quantum dot onto an amine-functionalized silica
scaffold as a ratiometric sensor. The authors demonstrated the
functionality of their sensor as a near-infrared sensor at different
O2 gas concentrations and were able to show the dynamic range,
whilst demonstrating the photostability and dynamic
functionality. While this sensor was not tested in a biological

system, the authors highlighted potential future applications
where near-infrared sensing would be advantageous, including
monitoring oxygen levels in vivo, or within hypoxic tumor
microenvironments (Harris, 2002). In fact, the McShane group
has developed a wide array of oxygen nanosensors as a platform
for the development of highly specific enzymatic dynamic
biosensors, such as lactate (Biswas et al., 2017) and glucose
(Brown et al., 2004; Unruh et al., 2015; Bornhoeft et al., 2017)
for in vivo applications, demonstrating their utility in alternative
sensing applications.

Förster Resonance Energy Transfer Based
Nanosensors for ROS Detection
Förster Resonance Energy Transfer (FRET) is a photoelectric
phenomenon between two fluorescing species that has been used
as a method for detection of ROS levels in vitro and in vivo. FRET
is dependent on the distance and energy transfer between two
chromophores, commonly known as the donor and the acceptor
(Rowland et al., 2015). If the distance between the two
chromophores is small, approximately <10 nm (Medintz and
Hildebrandt, 2013) and the donor chromophore is excited, its
corresponding fluorescence spectrum is quenched as the energy
(“ON”) is transferred to the acceptor chromophore, allowing it to
fluoresce to produce a fluorescence signal or spectra. However, if
the distance between the two chromophores is larger than 10 nm,
the emission spectrum of the donor chromophore is no longer
quenched (“OFF”). The selection of the fluorophores depends on
the degree of spectral overlap between them. A review byWu et al.
(2020) summarised the standard designs for FRET biosensors
(Wu et al., 2020). To further categorize the nanosensor designs,
for this review we will label them as: 1) distance-based FRET
sensors, where the distance between the two fluorophores can be
changed; or 2) reactive fluorophore-based FRET sensors for ROS
detection (Figure 3).

Distance-based FRET sensors depend on manipulating the
distance between the donor and the acceptor molecules, where
the acceptor fluorophore quenches the donor fluorescence signal.
Here, the two chromophores are coupled onto an analyte-
sensitive linker molecule, where the distance between the two
chromophores is small. In the presence of the target analyte, the
linker molecule connecting the donor and acceptor molecules
undergoes a conformational change, either by unwinding/
extending the distance between the fluorophores or the linker
is cleaved. In either event, the distance between the fluorophores
increases such that the donor fluorescence is no longer quenched
and direct quantification of ROS levels can be determined by the
change of fluorescence intensity. Examples of common ROS-
sensitive reactive groups are thioketals, phenylboronic acids/
esters, vinyldithioethers, or diselenide bonds. For a more
detailed summary of these groups, their mechanism and their
respective applications in ROS-based therapy, we direct readers to
an extensive review by Tapeinos and Pandit (2016).

Diselenide bonds are an attractive candidate for developing
ROS-selective linkers as they are stable under physiological
conditions while being easily oxidized by H2O2 (Deepagan
et al., 2016; Tapeinos and Pandit, 2016; Deng et al., 2017).
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Recently, Deepagan et al. (2018) developed a FRET nanosensor,
which used the diselenide bond to control the sensor’s
responsiveness. Here, gold nanoparticles were decorated with
fluorescein via a diselenide linker. Due to the length of the linker,
the fluorescence signal from the fluorescein dye was quenched by
energy transfer from the gold nanoparticle. A strong fluorescence
signal was obtained from cleaved fluorescein when the sensor was
used to monitor H2O2 in macrophages, allowing the detection of
ROS in vitro. However, the use of diselenide bonds has not been
used for further development of ROS-selective nanosensors,
despite having been reported in the design for H2O2-mediated
drug delivery (Deepagan et al., 2016) and gene transfection (Deng
et al., 2017).

Phenylboronic acids/esters are reactive groups that have been
explored for FRET-based nanosensors, due to the presence of
H2O2-specific cleavage sites. This oxidation reaction (Kuivila,
1954) is highly specific to the nucleophilic attack of H2O2, where
other ROS molecules are unable to break the phenylboronic ester
bond (Song et al., 2014a). Feng et al. (2017) developed a
polymeric self-assembled FRET nanosensor to detect H2O2

using a phenylboronic ester linkage. An amphiphilic polymer
was used as a self-assembled scaffold, where the fluorophore pair
was 7-hydroxycourmain-3-carboxylic acid, and 4-carboxyl-3-
fluorophenylboronic acid-functionalized Alizarin Red S.
Within the self-assembled scaffold, the fluorescence signal
from hydroxycoumarin was quenched by Alizarin Red S. Due
to the presence of the boronic acid linker conjugated onto the
Alizarin Red S, the fluorescence ratio between 7-
hydroxycourmain-3-carboxylic acid and Alizarin Red S could
be used to detect H2O2 in biological solutions, as the linker was
selectively cleaved in the presence of H2O2.

In contrast to distance-based FRET sensors, reactive
fluorophore-based FRET sensors are dependent on the
reactivity of the acceptor fluorophore with the target analyte.
Depending on the acceptor fluorophore and the design of the
FRET pair, the sensor can be either be “ON” (i.e. the donor
fluorophore is quenched) or “OFF” (i.e. the acceptor
fluorophore is quenched) prior to interaction with the
targeted analyte. Irrespective of the design of the FRET
design, when the target analyte interacts with the acceptor
fluorophore, there is a change in the optical output signal
and the analyte can be quantified by the change in
fluorescence intensity of the acceptor fluorophore. Unlike the
distance-based FRET design discussed above, this strategy is
dependent on the sensitivity of the acceptor molecule reaction
with the target molecule. Nanosensors of this design typically
use metallic nanoparticles, which are mostly used as donor
chromophores such as quantum dots (Cardoso Dos Santos
et al., 2020) or gold nanoparticles (Cao et al., 2011). These
metallic nanoparticles display great photostability over
prolonged periods of time, and possess size-dependent
fluorescence properties, allowing them to be used as tunable
alternatives to conventional imaging probes (Alivisatos et al.,
2005; Medintz et al., 2005; Resch-Genger et al., 2008).

One recent example of a reactive fluorophore-based FRET
sensor is an infrared FRET-based nanosensor, developed by Li
et al. (2020a) to monitor the progression of ONOO− as an early

detection for traumatic brain injury. This nanosensor was
developed to attempt to overcome the current challenges
associated with real-time monitoring of traumatic brain injury,
such as computed tomography imaging, but are limited to
physical/anatomic information and cannot provide
information on relevant biochemical events, such as the levels
of ONOO− and its connection with brain injury. For detecting
ONOO−, Ag2S quantum dots were functionalized with a
ONOO−reactive dye A1094 along with a targeting peptide for
high specificity towards the area of interest present within brain
injuries. Due to the overlapping spectra of A1094 and the
quantum dot, in the absence of ONOO−, the fluorescence
signal of the quantum dot was quenched as a consequence of
absorption of the emitted light by the neighboring dye. However,
once the dye was oxidized by ONOO−, the signal from the
quantum dot was no longer quenched, allowing for direct
quantification of the targeted analyte. When used for an in
vivo assessment of ONOO− production during induced
traumatic brain damage, they were able to image the
generation of ONOO− in real time, demonstrating the
dynamic functionality of their sensors.

A study by Fang et al. (2020), elaborated on the development
of a ratiometric fluorescent nanoprobe for the detection of highly
reactive oxygen species. The nanoprobe used an oxidation-
regulated FRET generated by gold nanoclusters coupled with
o-phenylenediamine (OPD), a compound that is specifically
oxidised by a hydroxyl radical to form the fluorescence
compound: 2,3-diaminophenazine (DAP). Although gold
nanoclusters can be directly oxidised by reactive oxygen
species, including ClO−, ONOO− and •OH, yielding a change
in fluorescence signal, the reaction is not specific to hydroxyl
radicals, preventing its use as a highly selective ROS nanoprobe
(Li et al., 2017). Herein, the group fabricated gold nanoclusters
through a one-pot, ecofriendly approach that was used in
conjunction with OPD to selectively detect hydroxyl radicals.
The gold nanoclusters demonstrated high fluorescence intensity
that was stable over a range of physiological pH. It should be
noted, however, unlike other FRET-based optical nanosensors,
the fabricated gold nanoclusters were not tethered to OPD.
Nonetheless, the nanosensors successfully demonstrated
specificity towards hydroxyl radicals upon introduction of
OPD when tested against a variety of other ROS, reactive
nitrogen species (RNS), and metal ions, that were being
examined, signifying the usability.

Environmental Sensitive Nanomaterials for
ROS Monitoring and Detection
Single-Walled Carbon Nanotubes for Multiplex
Sensing
Single-walled carbon nanotubes (SWCNTs) have been recently
explored as possible nanomaterials for biosensing applications,
where their chirality, electronic structure and photophysical
behavior enables them to emit fluorescence signals within the
near-infrared region (900–1,500 nm) which can be used for deep
tissue imaging (Kruss et al., 2013). The main advantage of
SWNCTs is that they do not photobleach, making them
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advantageous as compared to fluorescently labelled nanomaterial
scaffolds (Hartschuh et al., 2005). However, one limitation of
carbon nanotubes is their hydrophobicity and poor
biocompatibility, which requires additional surface
modifications to be made, including coating with lipids or
DNA strands (Karousis et al., 2010) to improve their
biocompatibility such that they are more acceptable for use in
biomedical applications.

The Strano group has designed a wide range of ROS sensors
using SWNCTs. Heller et al. (2009) developed a multiplex optical
sensor for the detection of ROS in vitro. Here, SWCNTs were
coated with a d(GT)15 oligonucleotide, in which depending on the
type of ROS present, there was an apparent change in the
fluorescence intensity and/or spectrum. Adsorption of H2O2

onto the surface decreased in the fluorescence intensity at both
emission peaks (∼990 and ∼1040 nm), whilst in the presence of
1O2 there was a red-shift at the ∼990 nm peak emission spectrum,
and if the nanosensor was in the presence of •OH, there was a
significant decrease of the peak emission at ∼1040 nm. From
these three unique fluorescence changes, it was possible to
interrogate real-time changes of H2O2,

1O2, and
•OH in 3T3

cells simultaneously following perfusion—demonstrating
possible capacity for multiplex monitoring. Other examples
from Strano group are shown in Figure 4, where they
developed nanosensors for H2O2 (Kim et al., 2011) and NO•

(Zhang et al., 2011).
Recently, Safaee and co-workers (Safaee et al., 2021)

developed a wearable optical nanosensor to monitor
hydrogen peroxide levels as an inflammation biomarker. It
has been reported that hydrogen peroxide acts as a signaling
molecule during an inflammatory response to recruit cells for
wound healing (Roy et al., 2006; Loo et al., 2012). In this work,
SWCNTs were wrapped with (GT)15 and suspended within
microfibres through coaxial electrospinning. This produced a
wearable optical sensor for real-time monitoring of
inflammation and wound healing. The SWCNTs were
retained within the microfibrous network for up to 21 days,
with no evidence of the nanosensors diffusing out of the 3D-
scaffold. Furthermore, the scaffold was able to display spatial
detection of hydrogen peroxide within a wound surface. The
group was able to integrate this fabricated optical microfibrous
nanosensor into existing wound bandages whilst maintaining
the optical signal output.

Innate Fluorescent Carbon Dots for ROS Detection
and Monitoring
Following their discovery in 2004 (Xu et al., 2004), carbon dots
have been widely explored as fluorescent probes for the detection
of metal ions and small molecules, including ROS (Sun and Lei,
2017). As a platform for optical biosensing, carbon dots possess
tunable fluorescence properties through elemental doping (Feng
and Qian, 2018), and tunable surface functional groups,
depending on the carbon source and synthesis method. When
compared to other well-established fluorescent nanoparticles,
such as dye-functionalized particles or quantum dots, the use
of carbon dots as biosensors appear to be biocompatible and do

FIGURE 4 | Single walled carbon nanotubes (SWCNTs) for detecting
ROS and RNS. [(A), i]. SWCNTs coated with collagen for the detection of
H2O2, where the presence of H2O2 changes the fluorescence emission.
Reprinted (adapted) with permission from Kim et al. (2011). ACS Nano
2011, 5, 10, 7,848–7,857. Copyright 2011 American Chemical Society. (B)
SWCNTs used for the detection of NO

•
. [(B), i]. DNA strand d(AT)15 was used

to coat SWCNTs and immobilized onto an amine-functionalized glass slide.
[(B), ii]. Fluorescence spectrum of d(AT)15-SWCNTs in the absence and
presence of NO

•
. Reprinted (adapted) with permission from Zhang et al.

(2011). J. Am. Chem. Soc. 2011, 133, 3, 567–581. Copyright 2010 American
Chemical Society.
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not contain heavy metals or other known toxins (Song et al.,
2014b).

Work by Wu et al. (2017) highlighted the feasibility of using
carbon dots to detect ONOO− within the mitochondria of living
cells. By using phenylenediamine as their carbon source, the
authors were able to synthesize 7 nm carbon dots with amine
groups. The presence of amine groups served three purposes: 1)
allowed for their sensors to be easily internalized; 2) the surface
could be further modified with a mitochondria-targeting moiety,
and 3) the oxidation of the amine groups by ONOO− changes the
fluorescence properties of the carbon dot. When uptaken by
MCF-7 cells, the authors were able to confirm that their
nanoprobes were internalized, while showing dynamic changes
in ROS levels once an external stimulus was applied. In another

study, Wang et al., 2020b demonstrated the use of carbon dots as
in vivo fluorescent biosensors for ClO− within zebrafish
(Figure 5A). Here, a ratiometric “multicenter-emitting”
nanosensor was developed by using m-aminophenol as their
base material, where the selective presence of ClO− would
create a blue shift in the fluorescence spectrum, from 537 to
430 nm (Figure 5B). To demonstrate the functionality of their
nanosensor in vivo to detect the presence of ClO− in both
digestive and metabolic systems, and during a wound healing
response. It has been widely reported that an increased
production of ClO− (Wang et al., 2020a) and other ROS
molecules occur during wound healing (Niethammer et al.,
2009; Love et al., 2013). Through facile feeding, the authors
were able to track the production of ClO− within the

FIGURE 5 | (A) Schematic of the “multicenter-emitting” carbon dot for the detection of ClO−. Here, due to the differences in energy state presence within the carbon
dot, a ratiometic sensor was designed. (B) Fluorescence spectrum of the carbon dot at difference concentrations of ClO−, highlighting the change of peak emission from
537 to 430 nm. (C)Real timemonitoring of in vivowound healing on a zebrafishmodel using carbon dots. At 0 min, a representative fluorescence images of the zebrafish
under blue, green, and red excitation were recorded pre-wound. Following amputation, fluorescence within the blue channel increased over a 90-min period,
signifying increased levels of ClO−. Reprinted (adapted) with permission from Wang et al. (2020b). Chem Mater. 2020, 32, 19, 8,146–8,157. Copyright 2020 American
Chemical Society.
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intestines, where there was a sharp increase in fluorescence signal
after 10 min. When used as a sensor for wound healing, the
authors were able to visualize increased ClO− associated with
healing, due to the increased fluorescence signal near the wound
site (Figure 5C), highlighting future applications as
diagnosis tools.

Surface-Enhanced Raman Scattering Nanoparticles
for ROS Monitoring
Raman scattering is a photophysical phenomenon where a small
fraction of light is inelastically scattered from a surface. The
amount of inelastic scattering can be used to quantify the analyte
concentration on the surface. However, the low efficiency of light
scattering means that Raman scattering has been limited to
samples in high concentration (Sackmann and Materny, 2006).
The use of nanoparticles has been found to significantly enhance
the signal whereby molecules on the magnitude of parts per
billion (ppm) can be detected (Kneipp et al., 1999). This
phenomenon is referred to as surface-enhanced Raman
scattering (SERS). Commonly, metallic nanomaterials, such as
gold (Peng et al., 2016; Kumar et al., 2017) and silver (Shen et al.,
2019) nanoparticles, have been used to detect reactive oxygen
species, where changes within the intensity of the Raman
spectrum can be used to correlate with analyte concentration.

Peng et al. (2016) developed a ratiometric SERS nanosensor to
detect H2O2 within living cells and cancerous tissue. A gold
nanorod was coated with thiol-functionalized phenylboronic
ester which reacted with H2O2, causing a decrease in the
signal at 993 cm−1 while leaving the Raman band intensity at
1,071 cm−1 remain unchanged. When incubated with either HeLa
cells or within ex vivo cervical tumor models, cells and tissue
treated with H2O2 could be clearly identified via a reduction in the
Raman signal intensity at 993 cm−1. Further treatment with a
ROS inhibitor, N-acetylcysteine, reduced the abundance of H2O2,
and there was a subsequent increase signal intensity at 993 cm−1.
Similarly, Chen et al. (2018) used a gold nanoparticle coated with
thiol-functionalized phenylboronic ester to detect ONOO−

within macrophages. In this instance, the characteristic Raman
shift at 882 cm−1 for ONOO−, compared to a constant signal at
993 cm−1 to develop a ratiometric sensor. Incubating probes with
macrophages and concurrently simulating an immune response,
the authors were able to track endogenous ONOO− production.

EMERGING TECHNOLOGIES FOR ROS
AND OXYGEN MONITORING IN VITRO

Dynamic and Reversible Fluorophores and
Nanosensors for Continuous ROS
Monitoring
One of the main drawbacks of ROS-detecting nanosensors is that
their application for continuous and dynamic monitoring is
hampered by the fact that the commonly available ROS-
sensitive dyes use irreversible chemical and/or structural
changes for sensing. Identifying suitable reversible dyes will be
a critical step for clinical utility of such sensors, which will require

FIGURE 6 | (A) Near-infrared cyanine-derived fluorophore for dynamic
monitoring of peroxynitrite (ONOO−). [(A), i]. Reaction pathway of the
fluorophore, where initially it is non-fluorescent due to a photoinduced electron
transfer (PET) between the cyanine structure and the phenylselenyl
group. However, once oxidized by ONOO−, the structure can fluoresce. In the
presence of glutathione (GSH), the oxidized phenylselenyl group could be

(Continued )
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continuous and dynamic monitoring of ROS levels to effectively
detect and monitor disease progression or treatment effects.
Recently, selenium-doped fluorophores have been shown to
reversibly monitor ROS due to the redox properties of the
metals. This is based on the structure of glutathione
peroxidase (GPx), where the selenol group on selenocysteine
can undergo a reversible reaction with hydrogen peroxide
(Rotruck et al., 1973). Since first being reported by Miller
et al. (2007) for diagnostic applications, many groups have
worked to improve selenium and tellurium-doped
fluorophores for similar applications.

The Han group has developed a wide range of probes to
dynamically monitor ROS in vitro. In their initial work, Yu et al.
(2011) developed a near-infrared fluorescence probe to detect
peroxynitrite (Figure 6A). The use of a modified near-infrared
cyanine dye with a phenylselenyl group (Cy-PSe), allowed the
design of a reversible dye where the phenylselenyl group
quenched the fluorescence of the cyanine dye. When the
selenium group was in its oxidized state, however, a
fluorescence signal was emitted. This reversible probe was
used to monitor changes in ONOO− levels in macrophages
via imaging fluctuations of ONOO− with cyclic loading of 3-
morpholinosydnonimine (SIN-1) and glutathione
S-transferase. Additionally, Lou et al. (2013) synthesized a
diselenide-doped fluorescein dye (FSeSeF) for the
visualization of intracellular glutathione. Glutathione has
been widely reported as an antioxidant agent that maintains
ROS levels in situ. When FSeSeF was in the presence of
glutathione, the diselenide bond was cleaved, producing a
strong fluorescence signal. This deselenium bond could be
reform to allow the monitoring of dynamic changes in
glutathione and H2O2 concentration. By staining HeLa cells
and treating the cells with H2O2 and α-lipoic acid, a promoter
for glutathione activity, it was demonstrated that this produced
detectable and reversible changes in the fluorophore signal.
Recently, Li et al., 2020b demonstrated that selenium-
modified dyes can be used to dynamically monitor ClO−.
Here, fluorescein was used as the base dye, where the specific
attachment of the selenide group allowed the dye to selectively
respond to ClO−. In order to demonstrate the functionality of
the dye in vitro, Li and others exposed HL-60 cells to H2O2,
stimulating induction of apoptosis. Incubation of the dye with
cells, allowed demonstration that show ClO− production was

linked to the loss of mitochondrial membrane potential and
apoptosis.

More recently, tellurium-doped fluorophores have also been
explored as an alternative metal in the design of reversible ROS
dyes. Compared to selenium dyes, the presence of tellurium can
increase the sensitivity of reversible ROS dyes, due to lower
electronegativity of the metal (Fang et al., 2015). Moreover,
tellurium has been reported to be less cytotoxic than selenium
(Engman, 1985), making it highly attractive for further
development. Unfortunately, the use of tellurium-based ROS
dyes has not been explored extensively, possibly due to the
poor chemical stability of organotellurium (Engman, 1985).
Work by Manjare et al. (2014) exploited the similarities and
differences between selenium and tellurium-based BODIPY
fluorophores for ROS sensing, where the tellurium-based dye
showed a faster response and sensitivity compared to selenium
counterparts.

Koide et al. (2012) developed a near-infrared fluorescence
stain for monitoring ROS by synthesizing 2-Me TeR, a
rhodamine-based dye modified with a tellurium group, which
showed reversible fluorescence in the presence of •OH, ONOO−,
and OCl−. Initially, the dye is non-fluorescent, however, when in
the presence of these three species, it forms the fluorescent
compound 2-Me TeOR. This sensor showed dynamic
capabilities in vitro by incubating with HL-60 cells. HL-60
cells express high levels of OCl− when exposed to H2O2. These
sensors were able to monitor the production and subsequent
reduction of OCl− as cells treated with H2O2 responded and
subsequently returned back to homeostasis. Further
demonstration of the dynamic nature of the sensor involved
dosing of the cells with additional H2O2, which gave an increase
and subsequent decrease in the fluorescence signal of the probe,
demonstrating the reversible nature of the dye.

While the above section discussed the development of
reversible fluorophores for ROS monitoring, there have been
few reported cases of incorporation of these fluorophores into
nanomaterials. The Tang group investigated the possibility for
the development of nanosensors using selenium-based
fluorescence probes for peroxynitrite in their initial work by
Xu et al. (2011), which developed a reversible near-infrared
fluorescence dye: benzylselenide-tricarbocyanine (BzSe-Cy).
The fluorescence properties of BzSe-Cy are quenched due to
the oxidation of the selenium. This reaction could be reversed in
the presence of the reducing agent, ascorbate, resulting in
reduction of the oxidized selenium. Following on from this,
Tian et al. (2011). incorporated BzSe-Cy into a ratiometric
polymeric nanosensor for the detection peroxynitrite. By
using isopropyl rhodamine B as a reference dye and using an
amphiphilic block copolymer with cell penetrating peptides
moieties, the authors were able to create micelle nanosensors
for peroxynitrite monitoring. They also demonstrated the
practical application of their probe in vitro by encapsulating
the sensors within macrophages for intracellular imaging. Once
the cells were exposed to SIN-1, a peroxynitrite donor, the
authors observed quenching of the fluorescence signal. They
also demonstrated the specificity of their sensor by exposing
cells to other reactive nitrogen/oxygen species. Extension of this

FIGURE 6 | reduced and quenched the fluorophore. [(A), ii,iii]. Absorbance
and fluorescence spectrum of the fluorophore at different concentration of
ONOO−. [(A), iv,v]. Reversibility studies of the fluorophore under one and
multiple cycles. Reprinted (adapted) with permission from Yu et al. (2011).
J. Am. Chem. Soc. 2011, 133, 29, 11030–11033. Copyright 2011 American
Chemical Society. (B) Theranostic photoacoustic nanosensors (T-FBM) for
detection and treatment of thrombosis. [(B), i]. Detection of H2O2 using
photoacoustic-responsive nanosensors, where the photoacoustic signal
changes in the presence of H2O2. [(B), ii]. Photoacoustic signal of the
nanosensors under different concentrations of H2O2. [(B), iii]. Therapeutic
effects of T-FBM nanosensors, where thrombosis was minimised with the
nanosensors when coated with thrombi-targeting lipopeptide (GPRPPC).
Reprinted (adapted) with permission from Jung et al. (2018). ACS Nano 2018,
12, 1, 392–401. Copyright 2018 American Chemical Society.
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work could provide future opportunities for the development of
reversible ROS-based nanosensors.

Photoacoustic Imaging for Non-Invasive, Deep Tissue
Detection and Monitoring for ROS
A key limitation of optical nanosensors is their poor tissue
penetration within the visible light spectrum, mainly associated
with tissue autofluorescence and light scattering. While near-
infrared fluorescence probes and sensors are being developed to
specifically address this issue, the maximum depth penetration is
still only on the length scale of millimeters, severely limiting their
use in applications for which deeper imaging into the tissue is
required. One alternative is photoacoustic (PA) imaging (Lee et al.,
2019), which has a tissue penetration depth in the magnitude order
of centimeters (Kim et al., 2010a). Imaging by photoacoustics relies
on the interaction of near-infrared light with a contrast agent. Here,
the incoming energy from the laser is absorbed by the contrast agent
and acoustic waves are generated via thermal expansion of the
contrast agent which can be detected through a sonograph.
Common nanomaterials used in developing photoacoustic
probes are single-walled carbon nanotubes, semiconductive
polymers, and gold nanoparticles (Upputuri and Pramanik, 2020).

One prominent group that has developed photoacoustic
probes and sensors is the Pu group. In their initial work, Pu
et al. (2014) reported an in vivo photoacoustic nanosensor to
detect ROS in mice. Here, the authors developed a ratiometric
photoacoustic nanosensor that used a semiconducting polymer as
a photoacoustic contrast agent/scaffold and attached a ROS-
reactive dye (IR775S) for ROS detection. As a result of
nanoencapsulation of the dye in their device, there was a
higher selectivity towards ONOO- and OCl-when compared to
the free dye, suggesting that nanostructure helped discriminate
ROS molecules with shorter lifetime. To demonstrate the
advantages of photoacoustics for deep tissue imaging, the
sensors were injected intramuscularly into the thigh for acute
oedema. By simulating the production of ROS in vivo, it was
possible to visualize inflammatory ROS generation confirming
these sensors a useful tool for deep tissue ROS imaging.

Similarly, Zhang et al. (2017a) developed a ratiometric
photoacoustic sensor for the detection of ONOO− in vivo. This
used a boronated-caged boron-dipyrromethene dye as the ROS-
reactive dye which was encapsulated within a semiconductive
polymeric scaffold with triphenylborane to improve ONOO−

selectivity. The developed sensor used peak wavelength shifts to
quantify ROS levels, where the dye had an absorbance peak at
675 nm. In the presence ofONOO−, a shift in the peakwavelength to
745 nm was observed and this was attributed to the rapid oxidative
cleavage of the boron-dipyrromethene. Therefore, the ratio between
the intensity at 745 and 675 nm permitted quantification of the
relative amount of ROS present. To demonstrate the functionality of
the photoacoustic sensors in vivo, the sensors were subcutaneously
injected into mice tumor models and the PA signal at 750 and
680 nm were measured. Due to the presence of ONOO− present
within the tumor, the authors were able to visualize the dynamic
changes in ROS levels over a 24-h period.

Photoacoustic sensors have also found utility in monitoring of
cardiovascular conditions such as thrombosis. Jung and co-workers

(Jung et al., 2018) designed a theranostic nanomedicine to detect
thrombosis by conjugating borylbenzyl carbonate and the near
infrared dye IR780 to maltodextrin (termed as FBM nanoparticles)
(Figure 6B). The diagnostic/imaging capability stemmed from the
ability of T-FBM nanoparticles to target the thrombus, a complex
network of platelets and water-insoluble fibrin, which is
accompanied by H2O2 generation during platelet activation, via
functionalization of FBM nanoparticles with a thrombus-targeting
lipopeptide known as GPRPPC. In the presence of H2O2, oxidation
of aryl boronate occurs, leading to a chain of reactions and
ultimately generating CO2 bubbles that significantly amplified
photoacoustic signals in a mouse model of FeCl3-induced
arterial thrombosis. The technique of enhancing photoacoustic
signals hold significant advantages over conventional
photoacoustic vaporization-based photoacoustic imaging with
photoabsorber-containing nanodroplets as it does not rely on
gas precursors (such as perfluorocarbon) and an external pulsed
laser. The therapeutic functionality of these nanoparticles stems
from the production of antioxidants and anti-inflammatory
hydroxybenzyl alcohol (HBA) via quinone methide that is also
a product of the oxidation reaction of aryl boronate in the presence
of H2O2. While the study highlights the potential of this
nanomedicine to serve as a theranostic agent for thrombosis,
the limited penetration depth of IR780 could serve as an
obstacle for its translation towards testing in clinical trials.

Yang et al. (2018) demonstrated the potential of combining
photoacoustic imaging with active drug treatment by
encapsulating cisplatin, a well-known platinum-based cancer
drug, the ROS-sensitive IR790s and chelated ferric ions within a
self-assembled polymeric scaffold. When exposed to the tumor
microenvironment, cisplatin dissociates from the nanosensor
and generates H2O2 and superoxide from O2, where the former
further reacts with ferric ions to form •OH. The presence of •OH
was detected by IR790 where a photoacoustic ratio
measurement could be obtained by the signal from 790 to
680 nm. These nanoparticles were shown to successfully
target xenografted U87MG tumours in mice with, yielding a
distinct photoacoustic signal only in the presence of
nanoparticles supplemented with chelated ferric ions. This
demonstrates the importance of Fe3+ in generating ROS
signals for photoacoustic imaging.

Moving Away From the Visible Light Region: Emerging
NIR-II Fluorescent Contrast Agents
Near infrared-II (NIR-II) contrast agents have been explored as
fluorescence contrast agents for oxygen and reactive oxygen
species. As highlighted previously, the main limitation of
conventional fluorescence probes for oxygen and ROS is that
they are confirmed to the visible spectrum (380–750 nm) (Cao
et al., 2020), thus limiting imaging due to tissue scattering, poor
depth penetration, and tissue autofluorescence. Imaging within the
near infrared region (700 + nm) has mitigated these shortcomings
due to the effective attenuation coefficient of tissue components
(lipids, skin, and blood), which are relatively low (Smith et al.,
2009). While NIR-I (700–950 nm) is adequate for deep tissue
imaging, the light penetration depth is limited to 1–2 cm
(Bashkatov et al., 2005), whereas NIR-II (1,000–1,300 nm) is
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more promising for non-invasive sensing due to a maximum of
4 cm tissue light penetration (Bashkatov et al., 2005).

Recently Zhao et al. (2020) developed a ROS-responsive FRET
nanosensor to ONOO− within a carcinoma tumor model. By
pairing a NIR-II cyanine dye, MY-1057 with a Nd+3 doped/
lanthanide nanoparticle, acting as a FRET pair, it was possible to
differentiate between tumors and healthy tissue through
fluorescence lifetime analysis. Lifetime measurements within the
NIR-II region provide better resolution for deep-tissue imaging, as
fluorescence imaging is limited due to high signal attenuation and
tissue light scattering effects. (Hong et al., 2017; Fan et al., 2018).
This advantage of NIR-II and lifetime measurements mean that it
was possible to conduct deep-tissue imaging in situ in tumor bearing
mice. Lifetime imaging enabled quantification of ONOO− levels up
to a 5 cm tissue penetration depth, highlighting the possibilities of
non-invasive imaging with minimal signal attenuation.

OUTLOOKS AND CONCLUSION

Oxygen and ROS are key candidates for cellular monitoring for
research and clinical applications due to their links to biological
reactions and disease progression. While hypoxia and subsequent
ROS generation have been linked to countless diseases including
cancers, neurological disorders, and cardiovascular disease,
technologies to support spatially resolved, non-invasive and
real-time imaging of oxygen and ROS has been limited.
Although fluorescence-based techniques exist, such as
commercially viable stains and fiber-optic probes, these
techniques are unable to accomplish these criteria—stemming
from their innate chemical structure, limited detection zone, or
“end-point” quantification. Optical nanosensors have emerged as
an opportune technology to meet the challenges of monitoring
ROS and oxygen levels in situ. Many studies report using existing
and commercially available dyes and encapsulating them within
scaffolds to improve their optical properties or enhance their
cellular uptake. This approach has yielded both FRET-based
nanosensors and dye-labelled sensors that can monitor ROS
and oxygen levels non-invasively, and in some cases have even
been used to track disease progression. However, these sensor
designs are still hindered by the chemical limitations of

commercially available optical stains for oxygen and ROS,
specifically the lack of dynamic and reversible monitoring,
making them non-ideal nanosensors—as per Clark and Ruckh
classification.

To better understand oxygen and ROS, and their connection
with disease progression, emerging optical technologies based on
reversible selenium and tellurium fluorophores have shown
promise as a means to visualize dynamic changes in ROS
levels in situ. While this field is still in its infancy, the studies
in this area suggest great promise for these to generate improved
understanding of the dynamic changes of ROS in biological
systems both in vitro and in vivo. Moreover, work to improve
the spatial resolution of ROS and oxygen localization via
photoacoustic and NIR-II dyes has shown great promise in
better depth profiling, where greater understanding of disease
development can aid in potential and future therapy.

Overall, the field of fluorescence nanosensors show great
potential to revolutionize the spatio-temporal monitoring of
both oxygen and ROS. Building upon recent key advances in
reversible dyes and methods for improved imaging within
complex 2D/3D cell cultures and biological tissue, it is likely
that these will make significant impact to our understand of the
role of oxygen, ROS in biological processes and our ability to
monitor these for clinical application, or improved development
of therapeutic agents.
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