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This review article gives a high-level overview of the approaches across different scales

of organization and levels of abstraction. The studies covered in this paper include

fundamental models in computational neuroscience, nonlinear dynamics, data-driven

methods, as well as emergent practices. While not all of these models span the

intersection of neuroscience, AI, and system dynamics, all of them do or can work in

tandem as generative models, which, as we argue, provide superior properties for the

analysis of neuroscientific data. We discuss the limitations and unique dynamical traits of

brain data and the complementary need for hypothesis- and data-driven modeling. By

way of conclusion, we present several hybrid generative models from recent literature in

scientificmachine learning, which can be efficiently deployed to yield interpretablemodels

of neural dynamics.
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INTRODUCTION

“What I cannot create I do not understand.” —Richard Feynman

The explosion of novel data acquisition and computation methods has motivated neuroscientists
to tailor these tools for ad-hoc problems. While attempts at pattern detection in enormous datasets
are commonplace in the literature-representing a logical first step in applying learning algorithms
to complex data-such efforts provide little insight into the observed mechanisms and emission
properties. As the above quote from R. Feynman suggests, such methods are understanding the
brain. The importance of developing interpretable algorithms for biological data-beyond the
standard “black-box” models of conventional machine learning-is underscored by the pressing
need for superior explainability seen in medical and health-related research. To this end, formal
modeling (the practice of expressing some dependent variable unequivocally in terms of some
other set of independent variables Wills and Pothos, 2012) is the only way for transparent and
reproducible theories (Guest and Martin, 2020). In the present review, we propose that a class
of architectures known as generative models constitute an emergent set of tools with superior
properties for reconstructing segregated and whole-brain dynamics. A generative model may
consist of, for example, a set of equations that determine the evolution of the signals from a human
patient based on system parameters. In general, generative models have the benefit over black-box
models containing inference mechanisms rather than simple predictive capacity.
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Why Prefer Inference Over Prediction?
Put simply: the goal of science is to leverage prior knowledge, not
merely to forecast the future (a task well suited to engineering
problems), but to answer “why,” questions, and to facilitate the
discovery of mechanisms and principles of operation. Bzdok
and Ioannidis (2019) discuss why inference should be prioritized
over prediction for building a reproducible and expandable body
of knowledge. We argue that this priority should be especially
respected for clinical neuroscience.

It is important to note that modeling is, and should be, beyond
prediction (Epstein, 2008). Not only does explicit modeling allow
for explanation (which is the main point of science), but it
also directs experiments and allows for the generation of new
scientific questions.

In this paper, we demonstrate why focusing on the multi-
scale dynamics of the brain is essential for biologically
plausible and explainable results. For this goal, we review a
large spectrum of computational models for reconstructing
neural dynamics developed by diverse scientific fields, such as
biological neuroscience (biological models), physics, and applied
mathematics (phenomenological models), as well as statistics
and computer science (data-driven models). On this path, it is
crucial to consider the uniqueness of neural dynamics and the
shortcomings of data collection. Neural dynamics are different
from other forms of physical time series. In general, neural
ensembles diverge from many canonical examples of dynamical
systems in the following ways:

Neural Dynamics Is Different
A neural ensemble is distinctive from the general notion of the
dynamical system:

• Unlike chemical oscillations and power grids, the nervous
system is a product of biological evolution, which makes it
special regarding complexity and organization.

• Like many biophysical systems, it is highly dissipative and
functions in non-equilibrium regimes (at least while working
as a living organ).

• Although the brain exhibits continuous neuromodulation, the
anatomical structure of the brain is encoded in the genome,
hence it is essentially determined (Rabinovich et al., 2006).

• There are meaningful similarities in brain activity across
species. This is especially good news because, unlike humans,
neural properties of less-complicated species are well-
characterized (White et al., 1986).

These characteristics help narrow down the search for useful
models.

Neural Data Is Different
Neural recordings—especially of human subjects—are noisy and
often scarce. Due to requirements of medical certification, cost of
imaging assays, and the challenges with recruitment, acquiring
these datasets can be both expensive and time-consuming.
Moreover, such data can be difficult to wrangle and contains
inconsistent noise -not only across participants, but quite often
for a single participant at different times (e.g., artifacts, skin
condition, and time resolution in the case of EEG).

FIGURE 1 | Venn diagram of the generative models of interest. Based on the

abstraction and assumption, methods might belong to one or more of the

three worlds of machine learning, neuroscience, and dynamical systems. This

review is structured into three main categories that are in fact, intersections of

these fields: biophysical (Section 1), phenomenological (Section 2), and

agnostic modeling (Section 3). Tools developed independently in each of these

fields can be combined to overcome the limitation of data.

Overview of Generative Models
Our focus is on generative models. Generative modeling can,
in the current context, be distinguished from discriminative or
classification modeling; in the sense that there is a probabilistic
model of how observable data is generated by unobservable
latent states. Almost invariably, generative models in imaging
neuroscience are state space or dynamic models based upon
differential equations or density dynamics (in continuous or
discrete state spaces). Generative models can be used in one of
two ways: first, they can be used to simulate or generate plausible
neuronal dynamics (at multiple scales), with an emphasis on
reproducing emergent phenomena of the sort seen in real brains.
Second, the generative model can be inverted, given some
empirical data, to make inferences about the functional form
and architecture of distributed neuronal processing. In this use,
the generative model is used as an observation model and is
optimized to best explain some data. Crucially, this optimization
entails identifying both the parameters of the generative model
and its structure, via the process of model inversion and
selection, respectively. When applied in this context, generative
modeling is usually deployed to test hypotheses about functional
brain architecture is (or neuronal circuits) using (Bayesian)
model selection. In other words, comparing the evidence (a.k.a.
marginal likelihood) for one model against some others.

Current generative models fall into three main categories as
shown in Figure 1with respect to their modeling assumption and
objective:
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1. Biophysical models: Biophysical models are realistic models
which encapsulate biological assumptions and constraints.
Due to large number of components and the empirical
complexity of the systems modeled, examples of biophysical
models run the gamut, from very small, with a high degree
of realism (e.g., Hodgkin and Huxley’s model of squid giant
axon), to large scale (e.g., Izhikevich and Edelman, 2008
model of whole cortex). Due to computational limitations,
large-scale models are often accompanied by increasing levels
of simplification. Blue Brain Project (Markram, 2006) is an
example of this type of modeling.

2. Phenomenological models: Analogies and behavioral
similarities between neural populations and established
physical models open the possibility of using well-developed
tools in Statistical Physics and Complex Systems for brain
simulations. In such models, some priors of the dynamics are
given but not by realistic biological assumptions. A famous
example is the model of Kuramoto oscillators (Bahri et al.,
2020) in which the goal is to find the parameters that best
reconstruct the behavior of the system. These parameters
describe the property of the phenomenon (e.g., the strength
of the synchrony), although they do not directly express the
fabric of the organism.

3. Agnostic computational: Data-driven methods that, given a
“sufficient” amount of data, can learn reconstruct the behavior
with little prior knowledge. Examples of such approaches
are some self-supervised methods such as latent ODEs
(Chen et al., 2018). The term “sufficient” expresses the main
limitation of these approaches. Such approaches often need
unrealistically large datasets and come with intrinsic biases.
In addition, the representation that these models provide
can be analytically far from the physics of the system or the
phenomenon.

Figure 2 shows an overview of various generative models
and the presence in the literature up to this date.

Key Contributions: The objective is to bridge a gap in the
literature of computational neuroscience, dynamical systems,
and AI and to review the usability of the proposed generative
models concerning the limitation of data, the objective of the
study and the problem definition, prior knowledge of the system,
and sets of assumptions (see Figure 2).

1. BIOPHYSICAL MODELS

Understanding how cognition “emerges” from complex
biophysical processes has been one of the main objectives of
computational neuroscience. Although inferring high-level
cognitive tasks from biological processes is not easily achieved,
different biophysical simulations provide some “explanation” of
how neural information relates to behavior. Those attempts are
motivated by the need for interpretable and biologically-detailed
models.

While there is as yet no “unifying theory of neuroscience,”
biological neuronal models are being developed at different
scales and with different degrees of abstraction (see Figure 3).

FIGURE 2 | Overview of generative models: well-developed models (blue),

partially-explored approaches (purple), and modern pathways with little or no

literature on neural data (red).

These models are usually grouped into two main categories:the
first represents a “bottom-up” approach, which emphasizes
biophysical details for fine-scale simulation and expects the
emergence1. An example of this approach is the Blue Brain
project (Markram, 2006).

Conversely, “top-down” schemes focus on explicit high-
level functions and design frameworks based on some targeted
behavior. Each of the two approaches works with a different
knowledge domain and has its own pitfalls. The top-down
approach can incorporate behavioral insights without concerning
itself with hard-to-code biological details to generate high-level
observed behavior. Models of this kind do not provide low-level
explanations and are prone to biases related to data collection
(Srivastava et al., 2020). The bottom-up perspective, on the other
hand, benefits from a customized level of biophysical insight. At
the same time, its description is not generalizable to behavior,
and it can be difficult to scale (thanks to unknown priors and
numerous parallel mechanisms). Also, the reductionist approach
to complex systems (e.g., the brain) is subject to substantial
criticism. In particular, while a reductionist approach can help
to examine causality, it is not enough for understanding how the
brain maps onto the behavior (Anderson, 1972; Krakauer et al.,
2017).

In this section, we review brain models across different scales
that are faithful to biological constraints. We focus primarily
on the first column from the left in Figure 3, starting from the
realistic models with mesoscopic details to more coarse-grained
frameworks.

1.1. Modeling at the Synaptic Level
The smallest interacting blocks of the nervous system are proteins
(van den Heuvel et al., 2019). Genetic expression maps and
atlases are useful for discovering the functions of these blocks
in the neural circuit (Mazziotta et al., 2000). However, these

1 Emergence is the manifestation of collective behavior that cannot be deduced
from the sum of the behavior of the parts (Johnson, 2002; Krakauer et al., 2017).
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FIGURE 3 | Instances of modeling across different levels of the organization

and problem dimension. The conceptual scope is an indicator of biophysical

details incorporated in the model. It determines how the focus of the model is

directed toward mechanistic reality or the behavioral output. It is also an

indicator of where a given model sits on the Marr’s level.

maps are not uniformly expressed in the brain (Lein et al.,
2007). While the expression maps of those proteins continue to
unfold (Hawrylycz et al., 2012), combined with connectivity data,
they can help quantify dynamics. These maps link the spatial
distribution of gene expression patterns, and neural coupling
(Richiardi et al., 2015) as well as other large-scale dynamics,
e.g., dynamic connectivity as a dependent of neurogenetic profile
(Diez and Sepulcre, 2018).

A notable effort in this regard is the Allen Brain Atlas (Jones
et al., 2009) in which genomic data of mice, humans, and non-
human primates (Hawrylycz et al., 2014) have been collected and
mapped for understanding structural and functional architecture
of the brain (Gilbert, 2018). While genomic data by itself is
valuable for mapping out connectivity in different cell types, a
fifth division of AA, Allen Institute for Neural Dynamics was
recently announced, with the aim of studying the link between
neural circuits of laboratory mice and behaviors related to
foraging (Chen and Miller, 2021).

On a slightly larger scale, a considerable amount of work
concerns the relationship between cellular and intracellular
events and neural dynamics. Intracellular events and
interactions models could generate accurate responses on
small (Dougherty et al., 2005) and large scales (Whittington
et al., 1995). Some of these models laid the foundation of
computational neuroscience and are reviewed in Section 1.2.
In what follows, we start with neurocomputational models
at the mesoscale level (realistic models of small groups of
neurons, i.e., the top-left corner of Figure 3), after which we
move on toward macro-scale levels with different degrees
of abstraction.

1.2. Basic Biophysics of Neurons: A Quick
History
Zooming out from the intra-neuron synaptic level, inter-neuron
communication emerges as a principal determinant of the
dynamics. Information transmission is mainly based on the
emission of action potentials. The mechanism of this flow
of ions was first explained by the influential Hodgkin-Huxley
equations and corresponding circuits. The electrical current of
the equivalent circuit is described by four differential equations
that incorporate membrane capacity and the gating variables of
the channels (Hodgkin and Huxley, 1952). While the Hodgkin-
Huxley model agrees with a wide range of experiments (Patlak
and Ortiz, 1985; Traub et al., 1991) and continues to be a
reference for models of ion channels, it needs to be simplified
to be expandable to the models of the neuronal population. The
main difficulty with the Hodgkin-Huxley model is that it requires
solving a system of differential equations for each of the gating
parameters of each of the single ion channels of a cell while there
are more than 300 types of ion channels discovered as of today
(Gabashvili et al., 2007). Various relaxing assumptions have been
proposed, one of which is to dismiss the time dependence of
membrane conductance and the dynamics of the action potential
by simply assuming the firing happens when the electrical input
accumulated at the membrane exceeds a threshold (Abbott and
Kepler, 1990). The latter model is known as integrate-and-fire
(Stein and Hodgkin, 1967), and it comes in different flavors
depending on the form of nonlinearity assumed for the dynamics
of leaky or refractory synapses (Michaels et al., 2016).

To model the interesting dynamics of various ion
channels, a model of compartments of dendrites, called the
multicompartment model, can be employed. An exclusive review
article by Herz et al. (2006) categorizes compartmental models
into five groups based on the level of balance and details involved
from Hodgkin-Huxley description to black-box.

While the research on hyper-realistic modeling of many
neurons continues, other frameworks focus on simulating the
biophysics of the population of neurons. In Section 1.3, we pause
on the state of large-scale synaptic simulations to show how a
change in computational paradigm helps in overcoming some
of the limitations inherent in these models. Models of Neural
mass and Wilson-Cowan are examples of such alternatives (see
Sections 1.3.1, 1.3.2, respectively).

1.3. Population-Level Models
Izhikevich and Edelman (2008) describe the first attempt in
reconstructing the whole cortex. Their simulation includes a
microcircuitry of 22 basic types of neurons with simplified
dendrite trees and fewer synapses. The underlying structural
data based on the geometry of the white matter is drawn from
diffusion tensor imaging (DTI) (Honey et al., 2009) of the
human brain. Themicrocircuitry of the six-layered neocortex was
reconstructed based on cats’ visual cortex. The spiking dynamics
employed in this model comes from Izhikevich (2003) and it is
a simplification of the Hodgkin-Huxley model as it outputs the
firing rates instead of currents. On a larger scale, some subcortical
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dynamics (e.g., dopaminergic rewarding from the brainstem) are
also implemented.

The significance of this simulation compared to preceding
efforts is its inclusion of all cortical regions and some of
their interplays in the form of cortico-cortical connections.
The researchers also considered synaptic plasticity a significant
factor in studying developmental changes such as learning.
The model demonstrates several emergent phenomena such
as self-sustained spontaneous activity, chaotic dynamics, and
avalanches, alongside delta, alpha, and beta waves, and other
heterogeneous oscillatory activities similar to those in the human
brain.

Complexity aside, the model has its shortcomings, including
extreme sensitivity to the initial condition. To address this,
the authors suggest studying the population behavior instead
of single-cell simulations. Despite all the limits, Izhikevich and
Edelman (2008) is the first benchmark of whole-cortex modeling
and the foundation of future detailed projects such as Blue Brain
project (Markram, 2006) and MindScope (Koch et al., 2014).

Following Izhikevich and Edelman (2008), the Blue Brain
Project (Markram, 2006) was founded in 2005 as a biological
simulation of synapses and neurons of the neocortical
microcircuitry. The ambitious goal was to extend this effort
to a whole-brain level and build “the brain in a box.” The
initial simulated subject was only a 2mm tall and 210µm in
radius fragment of the somatosensory cortex of a juvenile rat
(∼ 100, 000 neurons). The efforts for further expansion to larger
scales, i.e., mouse whole-brain and human-whole brain, are
far-fetched by many critics (Abbott, 2020).

Far from the initial promise of “understanding” of the brain,
the Blue Brain Project is still far from incorporating the full
map of connections (also known as connectome Horn et al.,
2014) in the mouse brain, which is still an order of magnitude
smaller than the human brain (Frégnac and Laurent, 2014). That
being said, acquiring the connectomic map does not necessarily
result in a better understanding of function. Note that while the
connectomic structure of the roundwormCaenorhabditis elegans
nervous system has been entirely constructed since 1986 (White
et al., 1986), research is still unable to explain the behavior of
the network, e.g., predicting stimuli based on excitation (Koch,
2012). Finally, strong concerns regarding the validity of the
experiments rise from the fact that the simulation still does
not account for glial cells. Glial cells constitute 90% of the
brain cells. They have distinctive mechanisms as they do not
output electric impulses (Fields et al., 2014) but are responsible
for inactivating and discharging products of neuronal activities
which influence the synaptic properties (Henn and Hamberger,
1971) and consequently learning and cognitive processes (Fields
et al., 2014). This point of incompleteness sheds extra doubt on
the achievability of brain in silico from the Human Brain Project.

The above critiques have been called for a revision
of the objectives of the Blue Brain project with more
transparency. Hence, new strategies such as the division of
Allen Institute, MindScope (Hawrylycz et al., 2016), and the
Human Brain Project (Amunts et al., 2016) aim for adaptive
granularity, more focused research on human data, and pooling
of resources through cloud-based collaboration and open

science (Fecher and Friesike, 2014). Alternatively, smaller teams
developed less resource-intensive simulation tools such as Brian
(Stimberg et al., 2019) andNEST (Gewaltig andDiesmann, 2007).

There are several readily-available simulators of large
networks of spiking neurons to reconstruct many-neuron
biophysics. Brian (Stimberg et al., 2019) is a Python package
for defining a customized spiking network. The package
can automatically generate the code for simulating a
computationally-optimal language (e.g., C++, Python, or
Cython). With GPUs available, it can also enable parallelism for
faster execution. Brian is more focused on single-compartment
models while GENESIS (Bower and Beeman, 2012) and
NEURON (Carnevale and Hines, 2006) center around
multicompartment cells.

NEST is another popular package for building ad-hoc models
of spiking neurons with adjusted parameters. These parameters
include the spiking rules (such as IF, Hodgkin-Huxley AdEx),
networks (topological or random neural networks), synaptic
dynamics (plasticity expressions, neuromodulation) (Gewaltig
and Diesmann, 2007).

While working with mid-level packages, Technical limitations
and the objective of the study should be considered. These
include computational efficiency and the code generation
pipeline. Interested researchers are encouraged to refer to the
review by Blundell et al. (2018) to learnmore about the guidelines
and proposed solutions.

The steep price of high-resolution computation and the
remoteness from high-level cognition can be levitated by
replacing the detailed dynamics of single neurons with the
collective equations of the population. This dimensionality-
reduction strategy is the essence of the neural mass models
(David and Friston, 2003), spiking neural network (Vreeken,
2003), and dynamical causal modeling (Friston et al., 2003).

1.3.1. Neural Mass Models
Staying faithful to the biophysical truth of the system can
happen at scales larger than a few cells. In other words, by
reducing the degrees of freedom, one can reduce a massive
collection of individual integrate-and-fire equations (mentioned
in Section 1.2) to a functional DE of the probabilistic evolution
of the whole population known as Fokker-Planck DE. However,
since Fokker-Planck equations are generally high-dimensional
and intractable, a complimentary formalism, known as the
mean-field approximation, is proposed for finessing the system
(Deco et al., 2008).

In statistical physics, the mean-field approximation is a
conventional way of lessening the dimensions of a many-body
problem by averaging over the degrees of freedom. A well-known
classic example is the problem of finding collective parameters
(such as pressure or temperature) of a bulk of gas with known
microscopic parameters (such as velocity or mass of the particles)
by the Boltzmann distribution. The analogy of the classic gas
shows the gist of the neural mass model: the temperature
is an emergent phenomenon of the gas ensemble. Although
higher temperatures correspond to higher average velocity of the
particles, one needs a computational bridge to map microscopic
parameters to the macroscopic one(s). To be clear, remember
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that each particle has many relevant attributes (e.g., velocity,
mass, and the interaction force relative to other particles). Each
attribute denotes one dimension in the phase space. One can
immediately see how this problem can become computationally
impossible even for 1cm3 of gas with∼ 1019 molecules.

The current state of thermodynamics accurately describes the
macroscopic behavior of gas, so why not use this approximation
to the many-body problems of neuronal populations? The
analogous problem for a neural mass model can be described
with the single-neuron activity and membrane potential as the
microscopic parameter and the state of the neural ensemble in
phase space as the macroscopic parameter. The computational
bridge is based on Fokker-Planck equations for separate
ensembles.

Neural mass models can be used both for understanding
the basic principles of neural dynamics and building generative
models (Friston, 2008). They can also be generalized to neural
fields with wave equations of the states in phase space (Coombes,
2005) as well as other interesting dynamical patterns (Coombes
et al., 2014). Moreover, these models are applicable across
different scales and levels of granularity from subpopulations
to the brain as a whole. This generalizability makes them a
good candidate for analysis on different levels of granularity,
ranging frommodeling the average firing rate to decision-making
and seizure-related phase transitions. The interested readers are
encouraged to refer to the review in Deco et al. (2008) to see
how neural mass models can provide a unifying framework
to link single-neuron activity to emergent properties of the
cortex. Neural mass and field models build the foundation for
many of the large-scale in-silico brain simulations (Coombes and
Byrne, 2019) and have been deployed in many of the recent
computational environments (Ito et al., 2007; Jirsa et al., 2010).
Note that the neural mass model can show inconsistency in the
limits of synchrony and require complementary adjustments for
systems with rich dynamics (Deschle et al., 2021) by mixing with
other models of neural dynamics such as Wilson-Cowan (Wilson
and Cowan, 1972) as in Coombes and Byrne (2019).

1.3.2. Wilson-Cowan
Wilson-Cowan is a large-scale model of the collective activity
of a neural population based on mean-field approximation
(see Section 1.3.1). Seemingly the most influential model in
computational neuroscience after Hodgkin-Huxley (Hodgkin
and Huxley, 1952) is Wilson-Cowan (Wilson and Cowan, 1972)
with presently over 3,000 mentions in the literature.

The significance of this work in comparison to its proceedings
(e.g., in Beurle, 1956; Anninos et al., 1970) is more than a formal
introduction of tools from dynamical systems in neuroscience.
This model acknowledges the diversity of synapses by integrating
distinct inhibitory and excitatory subpopulations. Consequently,
the system is described by two state variables instead of one.
Moreover, the model accounts for Dale’s principle (Eccles et al.,
1954) for a more realistic portrayal. That is to say, each neuron
is considered purely inhibitory or excitatory. The four theorems
proved in the seminal paper (Wilson and Cowan, 1972) conclude
the existence of oscillations as a response to a specific class of

stimulus configuration and the exhibition of simple hysteresis for
other classes of stimuli.

Wilson-Cowan model lays the foundation for many of the
major theoretical advances. Examples of the derivative studies
include energy function optimization for formulating associative
memory (Hopfield, 1982), artificial neural networks as a special
case with binary spiking neurons (Hinton and Sejnowski,
1983), pattern formation (Amari, 1977), brain wave propagation
(Roberts et al., 2019), movement preparation (Erlhagen and
Schöner, 2002), and Dynamic Causal Modeling (Sadeghi et al.,
2020). Other studies also demonstrate the possibility of diverse
nonlinear behavior of networks of Wilson-Cowan oscillators
(MacLaurin et al., 2018; Wilson, 2019). More detailed extensions
are on the way. For example, second-order approximations
(El Boustani and Destexhe, 2009) and simulation of intrinsic
structures such as spiking-frequency adaptation or depressing
synapses (Chen and Miller, 2018). For a comprehensive list of
continuations, see Destexhe and Sejnowski (2009).

BOX 1 | Neuromorphic computers: Architectures tailored for spiking

networks.

The disparity in energy consumption and computing architecture of biological

and silicon neurons are the most important factors that raise eyebrows in

assessing brain-like algorithms. The brain consumes ∼20 watts of power

while this amount for a supercomputer is in the order of megawatts (Zhang

et al., 2018). This twist verifies that the processing of information in these

simulations is far from the biological truth. Apart from the energy consumption

gap, the non-Von Neumann architecture of the brain is another discrepancy

that stands in the way of realistic brain simulation in silico. There is no Von

Neumann bottleneck in the brain as there is no limitation on throughput

as a result of separation of memory and computing unit (Wulf and McKee,

1995). The brain also has other features that are greatly missed in deep

networks. These include synaptic plasticity, high parallelism due to a large

number of neurons, high connectivity due to a large number of synapses,

resilience to degradation, and low speed and frequency of communication,

among other things. Although many of the aspects of biological cognition

are complicated to reconstruct (e.g., embodiment and social interaction), the

research in neuromorphic computing is addressing the disparities above by

targeting hardware design (Cai and Li, 2021).

A potential solution for narrowing this computation gap can be sought at

the hardware level. An instance of such a dedicated pipeline is neuromorphic

processing units (NPU) that are power efficient and take time and dynamics

into the equation from the beginning. An NPU is an array of neurosynaptic

cores that contain computing models (neurons) and memory within the same

unit. In short, the advantage of using NPUs is that they resemble the brain

more realistically than a CPU or GPU because of asynchronous (event-based)

communication, extreme parallelism (100–1,000,000 cores), and low power

consumption (Eli, 2022). Their efficiency and robustness also result from

the Physical proximity of the computing unit and memory. Below popular

examples of such NPUs are listed. Each of them stemmed from different

initiatives.

• SpiNNaker or “Spiking Neural Network architecture” is an architecture

based on low-power microprocessors and was first introduced in 2005 to

help the European Brain Project with computations of large cortical area.

The first version could imitate ten thousand spiking neurons and four million

synapses with 43 nano Joules of energy per synaptic event (Sharp et al.,

2012).

(Continued)
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BOX 1 | Continued

• TrueNorth chips are arrays of 4,096 neurosynaptic cores amounting to

1 million digital neurons and 256 million synapses. IBM builds TrueNorth

primarily as a low-power processor suitable for drones, but it is highly

scalable and customizable (Akopyan et al., 2015).

• Loihi chips have demonstrated significant performance in optimization

problems. Intel’s fifth NPUs has incorporated biophysical reconstruction

of hierarchical connectivity, dendritic compartments, synaptic delays,

reward traces. Its circuit is composed of dandrite units (for updating state

variables), axon units (generating feed for the subsequent cores), and

learning unit (for updating weights based on customized learning rules)

(Davies et al., 2018)

An integrative example of the implementation discussed above is NeuCube.

NueCube is a 3D SNN with plasticity that learns the connections among

populations from various STBD modulations such as EEG, fMRI, genetic,

DTI, MEG, and NIRS. Gene regulatory networks can be incorporated as

well if available. Finally, This implementation reproduces trajectories of neural

activity. It has more robustness to noise and higher accuracy in classifying

STBD than standard machine learning methods such as SVM (Kasabov,

2014).

Beyond biological alikeness, neuromorphic computing has important

technical aspects that are missing in conventional compute units and can

revolutionize neural data processing. They demonstrate lower latency, power

consumption, and high portability required for real-time interpretation. These

attributes make them useful for recent signal collectors like wearable EEG.

On the other hand, although they have shown to be highly scalable and

adaptable, their high cost per bit is a major pitfall (Davies, 2021; Sharifshazileh

et al., 2021).

1.3.3. Spiking Neural Network: Artificial Neural

Networks as a Model of Natural Nervous System
With the introduction of neural networks, the idea of
implementing neural circuits and biological constraints into
artificial neural networks (ANN) gained momentum. McCulloch
and Pitts (1943) is an early example that uses ANNwith threshold
spiking behavior. Despite being oversimplified, their idea formed
the basis for a particular type of trainable network known as
spiking neural networks (SNN) or biological neural networks
(as in Vreeken, 2003). Note that the distinction here with the
other forms of spiking networks like Izhinevich’s and derivatives
(discussed earlier in Section 1.3) is that here we are talking about
the networks that demonstrate a function approximation as a
deep learning algorithm would do (Box 1).

In contrast to deep neural networks, the activity in this
architecture (transmission) is not continuous in time (i.e.,
during each propagation cycle). Instead, the activities are event-
based occurrences with the event being the action potential
depolarization2. Although ANN architectures that are driven by
spiking dynamics have been long used for optimization problems
such as pattern recognition (Kasabov, 2007) and classification
(Soltic et al., 2008), they lag behind conventional learning
algorithms in many tasks, but that is not the end of the story.

Maass (1997) argues that concerning network size, spiking
networks are more efficient in computation compared to other

2For a more comprehensive overview on types and applications, see Schliebs and
Kasabov (2013).

types of neural networks such as sigmoidal. Therefore it is
worthwhile to implement SNNs in a more agnostic manner as
spiking RNNs. Examples of such promising implementations are
reservoir computing, liquid, and each state machine. For more on
those architectures, see Section 3.1.2.

1.4. Brain Atlases: Whole- and
Population-Level Modeling
The 21st century has been the bursting era of large-scale brain
initiatives. The objective of the simulation partly justifies this
multitude. As it was previously mentioned, the notion simulation
is highly versatile inmeaning depending on the goal of the project
(de Garis et al., 2010), i.e., where it sits on the Figure 3. Some of
the projects of this spectrum are listed below.

• BigBrain: a free-access and few-cell-resolution model of
human brain in 3D (Landhuis, 2017).

• Allen Brain Atlas: genome-wide map of gene expression for
the human adult and mouse brain (Jones et al., 2009).

• Human Connectome Project: a large-scale structural and
functional connectivity map of the human brain (coined as
connectome in Sporns et al., 2005; Van Essen et al., 2013).

• Brain Research through Advancing Innovate
Neurotechnologies: BRAIN (Devor et al., 2013).

• The Virtual Brain (TVB): an open-source neural dynamics
simulator using real anatomical connectivity (Jirsa et al., 2010).

• Human Brain Project (HBP): aimed to realistically simulate
the human brain in supercomputers (Miller, 2011).

Scaling compute power does not suffice for leveling up to the
whole-brain models. Another challenge is the integration of time
delays that become significant at the whole-brain level. In local
connections, the time delays are small enough to be ignored
(Jirsa et al., 2010) the transmission happens in a variety of finite
speeds from 1 to 10 m per second. As a result of this variation,
time delays between different brain parts are no longer negligible.
Additional spatial features emerge by the implementation of this
heterogeneity (Jirsa and Kelso, 2000; Petkoski and Jirsa, 2019).

Larger scale approaches could adapt neural mechanisms that
rely on intra-region interactions (da Silva, 1991) in order to
ditch the problems related to the synaptic level studies mentioned
earlier. The Virtual Brain (TVB) project is one of these initiatives.
TVB captures the network dynamics of the brain by stimulating
the neural population structural connectivity, the variant time
scales, and noise (Sanz Leon et al., 2013). TVB allows testing
subject-specific hypotheses as the structural connectivity is based
on individual DTI. The large-scale activity is an integration of
local neural masses connected through large-range dynamics. It
has a web platform GUI and can run on a personal computer and
has already implemented many types of dynamics for different
types of brain signals, namely EEG, MEG, BOLD, fMRI.

With models like TVB, one should note the shift in paradigm
from the fine-scale simulations like Blue Brain. Contrary to the
Blue Brain, the nodes consist of large groups of neurons (order
of a few millimeters), not one or a few neurons. Consequently,
the governing equations are the ones for deriving population
dynamics and statistical modes. Another essential point is that
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TVB allows researchers to study the brain’s phenomenology
parametrically. The following section is dedicated to such studies.

2. PHENOMENOLOGICAL MODELS

In contrast to realistic biological models of in-vivo events,
phenomenological3 models offer a way of qualitative simulation
of certain observable behaviors [or, as it is discussed inDynamical
Systems literature (Strogatz, 2018), phase trajectories]. The key
assumption is that although short- and long-range dynamics
depend on intricate biophysical events, the emerging observables
can be encoded in significantly lower dimensions. This
dimensionality reduction is thanks to dynamics that are
capable of constructing similar statistical features of interest.
Since a detailed enough biophysical model should eventually
exhibit the same collective statistics, one may argue that
the phenomenological models offer a detour to system-level
reconstruction by ditching lots of cellular and physiological
considerations.

Compared to detailed biophysical models, coarse-grained
approaches rely on a smaller set of biological constraints and
might be considered “too simplistic.” However, they are capable
of reconstructing many collective phenomena that are still
inaccessible to hyper-realistic simulations of neurons (Piccinini
et al., 2021). A famous example of emergence at this level
is synchronizations in cortex (Arenas et al., 2008). Moreover,
experiments show that the population-level dynamics that are
ignorant about the fine-grained detail better explain the behavior
(Briggman et al., 2005; Churchland et al., 2012).

The significance of phenomenological models in the
reconstruction of brain dynamics is also because of their
intuitiveness and reproducibility. They may demonstrate critical
properties of the neuronal population. An interesting example
is noise-driven dynamics of the brain, which is responsible for
multistability and criticality during resting state (Deco and Jirsa,
2012; Deco et al., 2017).

2.1. Problem Formulation, Data, and Tools
The idea of using phenomenological models for neural dynamics
is mainly motivated by the possibility of using tools from
dynamical system theory. The goal is to quantify the evolution
of a state space built upon the state variables of the system. For
example, if one can find two population variables (x, y) that
determine the state of a neural ensemble, then all the possible
pairs of x and ys form the basis for the state space of the system,
let us call this 2-dimensional space A. The state of this ensemble
at any given time t can always be expressed as a 2-D vector in
A. In mathematics, A is called a vector space defined by the sets
of differential equations that describe the evolution of x and y
in time. As an intuitive visualization of a vector space, imagine
a water swirl: each point of the surface of a water swirl can be

3Note that here, the notion of “phenomena” here is different than that used by
e.g., Revonsuo (2006) where phenomenological architecture and properties are
regarded as a representation of environment in the first-person mind (Smith,
2018), complementary to “physiological” architecture in the brain-as in Fingelkurts
et al. (2009).

represented by a vector with the magnitude and direction of local
velocity. One can see how at each point in this space, there is a
flow that pushes the system in a specific trajectory. Reproducing
features of the brain signals or identifying such a sparse state
space and the dynamics of a parsimonious set of state variables
allows for forecasting the fate of the neural ensemble in future
timesteps (Saggio and Jirsa, 2020). The evolution of the state
variables is described by differential equations. In what follows
in this section, some of the most prominent phenomenological
models and their findings are discussed.

Interactions and connectivity can be observed in a wide set
of settings from resting-state activity (Piccinini et al., 2021)
to task-specific experiments (Pillai and Jirsa, 2017) by various
imaging techniques including fMRI (Hutchison et al., 2013),
EEG (Atasoy et al., 2018), MEG (Tait et al., 2021), and Calcium
imaging (Abrevaya et al., 2021). In order to study segregation and
integration of dynamics, networks of brain connectivity need to
be constructed based on imaging data. Brain connectivity here
refers to either anatomical, functional, or effective connectivity
as described in Table 1. The anatomical connectivity is
based in the physiological components and the morphology
on fiber pathways, functional connectivity represents the
correlation of activity between different regions, and the effective
connectivity demonstrates the information flow (Sporns, 2007).
For a more comprehensive review of such networks, refer to
Wein et al. (2021).

2.1.1. Model Selection for Brain Connectivity
Deducing the effective connectivity of functionally-segregated
brain regions is crucial in developing bio-plausible and
explainable models. It is important to note that while anatomical
connectivity rests directly upon data and functional connectivity
is based on statistical dependencies in data space; effective
connectivity could only be estimated through the inversion of a
generative model. In other words, functional connectivity (FC) is
data-driven and effective connectivity (EC) is hypothesis-driven,
meaning that the FC is derived statistically from spatiotemporal
data while EC is not directly observable from imaging and
is parameterized as the causal relations among brain regions
for different tasks. To find the best descriptive parameters,
one needs to test various hypotheses. Table 1 shows examples
of formulating brain connectivities. Granger causality is only
a validation tool that is used both for optimizing functional
and effective connectivity (Valdes-Sosa et al., 2011). Dynamical
Causal Modeling (DCM), introduced in Friston et al. (2003),
quantitatively generates the connectivities that fit the observed
data by maximizing model evidence, aka marginal likelihood of
the model (Daunizeau et al., 2011).

DCM can be thought of as a method of finding the optimal
parameters of the causal relations that best fit the observed data.
The parameters of the connectivity network are (1) anatomical
and functional couplings, (2) induced effect of stimuli, and
(3) the parameters that describe the influence of the input
on the intrinsic couplings. The expectation-maximization (EM)
algorithm is the widely-used optimizer. However, EM is slow
for large, changing, and/or noisy networks. Zhuang et al. (2021)
showed Multiple-Shooting Adjoint Method for Whole-Brain
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TABLE 1 | Complex brain networks are measured through Structural Connectivity

(SC), Functional Connectivity (FC), or Effective Connectivity (EC). Computational

Connectomics is a common ways of formulating structural and functional

networks of the whole brain.

Connectivity Measure Formulation basis Features

Structural

Connectivity

Spatial config. of

white matter fibers

Static spatial images

(e.g., DTI)

Provides the

anatomical

architecture

Functional

Connectivity

Temporal

correlations of

regional activities

Spatio-temporal

images (e.g., fMRI,

EEG)

Can be static or

dynamic; Surampudi

et al. (2019). Prone

to spurious

connections

Effective

Connectivity

Causal interactions

of segregated

regions

Population-level

models validated by

hypothesis testing

[e.g., Granger

causality; Ding et al.

(2006) or DCM;

Friston et al. (2003)]

Rules out

non-causal

correlations

Together with theories of dynamical graphs, these representations can provide insights

into the collective faith of the system.

Dynamic outperforming EM on classification tasks while being
used for continuous and changing networks.

DCM is, in fact, a method for testing hypotheses and guiding
experiments, not a predictive or generative model by itself.
Models of the intra-connected regions can be built based on
the earlier subsections, e.g., neural mass model, neural fields,
or conductance-based models. For a review of such hybrid
approaches, see Moran et al. (2013).

Connectivity matrices introduced in Table 1 are the backbone
of the information process pipeline. That being said, this
parameter needs to be married to the dynamics of the states
in the brain. To date, a large portion of studies have focused
on mapping these networks onto the resting-state network, and
a lot of structure-function questions remained to be answered
by studying the task-related data (Cabral et al., 2017). In what
follows, the models that quantify these dynamics based on the
phenomenology of the behavior are discussed.

2.1.2. Generative Graph Models
Recent progress in the science of complex networks and
information theory has paved the way for analytical and
numerical models of structural and functional connectivity
(Lurie et al., 2020). The network approach to the neural
population is a conventional way to study neural processes
as information transmission in time-varying networks. This
analogy allows for examining the path and behavior of the system
in terms of different dynamical properties.

An insightful interplay of function vs. structure is observed
along the biologically plausible line of work by Deco and Jirsa
(2012). They reconstructed the emergence of equilibrium states
around multistable attractors and characteristic critical behavior
like scaling-law distribution of inter-brain pair correlations as
a function of global coupling parameters. Furthermore, new

studies show that synchrony not only depends on the topology
of the graph but also on its hysteresis (Qian et al., 2020).

Tools from graph theory and network science (Newman et al.,
2006) are used to formulate this relation. Spectral mapping
(Becker et al., 2018) and structure-function topological mapping
(Liang and Wang, 2017) are proofs of concept in this regard.
Generative graph models (traditionally developed by graph
theory such as the one for random graph introduced in Erdős and
Rényi, 1960) are principle tools of inference in this approach and
now have been enhanced by machine learning, see for example,
deep-network generative models in Kolda et al. (2014) and Li
et al. (2018). Simulations of brain network dynamics and study of
controllability (Kailath, 1980) has shown how differently regions
are optimized for diverse behavior (Tang et al., 2017).

2.2. Inspiration From Statistical Physics
and Nonlinear Dynamical Models
In addition to network science, another axis for interpreting
neural data is based on well-established tools initially developed
for parametrizing the time evolution of physical systems. Famous
examples of these systems include spin-glass (Deco et al.,
2012), different types of coupled oscillators (Cabral et al., 2014;
Abrevaya et al., 2021), and multistable and chaotic many-body
systems (Deco et al., 2017; Piccinini et al., 2021). This type of
modeling has already offered promising and intuitive results. In
the following subsections, we review some of the recent literature
on various methodologies.

2.2.1. Brain as a Complex System
It is not easy to define what a complex system is. Haken
(2006) defines the degree of complexity of a sequence as the
minimum length of the program and of the initial data that a
Turing machine (aka the universal computer) needs to produce
that sequence. Despite being a debatable definition, one can
conclude that according to it, the spatiotemporal dynamics of
the mammalian brain qualifies as a complex system (Hutchison
et al., 2011; Sforazzini et al., 2014). Therefore, one needs a
complex mechanism to reconstruct the neural dynamics. In the
following few subsections, we review candidate equations for the
oscillations in cortical network (Buzsáki and Draguhn, 2004).

2.2.1.1. Equilibrium Solutions and Deterministic Chaos
Whole-brain phenomenological models like the Virtual Brain
(Sanz Leon et al., 2013) are conventional generators for
reconstructing spontaneous brain activity. There are various
considerations to have in mind to choose the right model for
the right task. A major trade-off is between the complexity and
abstractiveness of the parameters (Breakspear, 2017). In other
words, to capture the behavior of detailed cytoarchitectural and
physiological make-up with a reasonably-parametrized model.
Another consideration is the incorporation of noise, which is a
requirement for multistable behavior (Piccinini et al., 2021) i.e.,
transitions between stable patterns of reverberating activity (aka
attractors) in a neural population in response to perturbation
(Kelso, 2012).
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2.2.1.2. Kuramoto
Kuramoto model is a mathematical descriptor of coupled
oscillators, one that can be written down as simple as a system of
ODEs solely based on sinusoidal interactions (Kuramoto, 1984;
Nakagawa and Kuramoto, 1994). Kuramoto model is widely
used in physics for studying synchronization phenomena. It
is relevant to neurobiological systems as it enables a phase
reduction approach: Neural populations can be regarded as
similar oscillators that are weakly coupled together. These
couplings are parameterized in the model. Kuramoto can be
extended to incorporate anatomical and effective connectivity
and can expand from a low-level model of few-neuron activity
to a stochastic population-level model with partial synchrony
and rich dynamical properties. One way to do that is to upgrade
the classic linear statistics to nonlinear Fokker-Planck equations
(Breakspear et al., 2010).

There is significant literature on Kuramoto models on neural
dynamics on different scales and levels. Strogatz (2000) is a
conceptual review of decades of research on the principles of the
general form of the Kuramoto model. Numerous studies have
found consistency between the results from Kuramoto and other
classical models in computational neuroscience like Wilson-
Cowan (Wilson and Cowan, 1972; Hoppensteadt and Izhikevich,
1998). Kuramoto model is frequently used for quantifying phase
synchrony and for controlling unwanted phase transitions in
neurological diseases like epileptic seizures and Parkinson’s
(Boaretto et al., 2019). Still, there are many multistability
questions regarding cognitive maladaptation yet to be explored,
potentially with the help of Kuramoto models and the maps of
effective connectivity. Anyaeji et al. (2021) is a review targeting
clinical researchers and psychiatrists. It is a good read for learning
about the current challenges that could be formulated as a
Kuramoto model. Kuramoto is also unique in adaptability to
different scales: from membrane resolution with each neuron
acting as a delayed oscillator (Hansel et al., 1995) to the social
setting where each subject couples with the other one in the dyad
by means of interpersonal interactions (Dumas et al., 2012).

2.2.1.3. Van der Pol
Another model relevant to neuroscience is the van der Pol
(VDP) oscillator which is probably the simplest relaxation
oscillator (Guckenheimer andHolmes, 2013) and a special case of
the FitzHugh-Nagumo model, which is, in turn, a simplification
of the Hodgkin-Huxley model (see Section 1.2) (FitzHugh,
1961). Through the Wilson-Cowan approximation (Kawahara,
1980), VDP can also model neural populations. For more
information about the Wilson-Cowan model, please see Section
1.3.2. Recently, Abrevaya et al. (2021) have used coupled VDP
oscillators to model a low-dimensional representation of neural
activity in different living organisms (larval zebrafish, rats, and
humans) measured by different brain imaging modalities, such as
calcium imaging (CaI) and fMRI. Besides proposing amethod for
inferring functional connectivity by using the coupling matrices
of the fitted models, it was demonstrated that dynamical systems
models could be a valuable resource of data augmentation for
spatiotemporal deep learning problems.

Looking at the brain as a complex system of interacting
oscillators is a detour for expanding the modeling to larger
organization scales. The emergent behavior of the system can be
described with “order parameters.” Although this is a description
with much lower dimensions than the biophysical equations,
it still expresses many remarkable phenomena such as phase
transitions, instabilities, multiple stable points, metastability,
and saddle points (Haken, 2006). However, parametrizing such
models is still an ongoing challenge, and many related studies
are limited to the resting-state network. The following section
reviews the prospects of recent data-driven methods and how
they can leverage the study of system-level behavior.

3. AGNOSTIC COMPUTATIONAL MODELS

Jim Garys’s framework (Hey, 2009) divides the history of science
into four paradigms. Since centuries ago, there have been
experimental and theoretical paradigms. Then the phenomena of
interest became too complicated to be quantified analytically, so
the computational paradigms started with the rise of numerical
estimations and simulations. Today, with the bursting advances
in recording, storage, and computation capacity of neural signals,
neuroscience is now exploring the fourth paradigm of Jim
Garys’s framework (Hey, 2009) i.e., data exploration in which the
scientific models are fit to the data by learning algorithms.

In the introduction, we reflected on how scientists should
not settle for mere prediction. While the literature on data-
driven methods is enormous, this review focuses mainly on
the strategies that help gain mechanistic insights rather than
those that reproduce data through operations that are difficult
to relate to biological knowledge. Instances of these unfavored
methods include strict generative adversarial networks with
uninterpretable latent spaces or black-box RNN with hard-
to-explain parameters. The following section categorizes these
methods into established and emerging techniques and discusses
some showcases.

3.1. Established Learning Models
Data-driven models have long been used in identifying structure-
function relations (similar to the ones mentioned in Table 1)
(McKeown et al., 1998; Koppe et al., 2019). The shift of studies
from single-neuron to networks of neurons, has accelerated in the
last decade. This trend is because relying on collective properties
of a population of neurons to infer behavior seems more
promising than reconstructing the physiological activity of single
neurons in hopes of achieving emergence. Yuste (2015) argues
that the mere representations that relate the state of individual
neurons to a higher level of activity have serious shortcomings
(Michaels et al., 2016). However, these shortcomings can be
addressed by incorporating temporal dynamics and collective
measures into the model. We review the models that satisfy this
consideration.

3.1.1. Dimensionality Reduction Techniques
Clustering and unsupervised learning are useful for mapping
inputs (X) to features (Y). Later, this set of (X,Y) can be
extrapolated to unseen data. There are various methods for
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identifying this mapping or, in other words, for approximating
this function. Principal Component Analysis (PCA) is a primary
one. PCA maps data onto a subspace with the maximal
variance (Markopoulos et al., 2014). It is a common method
of dimensionality reduction. However, the orthogonal set of
features found by this method are not necessarily statistically-
dependent. Therefore, they are not always helpful in finding
sources and effective connectivity. Alternatively, Independent
Component Analysis, commonly known as ICA, was introduced
as a solution to the Blind Source Separation (BSS) problem.
Each sample of the data is an ensemble of the state of different
sources. However, the characteristics of these sources are the
hidden variable (Pearlmutter and Parra, 1997). ICA is effective
in finding the related source as it maps the data onto the
feature space by minimizing the statistical independence for each
feature rather than by minimizing the variance. Conventional
use of component analysis is with fMRI and EEG recordings.
In each time window, each sensor receives a noisy mix of
activities in segregated brain regions. One is usually interested
in inferring effective connectivity based on such data. Having
a large number of electrodes around the scalp enables ICA
to identify the independent sources of activities and artifacts.
ICA algorithms come in different flavors depending on the
dataset and the property of interest. For example temporal-
(Calhoun et al., 2001), spatial- (McKeown et al., 1998), and
spatiotemporal-ICA (Wang et al., 2014; Goldhacker et al., 2017)
are tailored for different types of sampling. Hybrid approaches,
e.g., ICA amalgamated with structural equation modeling (SEM),
have shown better performance in given setups with less
prior knowledge than SEM alone (Rajapakse et al., 2006). The
interested reader is encouraged to refer to Calhoun and Adali
(2012) for a dedicated review of ICA methods.

3.1.2. Recurrent Neural Networks
Recurrent neural networks (RNN) are the Turing-complete
(Kilian and Siegelmann, 1996) algorithms for learning dynamics
and are widely used in computational neuroscience. In a nutshell,
RNN processes data by updating a “state vector.” The state vector
holds the memory across steps in the sequence. This state vector
contains long-term information of the sequence from the past
steps (LeCun et al., 2015).

Current studies validate diverse types of RNNs as promising
candidates for generating neural dynamics. Sherstinsky (2020)
shows how the implicit “additive model,” which evolves the
state signal, incorporates some of the interesting bio-dynamical
behavior such as saturation bounds and the effects of time
delays. Several studies modeled the cerebellum as an RNN
with granular (Buonomano and Mauk, 1994; Medina et al.,
2000; HofstoÈtter et al., 2002; Yamazaki and Tanaka, 2005)
or randomly-connected layers (Yamazaki and Tanaka, 2007).
Moreover, similarities of performance and adaptability to limited
computational power (as in biological systems) are observed both
in recurrent convolutional neural networks and in the human
visual cortex (Spoerer et al., 2020).

RNNs vary greatly in architecture. The choice of architecture
can be implied by the output of interest (for example text
Sutskever et al., 2011 vs. natural scenes Socher et al., 2011)
or the approaches to overcome the problem with vanishing

and exploding gradient (e.g., long short-term memory (LSTM)
Hochreiter and Schmidhuber, 1997, hierarchical Hihi and
Bengio, 1995, or gated RNNs Chung et al., 2014).

3.1.2.1. Hopfield
Hopfield network (Hopfield, 1982) is a type of RNN inspired
by the dynamics of Ising model (Brush, 1967; Little, 1974).
In the original Hopfield mechanism, the units are threshold
(McCulloch and Pitts, 1943) neurons, connected in a recurrent
fashion. The state of the system is described by a vector V which
represents the states of all units. In other words, the network is
in fact, an undirected graph of artificial neurons. The strength
of connection between units i and j is described by wij which is
trained by a given learning rule i.e., commonly Storkey (Storkey,
1997) or Hebbian rule (stating that “neurons that fire together,
wire together”) (Hebb, 1949). After the training, these weights
are set, and an energy landscape is defined as a function of V .
The system evolves to minimize the energy and moves toward
the basin of the closest attractor. This landscape can exhibit the
stability and function of the network (Yan et al., 2013).

The Hopfield model can accommodate some biological
assumptions and work in tandem with cortical realizations.
Similar to the human brain, Hopfield connections are mostly
symmetric. Most importantly, since its appearance, it has been
widely used for replicating associative memory. However, soon
it was revealed that other dynamical phenomena like cortical
oscillations and stochastic activity (Wang, 2010) need to be
incorporated in order to capture a comprehensive image of
cognition.

3.1.2.2. LSTM
In addition to the problem of vanishing and exploding gradients,
other pitfalls also demand careful architecture adjustment.
Early in the history of deep learning, RNNs demonstrated
poor performance on sequences with long-term dependencies
(Schmidhuber, 1992). Long short term memory (LSTM) is
specifically designed to resolve this problem. The principle
difference of LSTM and vanilla RNN is that instead of a
single recurrent layer, it has a “cell” composed of four layers
that interact with each other through three gates: input gate,
output gate and forget gate. These gates control the flow of
old and new information in the “cell state” (Hochreiter and
Schmidhuber, 1997). On certain scales of computation, LSTM
still has considerable performance compared to trendy sequential
models like transformers.

3.1.2.3. Reservoir Computing
A reservoir computer (RC) (Maass et al., 2002) is an RNN with a
reservoir of interconnected spiking neurons. Broadly speaking,
the distinction of RC among RNNs, in general, is the absence
of granular layers between input and output. RCs themselves
are dynamical systems that help learn the dynamics of data.
Traditionally, the units of a reservoir have nonlinear activation
functions that allow them to be universal approximators.
Gauthier et al. (2021) show that this nonlinearity can be
consolidated in an equivalent nonlinear vector autoregressor.
With the nonlinear activation function out of the picture, the
required computation, data, and metaparameter optimization
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complexity are significantly reduced, the interpretability is
consequently improved while the performance stays the same.

3.1.2.4. Liquid State Machine
LSM can be thought of as an RNN soup that maps the input
data to a higher dimension that more explicitly represents the
features. The word liquid come from the analogy of a stone (here
an input) dropping into the water (here a spiking network) and
propagating waves. LSM maintains intrinsic memory and can
be simplified so much that it processes real-time data (Polepalli
et al., 2016). Zoubi et al. (2018) shows LSM performs notably
in building latent space of EEG data (extendable to fMRI). As
for the faithfulness to the biological truth, Several studies argue
that LSM surpasses RNNs with granular layers in matching
organization and circuitry of cerebellum (Yamazaki and Tanaka,
2007) and cerebral cortex (Maass et al., 2002). Lechner et al.
(2019) demonstrate the superiority of a biologically-designed
LTM on given accuracy benchmarks to other ANNs, including
LSTM.

3.1.2.5. Echo State Network
ESN works as a tunable frequency generator developed by Maass
et al. (2002) at the same time and with similar fundamentals
as LSM but independent of that. The idea is to have the input
induce nonlinear responses in the neurons of a large reservoir
and train linear combinations of these responses to produce
the desired output. ESN used to be one of the gold standards
of nonlinear dynamics modeling before 2010 (Jaeger and Haas,
2004; Jaeger et al., 2007). The first significance of ESN is due
to training with linear regression, enabling easy implementation
and freedom from gradient decent problems (e.g., bifurcation
and vanishing/exploding gradient). With the vast development of
deep learning, this feature is no longer a remarkable advantage.
However, ESN is still a plausible architecture for non-digital
computation substrates such as neuromorphic hardware (Jaeger,
2007; Bürger et al., 2015).

3.1.2.6. Physically-Informed RNN
A prominent factor in determining the dynamical profile of
the brain is the intrinsic time delays (Chang et al., 2018).
Integrating these time delays into artificial networks was
initially an inspiration from neuroscience for AI. Later,
they came back as a successful tool for integrated sequence
modeling for multiple populations. In the last decade,
RNN has been used for reconstructing neural dynamics via
interpretable latent space in different recording modalities
such as fMRI (Koppe et al., 2019) and Calcium imaging
(Abrevaya et al., 2021).

Continuity of time is another extension that can make RNNs
more compatible with various forms of sampling and thus neural
dynamics from spikes to oscillations. Continous time RNNs
(CT-RNNs) are RNNs with activation functions made up of
differential equations. They have been proved to be universal
function approximators (Funahashi and Nakamura, 1993) and
have surfaced recently in the literature as reservoir computers
(Verstraeten et al., 2007; Gauthier et al., 2021) and liquid time-
constant neural networks (Hasani et al., 2020).

Essentially, finding the optimal architecture and
hyperparameters for a given problem does not have a
straightforward recipe. The loss function in a deep neural
network can be arbitrarily complex and usually takes more than a
convex optimization. Li et al. (2018) shows how parameters of the
network can change the loss landscape and trainability. Another
more specific issue to the algorithms trained on a temporal
sequence is catastrophic forgetting and attention bottleneck.
These complications arise from the limitation of memory and
attention to the past time steps. New attention models such
as transformers and recurrent independent mechanisms (see
Sections 3.1.4, 3.1.5, respectively) are specifically built to address
these issues. As memory-enhanced components, RNN layers
appear in other deep and shallow architectures with sequential
data as input, including encoder-decoders.

3.1.3. Variational Autoencoder
Variational autoencoder (VAE for short) is a type of neural
network that encodes the ground truth as the input onto a
“latent space” and then decodes that space for reconstructing the
input (Kingma andWelling, 2013). The network is parameterized
by minimizing the reconstruction loss, which is, in this case,
a metric of information gained by a metric called Kullback-
Leibler divergence (Kullback and Leibler, 1951). This metric is
also known as variational free energy or evidence lower bound
(ELBO). It is the same objective function used in dynamic causal
modeling (Winn et al., 2005).

An example of VAE used for regenerating dynamics is by
Perl et al. (2020) in which the coupling dynamics of the whole
brain and the transitions between the states of wake-sleep
progression is generated. The goal is to find low (e.g., as low as 2-)
dimensional manifolds that can capture the signature structure-
function relationship that demonstrates the stage in the wake-
sleep cycle (Vincent et al., 2007; Barttfeld et al., 2015) and the
parameters of generic coupled Stuart-Landau oscillators as in
Deco et al. (2017). An idea for regenerating dynamics is to use
a deep-network embedded differential equations (as in Section
3.2.2) in the latent VAE structure (Chen et al., 2018).

3.1.4. Transformers
The transformer is a relatively new class of ML models that
recently has shown state-of-the-art performance on sequence
modeling such as natural language processing (NLP) field of
research (Vaswani et al., 2017). Beyond NLP, this architecture
demonstrates good performance on a wide variety of data,
including brain imaging (Kostas et al., 2021; Song et al., 2021;
Sun et al., 2021). Similar to RNNs, transformers aim to process
sequential data such as natural language or temporal signals.
It differs from the RNN paradigm because it does not process
the data sequentially; instead, it looks at whole sequences
with a mechanism called “attention,” and by doing so, it
alleviates the problem of forgetting long dependencies, which
is common in RNN and LSTMs. This mechanism can make
both long- and short-term connections between points in the
sequence and prioritize them. Transformers are widely used for
generating foundation models (i.e., models that are pretrained on
big data Bommasani et al., 2021) and they can outperform
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recurrent networks like LSTM with large models/data
(Kaplan et al., 2020).

3.1.5. Recurrent Independent Mechanisms
Recurrent independent mechanisms (RIM) are a form of
attention model that learns and combines independent
mechanisms to boost generalizability and robustness in
executing a task. The task in the sense of signal processing
can be generating a sequence based on the observed data. The
hypothesis is that the dynamics can be learned as a sparse
modular structure. In this recurrent architecture, each module
independently specializes in a particular mechanism. Then all
the RIMs compete through an attention bottleneck so that only
the most relevant mechanisms get activated to communicate
sparsely with others to perform the task (Goyal et al., 2020).

3.2. Hybrid Approaches, Scientific ML, and
the New Frontiers
The independence from prior knowledge sounds interesting as
it frees the methodology from inductive biases and makes the
models more generalizable by definition. However, this virtue
comes at the cost of a need for large training sets. In other words,
the trade-off of bias and computation should be considered:
Applying lots of prior knowledge and inductive biases result in
a lesser need for data and computation. In contrast, little to no
inductive bias calls for a great need for big and curated data. It
is true that with the advancement of recording techniques, the
scarcity of data is less of a problem than it was before, but even
with all these advances, having clean and sufficiently largemedical
dataset that helps with the problem in hand is not guaranteed.

Total reliance on data is especially questionable when the data
has significant complications (as discussed in the introduction).
Opting for a methodology guided by patterns rather than
prior knowledge is problematic in particular when the principle
patterns of data arise from uninteresting phenomena such as the
particular way a given facility may print out the brain images
(Ng, 2021).

The thirst for data aside, one of the prominent drawbacks
of agnostic modeling and ML, in particular, is that they are
famous for providing opaque blackbox solutions, meaning that
by leaving biological priors out of the picture, the explainability
of the outcome is weak. Lack of explainability is a pet peeve for
people in science as they are interested in both prediction and the
reasoning behind those predictions.

In addition to the implicit assumption of the adequacy of
training data, the explicit assumption that these models rely
on is that the solution is parsimonious, i.e., there are few
descriptive parameters. Despite some possibility of error with this
assumption in given problems (Su et al., 2017), it is particularly
useful in having arbitrarily less complicated descriptions that are
generalizable, interpretable, and less prone to overfitting.

The following sections describe general function
approximators that could identify data dynamics without
injecting any prior knowledge about the system. They could
provide a perfect solution for a well-observed system with
unknown dynamics. Although some of neural ODE methods
have already been applied to fMRI and EEG data (Zhuang et al.,

2021), other deep architectures such as GOKU-net and latent
ODEs are new frontiers.

3.2.1. Sparse Identification of Nonlinear Dynamics
Kaheman et al. (2020) proposed a novel approach for quantifying
underlying brain dynamics. The key assumption is that the
governing multi-dimensional principles can be derived by a
system of equations describing the first-order rate of change.
In order to use sparse regression methods such as Sparse
Identification of Nonlinear Dynamics (SINDy), one needs to
precisely specify the set of parsimonious state variables (Quade
et al., 2018). That being said, SINDy does not work for small
datasets. If it is given fewer data than possible terms, the
system of governing equations is underspecified. Therefore, the
underfitting as a result of insufficient training data is a secondary
problem. One approach to address this issue is incorporating the
known terms and dismissing the learning for those parts. An
example is discussed in Section 3.2.3.

3.2.2. Differential Equations With Deep Neural

Networks
A relatively new class of dynamical frameworks combines
differential equations with machine learning in a more explicit
fashion. It is noteworthy to mention that by neural ODE
here, we are referring to the term used in Chen et al. (2018).
Neural ODEs are a family of deep neural networks that
learn the governing differential equations of the system, not
to be confused with the differential equations of neuronal
dynamics. This class of frameworks has been used to model
the dynamics of time-varying signals. They begin by assuming
that the underlying dynamics follow a differential equation.
They can then be used to discover the parameters of that
differential equation by using standard optimization of deep
neural networks. As is evident, such formulations are quite useful
in modeling and analyzing brain dynamics, especially using deep
networks. Below we describe some of the relevant works in
this subfield.

3.2.2.1. Neural Ordinary Differential Equations
Combining ordinary differential equations (ODEs) with deep
neural networks has recently emerged as a feasible method of
incorporating differentiable physics into machine learning. A
Neural Ordinary Differential Equation (Neural ODE) (Chen
et al., 2018) uses a parametric model as the differential function
in an ODE. This architecture can learn the dynamics of a
process without explicitly stating the differential function, as
has been done previously in different fields. Instead, standard
deep learning optimization techniques could be used to train a
parameterized differential function that can accurately describe
the dynamics of a system. In the recent past, this has
been used to infer the dynamics of various time-varying
signals with practical applications (Chen et al., 2018; Jia and
Benson, 2019; Kanaa et al., 2019; Rubanova et al., 2019; Yildiz
et al., 2019; Kidger et al., 2020; Li et al., 2020; Liu et al.,
2020).
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3.2.2.2. Latent ODE
A dynamic model such as the Neural ODE can be incorporated in
an encoder-decoder framework, resembling a Variational Auto-
Encoder, as mentioned in Chen et al. (2018). Suchmodels assume
that latent variables can capture the dynamics of the observed
data. Previous works (Chen et al., 2018; Kanaa et al., 2019;
Rubanova et al., 2019; Yildiz et al., 2019) have successfully used
this framework to define and train a generative model on time
series data.

3.2.2.3. Stochastic Neural ODEs
Parametric models can also be incorporated into stochastic
differential equations to make Neural Stochastic Differential
Equations (Neural SDEs) (Li et al., 2020; Liu et al., 2020).
Prior works have also introduced discontinuous jumps (Jia and
Benson, 2019) in the differential equations.

3.2.2.4. Neural Controlled Differential Equations
Furthermore, latent ODE models can add another layer
of abstraction. The observed data is assumed to be
regularly/irregularly sampled from a continuous stream of
data, following the dynamics described by a continuously
changing hidden state. Both the dynamics of the hidden state and
the relationship between the interpolated observations and the
hidden state can be described by neural networks. Such systems
are called Neural Control Differential Equations (Neural CDE)
(Kidger et al., 2020). Broadly speaking, they are the continuous
equivalent of RNNs.

3.2.3. Differential Equations Enhanced by Deep

Neural Networks
The above methods use deep neural networks to define
the differential function in ordinary differential equations. In
contrast, UDEs and GOKU-nets (described below) take the help
of deep neural networks to enhance differential equations. UDEs
replace only the unknown parts of a known partial differential
equation, while GOKU-nets use explicit differential equations as
part of deep neural network pipelines.

3.2.3.1. Universal Differential Equations
Universal Differential Equations (UDE) offer an alternate
way of incorporating neural networks into differential
equations while accounting for prior knowledge. In their
seminal work, Rackauckas et al. (2020) demonstrate
how it is possible to aid a partial differential equation
model by learning the unknown terms with universal
approximators such as neural networks. Furthermore, they
show how by combining this approach with a symbolic
regression, such as SINDy, these models can accelerate
the discovery of dynamics in limited data with significant
accuracy.

3.2.3.2. Generative ODE Modeling With Known Unknowns
Another promising approach is the case of the Generative
ODE Modeling with Known Unknowns, aka GOKU-nets
(Linial et al., 2021). GOKU-net consists of a variational
autoencoder structure with ODEs inside. In contrast with
Latent ODEs, here, the ODEs are not parameterized but

given explicit forms. Hence, it is possible to use some prior
knowledge of the dynamics governing the system, such as
in SINDy and UDEs, but there is no need to have direct
observations of the state variables as in those cases. For
example, one could hypothesize that the latent dynamics of
a system follow some particular differential model such as
Kuramoto or van der Pol. This model then jointly learns the
transformation from the data space to a lower-dimensional
feature representation and the parameters of the explicit
differential equation.

The machine learning techniques are now routinely used for
classification and regression of brain states (see Wein et al.,
2021 for a review). However, they have much more potential
than black-box, data-intensive classifiers. This is because new
sequential models are sometimes designed to identify the missing
pieces of the puzzle of dynamics. They can also act as generative
models and provide a broad potential for testing biophysical
and system-level hypotheses. Some of the methods introduced
in this section are explained in detail in Kutz (2013) textbook.
Moreover, extremely helpful tutorials can be found in Brunton
(2011) YouTubeTM channel.

4. CONCLUSION

The key purpose of this review was to dive into samples of
already popular paradigms or the ones authors found most
promising for reconstructing neural dynamics with all the special
considerations. To achieve this, we sorted the computational
models with respect to two indicators: the scale of organization
and the level of abstraction (Figure 3).

The scope of our study is broadly generative models of
neural dynamics in biophysics, complex systems, and AI with
some limitations. This paper is an interdisciplinary study that
covers a time span from the mid-twentieth century when
the pioneer models like Wilson-Cowan (Wilson and Cowan,
1972), and Hodgkin-Huxley (Hodgkin and Huxley, 1952)
arose, up until the recent decade when gigantic brain atlas
initiatives, groundbreaking research in ML, and unprecedented
computation power became available. Given the rate of
publication in the related fields, a systematic review was
impossible. Therefore, this paper is a starting point for gaining an
eagle-eye view of the current landscape. It is up to the reader to
adjust the model scale and abstraction depending on the problem
at hand (see Figure 3).

There is established work on formal hypothesis testing and
model selection procedure for generating effective connectivity.
While the advances in ML literature enable new frontiers
of generative models, it is crucial to be aware of standard
practices in generative modeling, such as Bayesian model
reduction for selecting the model with the priors that
fit the data best (Friston et al., 2003). Model inversion
is a crucial procedure for model validation and can be
helpful in opening the black box of deep neural networks
by computing the model evidence and posteriors based on
the prior parameters suggested by predominantly data-driven
models. Furthermore, the model inversion can be extended to
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large, continuous, and noisy systems by improving parameter
estimation using new optimization tools (Zhuang et al.,
2021).

We emphasized the distinctiveness of the problems in
computational neuroscience and cognitive science. One key
factor is the trade-off of complexity and inductive bias with
the availability of data and prior knowledge of the system.
While there is still no ultimate recipe yet, hybrid methods could
simultaneously tackle explainability, interpretability, plausibility,
and generalizability.
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