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Background: Salvianolic acid A (Sal A), a natural polyphenol compound extracted from
Radix Salvia miltiorrhiza (known as Danshen in China), possesses a variety of potential
pharmacological activities. The aim of this study is to determine mechanisms of
hepatoprotective effects of Sal A against lipotoxicity both in cultured hepatocytes and
in a mouse model of fatty liver disease.

Methods: High-fat and high-carbohydrate diet (HFCD)-fed C57BL/6J mice were
employed to establish hepatic lipotoxicity in a mouse model. Two doses of Sal A were
administered every other day via intraperitoneal injection (20 and 40mg/kg BW, respectively).
After a 10-week intervention, liver injury was detected by immunohistochemical and
biochemical analyses. For in vitro studies, we used HepG2, a human hepatoma cell line,
and exposed them to palmitic acid to induce lipotoxicity. The protective effects of Sal A on
palmitic acid-induced lipotoxicity were examined in Sal A-pretreated HepG2 cells.

Results: Sal A treatments attenuated body weight gain, liver injury, and hepatic steatosis
in mice exposed to HFCD. Sal A pretreatments ameliorated palmitic acid-induced cell
death but did not reverse effects of HFCD- or palmitate-induced activations of JNK, ERK1/
2, and PKA. Induction of p38 phosphorylation was significantly reversed by Sal A in HFCD-
fed mice but not in palmitate-treated HepG2 cells. However, Sal A rescued hepatic AMP-
activated protein kinase (AMPK) suppression and sirtuin 1 (SIRT1) downregulation by both
HFCD feeding in mice and exposure to palmitate in HepG2 cells. Sal A dose-dependently
up-regulated p-AMPK and SIRT1 protein levels. Importantly, siRNA silencing of either
AMPK or SIRT1 gene expression abolished the protective effects of Sal A on lipotoxicity.
Moreover, while AMPK silencing blocked Sal A-induced SIRT1, silencing of SIRT1 had no
effect on Sal A-triggered AMPK activation, suggesting SIRT1 upregulation by Sal A is
mediated by AMPK activation.
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Conclusion: Our data uncover a novel mechanism for hepatoprotective effects of Sal A
against lipotoxicity both in livers from HFCD-fed mice and palmitic acid-treated
hepatocytes.

Keywords: salvianolic acid A, adenosine monophosphate activated protein kinase, sirtuin 1, lipotoxicity, non-
alcoholic fatty liver disease

INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent
liver disease and becoming a new health challenge with the
prevalence of 20% in the general population, up to 70% in
patients with type 2 diabetes, and 65–85% in patients with
obesity (Lobstein et al., 2004; Chalasani et al., 2012). More
than one-third of American adults are estimated to have
NAFLD, and the prevalence of NAFLD in China has increased
to 15–40% (Loomba and Sanyal, 2013; Fan et al., 2017). NAFLD
represents a continuum of hepatic injuries, which progress from
simple hepatic steatosis to nonalcoholic steatohepatitis, with
some patients even ultimately progressing to fibrosis, cirrhosis,
and liver failure (Angulo, 2002).

Currently, there is no Food and Drug Administration (FDA)-
approved drug for NAFLD. Modifying lifestyle, such as weight
loss by a combination of decreased caloric intake and increased
physical activity, is an effective treatment of NAFLD and is also
the most common recommendation by clinicians. However,
lifestyle modifications remain difficult to achieve for most
patients. Therefore, identifying highly effectual and safe small
molecules based on the therapeutic targets of NAFLD is urgently
needed and a high public health priority.

Radix Salvia miltiorrhiza, which is also termed as “Danshen”
in China, is a traditional herb, which has been widely used for the
treatment of cardiovascular diseases (Lin et al., 1996). We
previously reported that Danshen extracts conferred
hepatoprotective activities that involved multiple mechanisms,
such as attenuating lipids accumulation in the liver, stimulating
fatty acid catabolism, and alleviating cellular oxidative stress-
induced liver injury (Ding et al., 2017; Liu et al., 2017; Ren et al.,
2017). In addition, Danshen extracts exerted a strong preventive
role against 4-hydroxynonenal-induced hepatotoxicity in
alcohol-administered mice (Ding et al., 2017). Salvianolic acid
A (Sal A) is a key bioactive component isolated from the root of
Danshen (Lian-Niang et al., 1984). Sal A is a phenolic carboxylic
acid derivative with a chemical formula name of (2R)-3-(3, 4-
Dihydroxyphenyl)-2-[(E)-3-[2-[(E)-2-(3, 4-dihydroxyphenyl)
ethenyl]-3, 4-dihydroxyphenyl] prop-2-enoyl] oxypropanoic
acid (Oh et al., 2011). Several studies have reported that Sal A
possesses a variety of pharmacological properties, including
anti-oxidant, anti-inflammatory, anti-fibrotic, and anti-
carcinogenic activities (Zhang et al., 2014; Dai et al., 2015;
Chien et al., 2016). Sal A has been reported to protect against
high-fat diet (HFD)-induced NAFLD by ameliorating hepatic
lipid accumulation and inflammation (Ding et al., 2016).
Additionally, Sal A was reported to prevent the pathological
progression of hepatic fibrosis in HFD-fed and streptozocin-
induced diabetic rats (Qiang et al., 2014).

Lipotoxicity, termed as cellular dysfunction induced by an
ectopic deposition of lipids in non-adipose tissues, such as
hepatocytes, skeletal muscle cells, and pancreatic β-cells, plays
an important role in the pathological progression of NAFLD (van
Herpen and Schrauwen-Hinderling, 2008). Palmitate acid (16:0),
the most abundant saturated fatty acid in foods and inside of the
body, is commonly used as an inducer of hepatic lipotoxicity in
cultured cells (Ricchi et al., 2009). Endoplasmic reticulum stress
and oxidative stress are two well-established mechanisms
underlying palmitic acid-triggered lipotoxicity in a variety of
cell types, including hepatocytes. However, up-regulation/
activation of several other molecular targets may also protect
against hepatic lipotoxicity. For instance, adenosine
monophosphate activated protein kinase (AMPK) is down-
regulated in both HFD-induced liver injury and saturated fatty
acids (SFAs)-induced hepatocytes cell death (You et al., 2004;
Meng et al., 2015). Moreover, activation of AMPK by either
chemical activators or calorie restriction markedly protected
against hepatic lipotoxicity in both experimental animal liver
and cultured hepatocytes (Chen et al., 2018; He et al., 2020). In
addition, up-regulation of SIRT1 played a potential therapeutic
role against palmitate-induced hepatic cell death (Li et al., 2017).
However, little is known about specific mechanisms mediating
the protective effects of Sal A on lipotoxicity-induced liver injury.

In the present study, we investigated the protective
mechanisms of Sal A against hepato-lipotoxicity in high-fat
and high-carbohydrate diet (HFCD)-fed mice and palmitic
acid-treated HepG2 cells. We provided strong evidence that
Sal A reversed HFCD-induced liver injury and palmitate-
triggered hepatocytes’ cell death. We furthered uncovered that
the AMPK-SIRT1 pathway mediates anti-lipotoxic effects of Sal
A. The present study contributed additional knowledge about
mechanisms contributing to the known beneficial effects of Sal A.

MATERIALS AND METHODS

Animal Model and Experimental Protocol
All experiments described in this study were performed in
accordance with the guidelines for animal experiments
released by the National Institute of Animal Health. This
study was approved by the Animal Ethic Committee of
Zhejiang Chinese Medical University. C57BL/6J mice (8-week-
old, male) were group-housed in cages in a temperature-
controlled vivarium (22 ± 2°C) and maintained on a 12-h
light/dark cycle. Animals were divided into four groups (n �
12 per group) as follows: normal diet (ND) group, HFCD group,
HFCD with 20 mg/kg BW Sal A (HFCD-LS) group, and HFCD
with 40 mg/kg BW Sal A (HFCD-HS) group. ND group were

Frontiers in Pharmacology | www.frontiersin.org November 2020 | Volume 11 | Article 5609052

Li et al. Salvianolic acid A protects hepatolipotoxicity

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


maintained on an AIN-93G diet. HFCD group were maintained
on a high-fat diet (60% fat, D12492, Research Diets, New
Brunswick, NJ) and given water enriched with high-fructose
corn syrup equivalent. A total of 42 g/L of carbohydrates was
mixed in drinking water at a ratio of 55% fructose (Acros
Organics, Morris Plains, NJ) and 45% sucrose (Sigma-Aldrich,
St. Louis, MO) by weight. Sal A was dissolved in sterilized
physiologic saline with a stock concentration of 20 mg/ml. A
total volume of 100 μl Sal A diluted solution or sterilized
physiologic saline was given by intraperitoneal injection every
other day, respectively. Animals were provided ad libitum access
to these diets and water for 10 weeks. Food and water intake were
recorded daily, and body weight was recorded weekly. At the end
of the experiment, mice were anesthetized with sodium
pentobarbital (50 mg/kg BW) after an overnight fast. Plasma
and liver tissues were harvested for further assays. Alanine
aminotransferase (ALT), triglyceride (TG), glycerol, free fatty
acids (FFA), total cholesterol, high-density lipoprotein-
cholesterol (HDL-C), and low-density lipoprotein-cholesterol
(LDL-C) levels were determined by commercial kits from
Nanjing Jiancheng Bioengineering Institute (Nanjing, China)
according to the manufacturer’s instructions. Small pieces of
fresh liver were fixed immediately in 10% buffered formalin.
After paraffin embedding, 5 μm sections were deparaffinized in
xylene and were rehydrated through a series of decreasing
concentrations of ethanol. Sections were stained with
hematoxylin and eosin (H&E) using a commercial kit
(Nanjing Jiancheng Bioengineering Institute, Nanjing, China).
Alternatively, portions of fresh liver were flash-frozen and
cryostat sections were cut and prepared for staining with Oil
Red O. Pathological sections were observed under Nikon eclipse
Ti-S fluorescence microscope (Nikon, Tokyo, Japan).

Chemicals
Sal A was obtained from Chengdu mansite bio-technology
solarbio Co., Ltd (Sichuan, China). Palmitic acid-BSA
conjugates were prepared as described previously (Li et al.,
2014). Briefly, palmitic acid (Sigma Aldrich, St. Louis, MO)
was dissolved in ethanol (Sigma Aldrich, St. Louis, MO) and
saponified with sodium hydroxide. The sodium salt was dried, re-
suspended in saline, and heated at 80°C until completely
dissolved. While the solution was still warm, isovolumetric
20% (w/v) BSA (Sigma Aldrich, St. Louis, MO) was added and
the mixture was stirred at 50°C for 4 h to allow palmitic acid to
bind to BSA. The palmitic acid-BSA complex (3 mmol/L fatty
acid: 1.5 mmol/L BSA; molar ratio, 2:1) was then sterilized by
filtering and aliquoted for future use. In all the experiments, the
control group was exposed to an equal amount of solvent (e.g.,
BSA, DMSO). DMSO was obtained from Sigma Aldrich (St.
Louis, MO).

Cell Culture
The human hepatoma cell line (HepG2) was obtained from
Shanghai Institute of Cell Bank (Shanghai, China). Cells were
cultured in Dulbecco’s Modified Eagle Medium (DMEM,
Thermo Scientific Inc., VA) containing 10% (v/v) fetal bovine
serum (FBS, Biological Industries, Israel), 100 U/ml penicillin and

streptomycin (Thermo Scientific Inc, VA) at 37°C in a humidified
O2/CO2 (19:1) atmosphere. Cells were seeded in 24- or 96-well
culture plate with 1 ml and 200 μl medium in final, respectively.
Sal A was dissolved in DMEM with a stock concentration of
10 mM. A total volume of 10 μl Sal A diluted solution was added
to the cells.

RNA Interference
Cells were transfected with special siRNA for human SIRT1 and
AMPK (Santa Cruz Biotechnology, CA) using Lipofectamine
2000 (Thermo Scientific Inc., VA) according to the
manufacturer’s instructions. In the control group, cells were
transfected with scrambled siRNA (Santa Cruz Biotechnology,
CA). Gene silencing efficiency was verified by detecting the
protein abundance with immunoblotting.

Cell Death Assays
Cell death was determined by measurements of lactate
dehydrogenase (LDH) release, the 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) test, propidium iodide
(PI) staining, and Hoechst staining. For LDH assay, culture
medium was collected and analyzed by LDH assay kit
(Thermo Scientific Inc., VA) according to the manufacturer’s
instructions. For MTT test, cells were incubated with 450 μM
MTT (Sigma Aldrich, St. Louis, MO) for 3 h and then centrifuged
at 1800 rpm for 10 min at room temperature to remove the
supernatant. Afterwards, formazan was extracted from pelleted
cells with 600 μl of DMSO for 15 min. The amount of MTT-
formazan was determined by 570 nm absorbance with 655 nm as
the wavelength reference. For PI staining, cells were trypsinized
and stained with PI staining solution (BD Pharmingen, CA)
according to the manufacturer’s instructions. Fluorescence was
measured by flow cytometry (Accuri c6, BD, CA). For Hoechst
staining, cells were stained with Hoechst staining solution
(Beyotime Biotechnology, Nantong, China) according to the
manufacturer’s instructions after the indicated treatments. The
nuclear morphology was imaged by Nikon eclipse Ti-S
fluorescence microscope (Nikon, Tokyo, Japan).

Western-Blot Analysis
Western-blot was performed as described previously (Dou et al.,
2018) and the following antibodies were used: phosphorylated-
SAPK/JNK (Thr183/Tyr185) rabbit antibody, SAPK/JNK rabbit
antibody, phosphorylated-p44/42 MAPK (Erk1/2) (Thr202/
Tyr204) rabbit antibody, p44/42 MAPK (Erk1/2) rabbit
antibody, phosphorylated-p38 MAPK (Thr180/Tyr182) rabbit
antibody, p38 MAPK rabbit antibody, phosphorylated-PKA
(Thr197) rabbit antibody, PKA rabbit antibody,
phosphorylated-AMPKα (Thr172) rabbit antibody, AMPKα
rabbit antibody, SIRT1 rabbit antibody, and GAPDH rabbit
antibody (Cell Signaling Technology, Danvers, MA). The
antibodies were diluted according to the manufacturer’s
instructions at 1: 5,000 for GAPDH and 1:1,000 for the others.

Statistical Analysis
All experiments were performed in at least three independent
experiments and data were expressed as mean ± SD. Student’s
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t-test was used for comparing two unpaired groups, and one-
way ANOVA was employed for three or more groups,
followed by the post-hoc test with Fisher’s least significant

difference (LSD). All statistical analyses were executed using
SPSS 17.0. Differences were considered statistically significant
when p < 0.05.

FIGURE 1 | Sal A treatment alleviated HFCD-induced increase in body weight and plasma lipids content in C57bl/6 mice. (A) Chemical structures of the Sal
A. (B) Morphological photographs of the mice. (C) Dynamic alteration of body weight. (D) Body weight gain. (E) Daily food intake. (F) Plasma triglycerides (TG)
level. (G) Plasma glycerol level. (H) Plasma free fatty acids (FFA) level. (I) Plasma total cholesterol level. (J) Plasma high-density lipoprotein-cholesterol (HDL-C)
level. (K) plasma low-density lipoprotein-cholesterol (LDL-C) level. All values are denoted as means ± SD. The values with different superscripts are
significantly different at p < 0.05. # Comparisons with normal diet (ND) group; * Comparisons with high-fat diet (HFCD) group. All groups contain 12 animals
(n � 12).
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RESULTS

Sal A administration ameliorates HFCD-induced body weight
gain and increase of plasma lipids.

The chemical structure of Sal A is shown in Figure 1A. After a
13-week HFCD feeding, the body size of mice in HFCD group
was obviously larger than that in ND group, whereas Sal A
supplementation significantly reversed such alternation

(Figure 1B). We did not observe any apparent changes in skin
color and hair count among all the groups. In comparison to ND
group, mice in HFCD group manifested apparent mobility
reduction, which was improved by Sal A administration. Sal A
significantly improved HFCD-induced body weight gain (p <
0.05, Figures 1C,D) without affecting food intake (p > 0.05,
Figure 1E). HFCD-induced increases of plasma TG, glycerol, and
FFA were significantly rescued by Sal A administration (p < 0.05,

Figure 2 | Sal A treatment ameliorated HFCD-induced liver injury and lipids accumulation in live. (A) Morphological photographs of livers. (B) H&E and oil red O
staining photomicrographs of the liver section (200×). (C) Liver weight. (D) Plasma alanine aminotransferase (ALT) level. (E) Triglyceride (TG) content in the liver. (F) Free
fatty acids level in the liver. (G) Total cholesterol level in the liver. All values are denoted as means ± SD. The values with different superscripts are significantly different at
p < 0.05. # Comparisons with normal diet (ND) group; * Comparisons with high-fat diet (HFCD) group. All groups contain 12 animals (n � 12).
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Figure 3 | Sal A protected hepatocytes against palmitate-induced cell death. (A) HepG2 cells were seeded in 96-well plate and exposed to different doses of Sal A
for 24 h. The cytotoxic effect of Sal A was evaluated by MTT test. (B) HepG2 cells were cultured in 24-well plate. After 80% confluence, cells were exposed to different
doses of palmitic acid (PA) for 12 h. LDH release in the culturemediumwas detected according to the description in the Material andmethods. (C)Cells were treated with
0.5 mM PA for 6, 12, and 24 h, respectively. Cell viability was detected by MTT test. (D)HepG2 cells were treated with 0.5 mM PA for 12 h with or without 2 h pre-
incubation of Sal A (25, 50, and 100 μM). LDH release in the culture was determined. (E–G) HepG2 cells were treated with 0.5 mM PA for 12 h with or without 2 h pre-
incubation of 100 μM Sal A. Cell death was detected by nuclear morphology observation with Hoechst staining using fluorescence microscopy at a magnification of ×200,
propidium iodide (PI) staining using flow cytometry, and MTT test, respectively. All values are denoted as means ± SD from three or more independent batches of cells. The
values with different superscripts are significantly different at p < 0.05. # Comparisons with normal control group; *Comparisons with individual PA treatment groups.
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FIGURE 4 | Effects of Sal A administration on p-JNK, p38, p-ERK1/2, and p-PKA in HFCD-fed mice and palmitate-treated hepatocytes. Total cellular lysates were
extracted from mice liver tissues. HepG2 cells were exposed to 0.5 mM palmitic acid (PA) for 12 h with or without 2 h pre-incubation of Sal A (50 and 100 μM). (A,B)
Immunoblotting assay was performed for p-JNK, p-p38, and p-ERK1/2. (C,D) Immunoblotting assay was performed for p-PKA. All values are denoted as means ± SD
12 animal liver samples per group (n � 12) or at least three independent batches of cells. The values with different superscripts are significantly different at p < 0.05.
# Comparisons with normal control group; * Comparisons with singly PA treatment group.
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Figures 1F–H). Although high dose of Sal A reduced HFCD-
induced increases of plasma total cholesterol and HDL-C (p <
0.05, Figure 1I,J), neither improved HFCD-induced plasma
LDL-C increase (p > 0.05, Figure 1K).

Sal A administration alleviates hepatic steatosis and liver
injury in HFCD-fed mice.

Liver pathological alterations were evaluated by morphologic and
histological examinations (H&E and oil red O staining). As expected,

HFCD-fed markedly increased the liver size and shallowed the liver
color (Figure 2A). Massive hepatic steatosis was observed in HFCD
group (Figure 2B). Sal A intervention rescuedHFCD-induced hepatic
pathological alterations mentioned above (Figures 2A,B) and
ameliorated HFCD-induced liver weight increment (p < 0.05,
Figure 2C). The ALT activity, a well-known biomarker of liver
injury, was further analyzed. Sal A significantly blunted HFCD-
induced plasma ALT elevation (p < 0.05, Figure 2D). Moreover,

FIGURE 5 | Sal A-activated AMPK contributed to the protection against lipotoxicity-induced liver injury. (A) Total cellular lysates were extracted from mice liver
tissues. Immunoblotting was performed for p-AMPK. (B)Cells were treated with different doses of Sal A (25, 50, and 100 μM) for 12 h p-AMPKwas detected. (C)HepG2
cells were exposed to 0.5 mM palmitic acid (PA) for 12 h with or without 2 h pre-incubation of Sal A (50 and 100 μM). p-AMPK was detected. (D) HepG2 cells were
transfected with siRNAs for AMPK. Silencing efficiency was detected by Immunoblotting assay for AMPK expression. (E) After siRNA silencing of AMPK, cells were
exposed to 0.5 mM PA for 12 h with or without 2 h Sal A (100 μM) pretreatment. LDH release was detected. All values are denoted as means ± SD from 12 animal liver
samples per group (n � 12) or at least three independent batches of cells. The values with different superscripts are significantly different at p < 0.05. # Comparisons with
normal diet (ND) or normal control group; * Comparisons with HFCD group or singly PA treatment group.
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Sal A treatment significantly reducedHFCD-induced increases of TG,
FFA, and cholesterol contents in the liver (p < 0.05, Figures 2E–G).

Sal A treatment protects against palmitic acid-induced
hepatocyte cell death.

We next investigated the anti-lipotoxicity potential of Sal A
using HepG2 cells. The cytotoxicity of Sal A was first evaluated
by MTT test. As shown in Figure 3A, it was only above 750 μM
that Sal A showed obvious cytotoxicity. The in vitro lipotoxicity

model was established by palmitic acid exposure of HepG2 cells.
Our results indicated that palmitic acid exposure triggered cell
death in HepG2 cells in both dose-dependent and time-course
manner (Figures 3B,C). Importantly, Sal A pretreatment
prevented palmitic acid-induced cell death, which was
confirmed by several measurements, including LDH release,
nuclear staining, propidium iodide staining, and MTT test
(Figures 3D–G).

FIGURE 6 | Upregulation of SIRT1 by Sal A protected against lipotoxicity-induced liver injury. (A) Total cellular lysates were extracted from mice liver tissues.
Immunoblotting was performed for SIRT1. (B)Cells were treated with different doses of Sal A (25, 50, and 100 μM) for 12 h. SIRT1 expression was detected. (C)HepG2
cells were exposed 0.5 mM palmitic acid (PA) for 12 h with or without 2 h pre-incubation of Sal A (50 and 100 μM). SIRT1 was detected. (D) HepG2 cells were
transfected with siRNAs for SIRT1. Silencing efficiency was detected by Immunoblotting assay for SIRT1 expression. (E) After silencing SIRT1 by siRNA, cells were
exposed to 0.5 mM PA for 12 h with or without 2 h Sal A (100 μM) pretreatment. LDH release was detected. All values are denoted as means ± SD from 12 animal liver
samples per group (n � 12) or at least three independent batches of cells. The values with different superscripts are significantly different at p < 0.05. # Comparisons with
normal diet (ND) or normal control group; * Comparisons with HFCD group or singly PA treatment group.
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The protective role of Sal A is independent of MAPKs and
PKA pathways.

Previous studies have reported that the activation of MAPKs,
including JNK, p38, and ERK1/2, were involved in palmitic acid-
induced lipotoxicity (Liu et al., 2018; Liu et al., 2015; Yuan et al.,
2010). Accordingly, we assessed effects of Sal A on JNK, p38, and
ERK1/2. Our data revealed that phosphorylation of all above
three MAPKs was increased by HFCD-feeding, while Sal A only
significantly reversed HFCD-induced p-p38 upregulation
(Figure 4A). Moreover, exposure to palmitic acid markedly
increased phosphorylation of JNK, p38, and ERK1/2
abundance, whereas Sal A treatment did not reverse the effects
of palmitic acid on these kinases (Figure 4B). In addition, we
previously documented that the prevention of suppression of
PKA by palmitate was beneficial in protecting against lipotoxicity (Li
et al., 2015). Consistently, p-PKA was significantly inhibited in both
HFCD-fedmice and palmitic acid-treated hepatocytes. However, Sal
A did not improve p-PKA suppression (Figures 4C, D), excluding
its contribution to Sal A’s protective effect on lipotoxicity.

AMPK activation contributes to Sal A’s anti-lipotoxic effect in
HepG2 cells.

AMPK activation protects against lipotoxicity (Minokoshi
et al., 2002; Wang et al., 2007; Wu et al., 2013a). We
previously reported that palmitic acid exposure suppressed AMPK
activity in HepG2 cells (Li et al., 2017). To determine if AMPK is a
target of Sal A, we subsequently examined the regulation of Sal A on
hepatic p-AMPK abundance in both HFCD-fed mice and palmitic
acid-exposed HepG2 cells. Our results indicated that Sal A
administration rescued HFCD-induced reduction of hepatic
p-AMPK abundance (Figure 5A). In vitro, Sal A activated AMPK
in a dose-dependent manner (Figure 5B). Importantly, the Sal A
pretreatment alleviated palmitic acid-induced decrease of
p-AMPK protein abundance (Figure 5C). To confirm that the

prevention of palmitic acid-induced AMPK inhibition was
involved in the protective role of Sal A against lipotoxicity,
AMPK gene silencing experiment with siRNA transfection was
conducted (the siRNA knockdown efficiency shown in
Figure 5D). Our result clearly showed that silencing AMPK
abolished the protective role of Sal A (Figure 5E), indicating
that retaining AMPK activity contributes to Sal A’s anti-
lipotoxicity property.

SIRT1 upregulation contributes to Sal A’s hepatoprotective
action against lipotoxicity.

We previous reported that activating SIRT1 improved
palmitic acid-induced cell death in hepatocytes (Shen et al.,
2017). Therefore, we next examined hepatic SIRT1 expression
using liver samples from our animal studies. As shown in
Figure 6A, HFCD-feeding led to a robust decline of liver
SIRT1 expression, which was significantly blunted by Sal A
administration. In HepG2 cells, Sal A enhanced SIRT1
expression in a dose-dependent manner (Figure 6B).
Importantly, HepG2 cells pretreated with Sal A
demonstrated a marked improvement of palmitic acid-
induced SIRT1 downregulation (Figure 6C). Similarly,
SIRT1 gene silencing through siRNA transfection blocked
the protective role of Sal A (Figure 6D,E), which indicated
that SIRT1 was mechanistically involved in the protection of Sal
A against hepatic lipotoxicity.

SIRT1 is the downstream target of Sal A-triggered AMPK
activation.

We next analyzed the mutual regulatory relationship between
AMPK and SIRT1 by gene silencing. Our results showed that
silencing AMPK significantly inhibited Sal A-activated SIRT1 up-
regulation, whereas silencing SIRT1 did not affect the activation
of p-AMPK by Sal A (Figure 7), suggesting that SIRT1 is a
downstream target in Sal A-induced AMPK activation.

FIGURE 7 | SIRT1was downstream of Sal A-activated AMPK pathway. HepG2 cells were transfected with siRNA for SIRT1 or AMPK, respectively. Then cells were
treated with Sal A (100 μM) for 12 h. Total cellular lysates were collected for the immunoblotting assay for SIRT1 and p-AMPK. All values are denoted asmeans ± SD from
three or more independent batches of cells. The values with different superscripts are significantly different at p < 0.05. # Comparisons with control group; * Comparisons
with singly Sal A treatment group.
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DISCUSSION

The present study demonstrates for the first time that Sal A, a
natural polyphenolic compound extracted from Radix Salvia
miltiorrhiza (Danshen), confers protection against hepatic
lipotoxicity in both HFCD-fed mice and cultured hepatocytes.
The results in this study uncover that Sal A exerts its beneficial
role via activating the AMPK-SIRT1 signal pathway.

Sal A has been recognized as an important bioactive ingredient
from Radix Salvia miltiorrhiza, which is a traditional herb in
China, and is widely used as functional food for the treatment
and prevention of cardiovascular diseases (Song et al., 2015). More
recently, evidence has been emerging that Sal A possesses hepatic
protective property. Ding et al. has reported that Sal A gavage (8
and 16mg/kg/d) ameliorated HFD-induced NAFLD in rats (Ding
et al., 2016). In this study, we tested the effect of Sal A on HFCD-
induced NAFLD in C57BL/6 mice. The selected doses of Sal A for
animal study were referred from a previous report (Sui et al., 2007;
Shen et al., 2009). Sal A was injected every two days to reduce the
incidence of abdominal infection. Our results clearly demonstrated
that Sal A injection alleviated HFCD-induced body weight gain,
hepatic steatosis, and liver injury. Although we did not investigate
here the effects of Sal A on glycometabolism, its beneficial role in
alleviating insulin resistance has been reported (Qiang et al., 2015).
We did not observe any effects of Sal A on food intake, skin color,
hair count, and daily behavior. Notably, Sal A clearly improved
HFCD-reduced mobility in mice. Under ideal conditions, the
estimated peak concentration of Sal A in mice blood were 0.69
and 1.38 mM in HFCD-LS (20 mg/kg BW) group and HFCD-HS
(40 mg/kg BW) group, respectively. Although there is no evidence
of clinical application of salvianolic acid A alone, Salvianolic acids
for injection (SAI) is a clinical used medicinal preparation
composed of multiple salvianolic acids from the aqueous
extracts of Danshen. The concentration of Sal A in SAI is
72 μg/ml (Zhang et al., 2013). We estimated that the
concentration of Sal A in the blood of a human body is about
0.65 μM with a recommended dosage of 20ml/d via intravenous
injection. The concentration of Sal A in Danshen is 0.14 mg/g (Luo
et al., 2015). Considering the oral dose of Danshen in clinical
prescription is 10–30 g, the estimated corresponding concentration
of Sal A in the blood of human body is about 0.63–1.89 μM.We can
clearly find that the blood concentration of Sal A in humans
mentioned above is far lower than that in our experiment.

Lipotoxicity caused by SFAs in hepatocytes plays vital roles in
both initiation and progression of NAFLD (Leamy et al., 2013;
Perla et al., 2017). Ameliorating liver lipotoxicity had exhibited
efficacy in improving HFD-induced NAFLD (Li et al., 2017).
Therefore, searching effective drugs or compounds from natural
herbs that protect against lipotoxicity is commonly considered as
an ideal therapeutic strategy for the treatment of NAFLD.
Although Sal A exhibited cytoprotective effects against
different stimuli in various cell types, to the best of our
knowledge, few studies have addressed the protective role of
Sal A against SFAs-induced hepatocyte cytotoxicity. Sal A also
attenuated angiotensin Ⅱ-induced apoptosis in murine peritoneal
macrophages (Li et al., 2016) and protected cardiomyocytes from
toxicity induced by arsenic trioxide, via inhibition of the MAPK

pathway (Zhang et al., 2017). Furthermore, Sal A improved
ischemia-reperfusion-stimulated injury in brain, renal, and
intestines (Hou et al., 2016; Song et al., 2018; Zu et al., 2018).
In the liver, Sal A significantly reduced chronic alcohol feeding-
or carbon tetrachloride-induced liver injury in rats (Wu et al.,
2007; Shi et al., 2018a). In the present study, we reported for the
first time that Sal A alleviated palmitic acid-induced hepatic
cytotoxicity and improved liver pathologies in HFCD-fed
mice. A wide-range of doses of Sal A from 1 nM to 100 μM
have been used in previous cell culture studies (Qiang et al., 2015;
Li et al., 2019). In this study, ascending doses of Sal A (25, 50, and
100 μM) were chosen based on our observations that no further
protections were observed when Sal A concentrations higher than
100 μM were used (Supplementary Figure S1).

The potential mechanisms underpinning the Sal A anti-
lipotoxic action in hepatocytes remain elusive. Lipotoxicity-
induced MAPKs activation has been documented to involve its
cytotoxicity effect (Srivastava et al., 2007). Recent research
revealed the inhibitory role of Sal A on MAPKs in various
cells (Dai et al., 2015; Zhang et al., 2017; Feng et al., 2020).
Thus, here, we determined the effects of Sal A on MAPKs in
hepatocytes. All three MAPKs, including p-JNK, p-p38, and
p-ERK1/2, were stimulated by HFCD administration, whereas
Sal A intervention only reversed p-p38 induction in mice. This
implies that p38 MAPK is a potential target of Sal A against
HFCD-induced liver injury. Unexpectedly, Sal A treatment did
not protect but rather aggravated MAPKs induction by palmitate
in HepG2 cells. Although the exact reason was not clear, previous
findings demonstrated that Sal A possessed anti-tumor ability
and exhibited a dual-directional regulation between normal and
tumor cells on signal transduction (e.g., p-Akt) (Pei et al., 2018; Li
et al., 2019). Since limited work has reported the regulatory role of
Sal A on MAPKs in hepatocytes, further study should be
performed in non-oncogenic hepatocytes. We also analyzed
the effect of Sal A on HFCD- and palmitate-induced PKA
inhibition, which also contributes to hepatic cytotoxicity (Li
et al., 2015). Our data showed that Sal A intervention did not
reverse p-PKA suppression. However, we could not exclude the
participation of PKA signal, since several studies revealed that Sal
A stimulated cAMP/PKA pathway, and hence protected against
arterial thrombosis and vascular smooth muscle injury,
respectively (Sun et al., 2016; Zhao et al., 2017). Therefore, the
measurement of hepatic cAMP level under Sal A exposure is still
needed in further studies. AMPK, a key sensor of energy
metabolism, plays an important role in regulating lipotoxicity.
Our previous studies have reported that AMPK activation could
significantly eliminate lipotoxicity-induced cell death in
hepatocytes (Li et al., 2014; Li et al., 2017). In the present
study, our data revealed that Sal A treatment reversed HFCD-
and palmitate-inhibited AMPK phosphorylation. More
importantly, genetically silencing AMPK blocked the
protective role of Sal A, indicating the mechanistic
involvement of the AMPK pathway. In agreement with our
results, Sal A has also been reported to activate AMPK in the
liver of diabetic rats (Yu et al., 2012; Qiang et al., 2015).

The potential mechanisms linking Sal A-regulated AMPK
activation are still unclear. Commonly, AMPK is stimulated by
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two classical signals. One is Ca2+-dependent pathway, which is
mediated by calcium/calmodulin-dependent protein kinase kinase
β (CaMKKβ) (Fogarty et al., 2010); and the other one is AMP-
dependent pathway, which is regulated by liver kinase B1 (LKB1)
(Gan and Li, 2014). Although we did not directly measure the
intracellular AMP/ATP ratio under Sal A treatment, Qiang et al.
reported that Sal A increased intracellular ATP level in HepG2 cells
(Qiang et al., 2015). Sal A stimulated AMPK activation in the
absence of LKB1 in HeLa cells (Qiang et al., 2015). These evidences
indirectly excluded the role of AMP/ATP regulated LKB1 in Sal
A-activated AMPK. Although limited studies have reported the
regulation of Sal A on intracellular calcium concentration in
hepatocytes, recent evidence confirmed that CaMKKβ inhibitors
could significantly block Sal A-induced AMPK activation in HeLa
cells (Qiang et al., 2015), implying that a Ca2+-dependent pathway
may contribute to Sal A-induced AMPK activation.

SIRT1, a NAD+-dependent deacetylase, is predominantly
localized in the nucleus. SIRT1 activation exhibited various
beneficial biofunctions, including extending lifespan, delaying
senescence, and improving metabolic diseases, such as NAFLD,
diabetes, and obesity (Mariani et al., 2015; Cao et al., 2017; Kumar
et al., 2017). We previously reported that SIRT1 activation was
mechanistically involved in the protection against hepatic
lipotoxicity (Li et al., 2015). SIRT1 activation prevented alcohol-,
cholestasis-, and concanavalin A-induced liver injury (Xu et al.,
2013; Kulkarni et al., 2016; Shi et al., 2018a). Therefore, we
investigated the involvement of SIRT1 in the anti-lipotoxicity role
of Sal A in this study. Our results clearly indicated that Sal
A-increased SIRT1 expression contributed to the protective role
of Sal A. Recent studies revealed the mutual regulatory relationship
between AMPK and SIRT1 (Canto et al., 2009; Ganesan et al., 2017).
However, the cross-talk between AMPK and SIRT1 under the
exposure of Sal A is still elusive. We further tested the reciprocal
relationship between AMPK and SIRT1 under Sal A treatment. We
observed that AMPK was involved in Sal A-regulated SIRT1 based
on the listed evidence: 1) AMPK silencing significantly blocked Sal
A-increased SIRT1 expression; otherwise, SIRT1 silencing did not
affect Sal A-upregulated p-AMPK level; 2) while genetically silencing
SIRT1 blocked about 40% of the protective role of Sal A, silencing
AMPK completely inhibited Sal A-protected lipotoxicity. It means
that, besides SIRT1, there probably exist other downstream targets of
AMPK. Recent studies have identified thioredoxin-interacting
protein (TXNIP), which could be degraded by AMPK activation
and involved in Sal A-treated rats, and might be another potential
target (Wu et al., 2013b; Ding et al., 2016; Wei et al., 2019).

The current strategies for treating NAFLD can be summarized
into four aspects, to improve: 1) hepatic steatosis and the
consequent metabolic stress; 2) oxidative stress, inflammation,
and cell damage or apoptosis; 3) disturbance of intestinal flora;
and 4) fibrinolytic pathway. Here, we concluded the potential
targets of Sal A based on the current literature and our study.
First, we observed that Sal A treatment significantly rescued oleic
acids-induced lipids deposition in cultured hepatocytes
(Supplementary Figure S2). In support of our finding, Sal A
exhibited a strong ability against hepatic steatosis in both energy-
enriched diet-fed rats and palmitic acid-treated hepatocytes
(Ding et al., 2016). Second, recent studies have demonstrated

that Sal A strongly mitigates oxidative stress (Wu et al., 2007;
Jiang et al., 2008; Tsai et al., 2010; Zhang et al., 2014; Zu et al.,
2018), a mechanism involved in palmitate-induced cell death (Li
et al., 2014). Activation of nuclear factor (erythroid-derived 2)-
like 2 (Nrf2) facilitated Sal A-mediated to oxidative stress in
different experimental settings (Zhang et al., 2014; Gu et al., 2017;
Zhang et al., 2017). Therefore, Sal A-stimulated Nrf2 activation
might be involved in the protection against NAFLD via anti-
oxidative stress. Additionally, the anti-inflammatory role of Sal A
has been reported in renal, brain, and cardiac tissues (Yuan et al.,
2017; Zhang et al., 2018; Zhang et al., 2019). A recent study
revealed that Sal A supplementation alleviated HFD-induced
hepatic inflammation (Ding et al., 2016). In cultured
hepatocytes, Sal A prevented TNF-alpha-induced apoptosis
(Yan et al., 2015). To our knowledge, limited studies have
addressed the beneficial effects of Sal A on intestinal
microecological and fibrinolytic pathway in NAFLD. The
existing evidence indicates that Sal A exerts its protective role
against NAFLD by targeting hepatic steatosis, oxidative stress,
inflammation, and lipotoxicity-related liver damage.

The main finding of the present study was the anti-lipotoxic
effects of Sal A to reduce hepatocyte apoptosis. We previously
confirmed that the activation of autophagy prevented hepatocytes
against SFAs-induced cytotoxicity (Li et al., 2017; Li et al., 2014).
Accumulating evidence supported that the activation of both
AMPK and SIRT1 stimulated autophagy (Yan et al., 2017).
Moreover, recent evidence demonstrated that Sal A promoted
autophagosome-lysosome fusion (Shi et al., 2018b). We
observed that Sal A treatment significantly reversed the
reduction of an important autophagy marker, LC3-II, in livers
from HFCD a special marker of autophagy (Supplementary
Figure S3). We therefore presumed that autophagy activation
was probably involved in Sal A protected lipotoxicity via
activating AMPK/SIRT1 pathway. A limitation of this study is
the lack of a positive control drug. Although there is no FDA
approved drug for NAFLD so far, some ongoing clinical trials using
statins, metformin, and pioglitazone are potential positive controls
to objectively evaluate the effect of Sal A in the future studies (Patel
and Siddiqui, 2019).

In summary, we reported for the first time that Sal A protects
against hepatic lipotoxicity by activating the AMPK-SIRT1
signaling pathway. Our findings suggest that Sal A is a potential
candidate for the treatment of NAFLD and other metabolic
disorders with lipotoxicity as an underlying pathological condition.
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