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Disease symptoms often contain features that are not routinely recognized by patients

but can be identified through indirect inspection or diagnosis by medical professionals.

Telemedicine requires sufficient information for aiding doctors’ diagnosis, and it has

been primarily achieved by clinical decision support systems (CDSSs) utilizing visual

information. However, additional medical diagnostic tools are needed for improving

CDSSs. Moreover, since the COVID-19 pandemic, telemedicine has garnered increasing

attention, and basic diagnostic tools (e.g., classical examination) have become the

most important components of a comprehensive framework. This study proposes

a conceptual system, iApp, that can collect and analyze quantified data based on

an automatically performed inspection, auscultation, percussion, and palpation. The

proposed iApp system consists of an auscultation sensor, camera for inspection,

and custom-built hardware for automatic percussion and palpation. Experiments were

designed to categorize the eight abdominal divisions of healthy subjects based on

the system multi-modal data. A deep multi-modal learning model, yielding a single

prediction from multi-modal inputs, was designed for learning distinctive features in

eight abdominal divisions. The model’s performance was evaluated in terms of the

classification accuracy, sensitivity, positive predictive value, and F-measure, using

epoch-wise and subject-wise methods. The results demonstrate that the iApp system

can successfully categorize abdominal divisions, with the test accuracy of 89.46%.

Through an automatic examination of the iApp system, this proof-of-concept study

demonstrates a sophisticated classification by extracting distinct features of different

abdominal divisions where different organs are located. In the future, we intend to

capture the distinct features between normal and abnormal tissues while securing patient

data and demonstrate the feasibility of a fully telediagnostic system that can support

abnormality diagnosis.

Keywords: remote patient monitoring, deep learning, clinical decision support systems, inspection, auscultation,
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1. INTRODUCTION

Telemedicine-based diagnosis requires sufficient information;
to this end, clinical decision support systems (CDSSs) that
utilize visual information have been proposed (Sutton et al.,
2020). Disease symptoms often contain features that are not
routinely recognized by patients but can be identified through
indirect inspection or diagnosis by medical professionals.
However, additional medical diagnostic tools are needed for
improving the CDSSs’ performance (Belard et al., 2017; Zikos
and DeLellis, 2018). Moreover, since the COVID-19 pandemic,
telemedicine has garnered increasing attention (Bashshur et al.,
2020; Ohannessian et al., 2020; Portnoy et al., 2020; Vidal-
Alaball et al., 2020), and basic diagnostic tools (e.g., classical
examination) have become the most important components
of a comprehensive framework (Belard et al., 2017; Sutton
et al., 2020; Fuchtmann et al., 2021). Medical researchers have
been increasingly interested in developing objective systems
that do not use blood samples (Jeong et al., 2018). Automatic
and effective evaluation systems are desired that will be able
to deliver basic inspection information as successfully and
accurately as possible. When such evaluation systems are used

in telemedicine and remote patient monitoring, it is desired
to deliver the acquired information, such as hospital-level
information (Wasylewicz and Scheepers-Hoeks, 2019). The most
basic approach to medical diagnosis is physical examination

(Verghese et al., 2011). A diagnostic process starts by detecting
abnormal symptoms outside and inside the body: changes in

the skin surface color and fissure, changes in tactile sensation,
changes in sounds generated by the tissue itself or in response
to external stimuli.

Inquiry, inspection, auscultation, percussion, and palpation
are five traditional physical examination methods that have
been used in the clinical field (Narula et al., 2018). In
particular, inspection, auscultation, percussion, and palpation are
the most basic non-invasive physical diagnostic methods that
have been used since 1761. Abdominal physical examination
is essential for clinical observations of signs and causes of
diseases of the patient’s abdomen; this examination includes
inspection, auscultation, percussion, and palpation methods.
This examination is performed for determining abnormalities
by judging the size, shape, positional mobility, and consistency
of abdominal organs (Ball et al., 2017; Jarvis, 2018). Abdominal
inspection is the most basic test and is used for determining
changes of the skin surface (Hayden et al., 2021). Diagnosis
is made by observing the skin color, quality or contours, lines
or scars, observations of the blood vessels’ network, the shape
of the belly button, and the abdomen’s surface movement
patterns. Systemic and organ-specific changes accompany some
diseases; therefore, a differential diagnosis can be improved
through abdominal shape or color changes (Floch, 2019). For
example, in the case of liver cirrhosis, changes such as
caput medusae, where enlarged veins are observed in the
abdominal wall, can be observed. In addition, bruising of
subcutaneous adipose tissue of the abdominal wall around the
navel (Cullen sign) or side (Grey Turner sign) is an indication of
pancreatitis, suggesting intraperitoneal bleeding (Wright, 2016).

Auscultation is essential for physical examination and helps
to diagnose various diseases. Abdominal auscultations examine
intestinal sounds in the gastrointestinal system, for determining
sound irregularities that are inconsistent with expected sound
propagation, and for classifying these abnormal sounds caused
by pathological changes in the body system into several
specific types (Gade et al., 1998). In particular, a rebounding
sound generated in response to an external stimulus may
inform about the condition of the body’s internal organs.
Abdominal examination may indicate peritonitis or paralytic
ileus if bowel sound decreases; however, diarrhea, gastrointestinal
bleeding, or mechanical ileus may also be suspected if the
bowel sound increases (Podolsky et al., 2015). The usefulness
of auscultation is limited but helpful in diagnosing abdominal
occlusion, which may be suspected if the metallic sound
is auscultated (Podolsky et al., 2015). For example, clinicians
showed an accuracy of 84.5% in ileus detection by listening
to bowel sounds (Gu et al., 2010). Percussion is performed by
administering a mechanical impact, using a percussion hammer
or fingers. Medical personnel determine the position, size,
consistency, and boundaries of fundamental organs and their
associated pathologies, by interpreting the sound’s amplitude and
pitch (Ayodele et al., 2020). The difference between normal and
abnormal tissues appears to be a phenomenon such as “clear and
long-lasting sound described as resonance,” owing to impedance
discrepancies in the inspected area (Yernault and Bohadana,
1995). Palpation allows to determine tissue abnormalities as
differences in stiffness between normal tissues and surrounding
tissues, by measuring the tissues’ physical properties (Ahn et al.,
2012; Yasmin and Sourin, 2012a,b, 2013).

These traditional physical examination methods have
been used to date owing to the advantages of speed and
convenience (Hsu et al., 2020). However, diagnosis by inspection,
auscultation, percussion, and palpation depends on the subjective
interpretation of the test results by medical personnel (Ferguson,
1990). Therefore, the diagnosis results vary across individual
clinicians and are often discordant (Khani et al., 2011). Current
inspection, auscultation, percussion, and palpation techniques
are used as pre-examination tools by medical personnel and
are generally not considered reliable diagnostic methods (Wu
et al., 2010; Durup-Dickenson et al., 2013; Mota et al., 2013). Of
course, there are abdomen follow-up tests that use ultrasound,
X-rays, computed tomography (CT), and/or magnetic resonance
imaging (MRI); however, these technologies remain inaccessible
to a wide population owing to their limited accessibility and
high cost. Various attempts have been made to overcome this
limitation, such as quantifying the performance of specific and
effective initial lesion screening tests using objectively collected
basic clinical information, and/or using machine-learning
techniques (Sajda, 2006; Wu et al., 2010; Hunt et al., 2019). In
particular, many studies have provided strong evidence of the
potential for future use of computational analysis in the diagnosis
of abdominal diseases and disorders (Inderjeeth et al., 2018).

The relationship between effective regulation of the bowel and
upper abdominal suppleness using a load cell and a magnetic
position sensor was evaluated (Kato et al., 2012). The study found
an elastic relationship between the reactive force and the pressed
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depth at the palpation points. Hsu et al. (2020) proposed an
integrated system based on a force sensor and a camera, for
quantifying the palpation pressure and location simultaneously,
with the idea that this system will serve as a reference for
digital abdominal palpation devices. Several research groups have
studied automatic percussion systems based on surface exciters
for generating percussive sound inputs, or push-pull solenoid
actuators for generating mechanical impulses (Rao et al., 2018;
Ayodele et al., 2020). The automatic percussion instrument based
on the solenoid actuator achieved a test accuracy of 94% for the
classification of the three thoracic sites to elicit dull, resonant, and
tympanic signals (Ayodele et al., 2020). Krumpholz et al. (2021)
proposed a robotic end-effector for mechanical percussion to
classify lung and non-lung samples. They proved the feasibility
of telemedical percussion with a classification accuracy of 71.4%.
However, the above studies focused either on quantitative tests
and the development of guidance systems or on the automation
of single tests. In addition, the lack of subject-wise tests made
it difficult to evaluate the generalization performance of the
systems. It appears that there are limitations precluding the
development of a comprehensive physical examination and
diagnosis system.

In other fields, attempts have been made to determine
the target object’s properties based on the physical hitting
characteristics (Gong et al., 2019; Ryu and Kim, 2020b,c). An
automatic classification system has been proposed that identifies
the characteristics of a surface based on the inertial and audio
signals measured when tapping the surface (Ryu and Kim,
2020a). However, further considerations should be addressed
before this method can be applied in medical analysis; these
considerations necessitate careful experimental design and a data
analysis framework. Research on artificial intelligence (AI)-based
automated decision-making physical examination systems has
not yet been conducted. Hence, to automate abdominal physical
examinations and perform remote promotions, further research
is needed.

Improved inspection, auscultation, percussion, and palpation
methods that incorporate the latest technologies for automating
abdominal physical examination and remote promotion can
be achieved by improving the sensitivity, specificity, and
reproducibility of these diagnostic methods. To this end,
the following sequential build-up process is required: (1)
development of automated inspection, auscultation, percussion,
and palpation device; (2) validation of device performance and
data; and (3) large-scale clinical trials. As a proof-of-concept
study prior to a large-scale clinical trial, this study focuses on
determining the feasibility of the proposed approach. This is
achieved by developing a system for automating and quantifying
inspection, auscultation, percussion, and palpation, extracting
distinct features from test data, and investigating the possibility
of classifying specific locations on the abdomen. The evaluation is
performed by system configuration, data acquisition, and analysis
through deep multi-modal learning. Custom-built percussion
and palpation devices were used to quantify the stimuli applied
to each subject during the evaluation process. Taking a nine-
division abdominal examination as an example, we attempted
to classify the anatomical landmarks of the abdomen into eight

TABLE 1 | Information on the subjects who participated in this study: BMI, body

mass index; SD, standard deviation.

Age, y Height, cm Weight, kg BMI

Female

(n=15)

Mean 22.1 162.0 57.5 21.9

SD 1.6 5.4 10.2 3.4

Male

(n=15)

Mean 21.7 175.0 71.5 23.3

SD 2.0 5.5 11.1 3.2

All

(n=30)

Mean 21.9 168.5 64.5 22.6

SD 1.8 8.5 12.6 3.3

FIGURE 1 | Overview of the designed experiment. iApp-based signal

collection was performed for eight areas (excluding the navel-containing area).

divisions, excluding the umbilical region. The nine-division
scheme was adopted because a more detailed diagnosis is
accessible when the abdomen is divided into nine divisions rather
than four quadrants (Floch, 2019). The measurement in the
umbilical region was excluded in the current study because the
geometry around the navel was different from that of the other
eight divisions. Pilot test results, obtained from 30 healthy young
subjects, were evaluated for classification accuracy, sensitivity,
positive predictive value (PPV), and F-measure, using epoch-wise
and subject-wise methods. Through an automatic examination
of the iApp system, this proof-of-concept study demonstrates
a sophisticated classification by extracting distinct features of
the abdominal divisions where different organs are located. In
the future, we intend to capture the distinct features between
normal and abnormal tissues while securing patient data and
demonstrate the feasibility of a fully telediagnostic system that
can support abnormality diagnosis.

2. MATERIALS AND METHODS

2.1. Participants
Thirty adults (15 females; age, 19–26 years) participated in
this study. None of the participants had disabilities based on
abdominal percussion and palpation and did not report pain
in response to weak skin stimulation. Table 1 summarizes the
information on the subjects who participated in the study.
They were not restricted to any conditions such as ingestion
and bladder. The Hallym University Institutional Review Board
approved this study, and all participants provided written
informed consent (HIRB-2021-057-1-R).

2.2. Experimental Design
The experimental process started with abdominal percussion and
ended with abdominal palpation. As shown in Figure 1, for each
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subject the abdomen was divided into nine square areas, and
iApp collected reaction signals (in response to stimulation) from
all areas except the navel-containing one.

Figure 2 shows the full experimental data collection process,
which consisted of the following steps:

(a) Divide the abdomen into nine equal square-like areas. The
participant was in the supine position, with the abdomen
exposed. The abdomen was divided into a 3×3 grid, centered
on the belly button. The middle compartment (navel-
containing) was not used in our measurements.

(b) Set the camera. A camera was positioned so as to take videos
of all nine divisions.

(c) Install the auscultation sensor and perform percussion.
An auscultation sensor (physiological sound transducer) was
attached to the diagonal right corner of the subject’s abdomen,
at the target position. After the attachment, percussion was
performed at the measurement position, using a percussion
device. The operator placed the percussion device in the
measurement position and prevented the subject frommoving
during the measurement; each measurement took 15 s. After
the initial 3-s-long stabilization, the percussion device first hit
the subject’s abdomen at the measurement position. After 5 s,
the percussion device consecutively hit the same position in
0.5-s-long intervals.

(d) Repeat percussion. Eight abdomen divisions were measured
for each consecutive replicates. The sequence ofmeasurements
from division 1 to division 9 constituted one cycle; overall, five
measurement cycles were completed. When moving over to
another division, the physiological sound transducer moved as
well. The transducer’s attachment sites were the same for each
division.

(e) Install the auscultation sensor and perform palpation. A
physiological sound transducer was attached to the diagonal
right corner of the subject’s abdomen, at the target position.
After the attachment, palpation was performed at the
measurement position, using a palpation device. The operator
placed the palpation device in the measurement position and
prevented the subject from moving during the measurement;
each measurement took 15 s. After the initial 3-s-long
stabilization, the subject’s measurement position was pressed
for 1.5 s and released for 1.5 s. After 5 s, the measurement
position was pressed again for 1.5 s, and the palpation device
was immediately detached from the patient’s body by the
operator.

(f) Repeat palpation. Eight abdomen divisions were measured,
each in six consecutive replicates. The sequence of
measurement from division 1 to division 9 constituted
one cycle; overall, five measurement cycles were completed.
When moving over to another division, the physiological
sound transducer moved as well. The transducer’s attachment
sites were the same for each division.

2.3. Experimental Setup
2.3.1. System
The measurement system was configured for the data collection,
as shown in Figure 3. A commercial camera (EOS M6 Mark
II, Canon) and a commercial physiological sound transducer

(TSD108, BIOPAC Systems) were used for inspection and
auscultation, respectively. Custom-built hardware was developed
for palpation and percussion.

The palpation device consisted of a potentiometer-equipped
linear actuator (PQ12, Actuonix), a force sensor (CS8-10N,
SingleTact), and three-dimensional (3D) printed housing for
incorporating these components. The linear displacement and
reactive force of the actuator were measured while the linear
actuator in contact with the subject’s abdomen was pushed
and released. The stroke of the linear actuator was 20 mm,
and the full-scale input of the force sensor was 10 N. It was
possible to measure a reaction force of up to approximately 10
N while pressing the abdomen to a depth of approximately 20
mm. The dimensions of the fabricated palpation device were
approximately 25 × 40 × 50 mm (length, width, and height),
including the housing.

The percussion device consisted of a solenoid actuator
(JB-0826B, Yueqing Gangbei Electric), a 3-axis accelerometer
(ADXL343, Analog Devices), and 3D printed housing for
incorporating these components, which utilized the mechanisms
developed in our previous study (Ryu and Kim, 2020c). The
solenoid actuator was loaded and then unloaded to apply
a physical impact to the abdomen (approximately 10 N),
and the resulting accelerations (-6 to 6 G) were measured.
The dimensions of the manufactured percussion device were
approximately 30 × 3 × 50 mm (length, width, and height),
including the housing.

The auscultation, percussion, and palpation processes were
controlled using a data-acquisition system (MP150, BIOPAC).
The percussion and palpation examinations were controlled by
MP150, sending an experimental start signal to an electronic
circuit (including a microcontroller unit and a motor drive),
constructed for controlling the actuators. The auscultation,
percussion, and palpation data were collected through the analog
channels of the MP150 system. The auscultation, percussion,
and palpation data were sampled at 10,000, 312, and 312
Hz, respectively. Meanwhile, an inspection was performed by
capturing a video of the entire abdomen using the camera, and
these imaging data (in the form of a video clip) were stored in a
micro secure digital (SD) memory.

2.3.2. Data Collection
Figure 4 shows an example dataset collected in the experiments.
The nine abdomen divisions were labeled D1 to D9, excluding
D5 where the navel was located. The displacement and reaction
force from the palpation device, sound from the physiological
sound transducer, and video data captured by the camera, were
recorded during palpation for each of the eight divisions. As
described in the Experimental Design section, six consecutive
replicate palpation tests were performed for each division, and
the sequence of measurements was repeated five times. In other
words, the dataset for the palpation test consisted of 7,200
samples (6 replicates× 8 divisions× 5 sequences× 30 subjects).

During the percussion test, 3-axis accelerations from
the percussion device, sound from the physiological sound
transducer, and video data from the camera were recorded. The
target amount of data collected in the percussion test was the
same as that obtained in the palpation test. However, 6,480 valid
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FIGURE 2 | The sequence of experiments: (A) divide the abdomen into nine divisions, (B) set the camera, (C) install the auscultation sensor and perform percussion,

(D) repeat percussion, (E) install the auscultation sensor and perform palpation, (F) repeat palpation.

FIGURE 3 | Hardware configuration of the proposed system (image: Flaticon.com).

data samples per each test (percussion/palpation) were finally
obtained because of the early termination of the experiment for
several subjects. There were no cases in which the experiment was
stopped because the subject complained of pain or voluntarily
requested termination for any reason. However, a few of the
experiments were terminated early by the intervention of the
designer because of human error, hardware malfunction (power,
circuit, performance problem, loss of wire connection, etc.),
or errors in storing measurement results (data loss). The raw
signals collected for each modality were as follows: inspection,
11.5-s-long video (1080p); auscultation, 11.5-s-long univariate
time-series signal (115000, 1); percussion, displacement and
force signals (3594, 2); palpation, x/y/z accelerations (3594, 3).

2.4. Data Analysis Framework
2.4.1. Learning Model
Convolutional neural networks (CNNs) have been widely used
for time series, imaging, and video data analysis in various
research areas, owing to their capability to learn both local and
global features with relatively low computational cost, compared
with recurrent neural networks (LeCun et al., 1995; Ronao and
Cho, 2016). This study adopted a multi-input deep learning
architecture based on CNNs, which yielded a single prediction
from heterogeneous input signals. The goal was to learn
distinctive features from the iApp-collected information, for
predicting the eight abdomen divisions. Figure 5 schematically
shows the proposed architecture for deep multi-modal learning,
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FIGURE 4 | Data were collected by palpation and percussion. Each examination yielded three types of signals.

FIGURE 5 | The proposed deep multi-modal learning architecture. The network has a split architecture with separate branches for each modality, which are then

concatenated.

which incorporates features extracted from different modalities.
The architecture comprises two main parts: a feature extractor
and a classifier. The feature extractor was designed to extract
features from each input signal stream (inspection, auscultation,
percussion, and palpation) independently (Simonyan and
Zisserman, 2014).

For each path, appropriate layers among one-dimensional
(1D) convolutional, two-dimensional (2D) convolutional, and
3D convolutional layers were applied according to the shape of

the input signal. Each path consisted of ten convolutional layers
and four max-pooling layers, with a pooling size of 2. For the
convolutional layers in all paths, the number of filters was 16,
16, 32, 32, 64, 64, 64, 128, 128, and 128, and the kernel size
and stride were 3 and 1, respectively. A global average pooling
layer was applied at the end of each path so that the output of
the feature extractor was 128 per modality. All features from
different input modalities were then concatenated, followed by
three fully connected (dense) layers with 512, 128, and 8 nodes.
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A rectified linear unit (ReLU) was used as an activation function,
except for the output node that used softmax activation. Note that
we tried to simplify the model’s complexity as much as possible
(considering the future embedded implementation), while at the
same time ensuring a good performance.

In addition, we applied the following regularization
techniques to improve the model’s generalization performance:
(1) kernel regularization was applied to all convolutional
and dense layers; (2) a batch normalization layer was added
immediately after each convolutional layer; and (3) a dropout of
0.5 was applied to the first two dense layers.

2.4.2. Pre-processing
For auscultation, the captured raw data were a univariate time-
series signal. Short-time Fourier transform, which is important
for characterizing abnormal phenomena of time fluctuation
signals such as bowel sounds, was applied (Allwood et al., 2018).
First, all data samples were normalized such that the signal
was between -1 and 1. Second, a mel spectrogram image was
generated by calculating the mel spectra for several windowed
signal segments. The window and hop sample sizes were 2048
and 512, respectively. Finally, the generated image was resized
to 64 × 64, and each pixel of the image was then divided by
255 for normalization. The resulting image, with the dimensions
of 64 × 64 × 3, was used as the input representation for the
2D CNN path. For inspection, the captured raw data were a
series of images (video). From the video data, we extracted two
frames: immediately before the examination and immediately
after the examination. Eight divisions were cropped individually
from each image and then resized to 64 × 64. The two images
were then stacked, and the shape of (2, 64, 64, 3) was formed as
input representations of the 3DCNNpath. The captured raw data
were a multi-variate time-series signal for palpation, including
the displacement of the linear actuator and the force measured
during the palpation. All of the data samples, with the (3594, 2)
shape, were standardized before usage as input representations of
the 1D CNN path. Similarly, the raw data captured in percussion
tests (three-axis acceleration signals, shape of (3594, 3) were
standardized before being shown to the 1D CNN path.

2.4.3. Data Partitioning and Evaluation Criterion
Generally speaking, two types of data-partitioning methods are
used for clinical data analysis: (1) subject-wise and (2) epoch-wise
(or record-wise) partitioning. These are also called independent
and non-independent methods, respectively (Supratak et al.,
2017; Jiang et al., 2019). This study used the epoch-wise method
for determining an appropriate model by investigating the effect
of input modalities, while the subject-wise method was used
for evaluating the generalization performance of the proposed
approach. In the epoch-wise analysis, the entire dataset was
separated into two independent sets: 70% of samples were used
for training (4,520 cases), while the remaining 30% were used
for testing (1,960 cases), as shown in Figure 6A. The data
were used for evaluating the following three machine-learning
models: (1) the palpation model used inspection, auscultation,
and palpation data obtained in palpation tests as inputs (three
input modalities); (2) the percussion model used inspection,

FIGURE 6 | Data partitioning strategy used in this study. (A) Epoch-wise

method and (B) subject-wise method.

auscultation, and percussion data obtained in percussion tests
as inputs (three input modalities); and (3) the combined model
consisted of the above two models, with six input modalities used
as inputs.

In the subject-wise analysis, the entire dataset was divided
into five groups (or folds), each containing six subjects, for 5-
fold cross-validation, as shown in Figure 6B. In other words, a
dataset of 24 subjects was used for training the model, while the
data for the other six subjects were used for testing the model’s
performance. This process was repeated for each fold, yielding a
total of five models. Because the models were evaluated using the
subjects’ data that have not been used for training (i.e., previously
unseen data), the generalization performance of the proposed
system could be assessed.

3. RESULTS

3.1. Effect of the Input Modality
Below, we report the input modality-based classification
performance, in terms of the test accuracy. Figure 7A shows
the test accuracy and the normalized confusion matrix for
the palpation model (three input modalities). The overall
test accuracy was 73.26%, and it was confirmed that correct
divisions were in general found. The percussion model (three
input modalities) achieved the test accuracy of 78.27%, as
shown in Figure 7B. The combined model, which used all
data (six input modalities) obtained through percussion and
palpation, achieved the best test accuracy of 83.98%, showing
a further performance improvement by complementing some
difficult classification classes in the palpation and percussion-
only models. Therefore, the proposed approach is feasible
and it is desirable to employ a model that utilizes all of
the information, such as inspection, auscultation, percussion,
and palpation.

Meanwhile, non-negligible misclassification was observed
even for the combined model. To intuitively determine which
classes were misclassified, we converted each row of the
confusion matrix into a 3 × 3 heat map and visualized it; the
results are shown in Figure 8. Clearly, most misclassifications
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FIGURE 7 | Normalized confusion matrices, for epoch-wise tests. Rows and columns indicate the actual and predicted classes, respectively. (A) Palpation only,

accuracy of 73.26%. (B) Percussion only, accuracy of 76.27%. (C) Combined, accuracy of 83.98%.

FIGURE 8 | Heat map visualization of the confusion matrices in Figure 7. (A) Palpation only. (B) Percussion only. (C) Combined.

occurred for adjacent divisions. This phenomenon is discussed
in the next section.

3.2. Generalization Performance
This section describes the results of subject-wise testing using
a model that combines the percussion model and the palpation
model. Table 2 summarizes the results of subject-wise 5-fold
cross-validation in terms of PPV, sensitivity and F-measure. All
of the metrics are weighted averages. In addition, the dataset
collected in this study was completely balanced; therefore, the
sensitivity was the same as the accuracy.

For the first three rows (results based on top-1 accuracy),
PPV, sensitivity, and F-measure did not deviate significantly
across the different folds. However, the average accuracy (here,

sensitivity) was 65.91%, slightly lower than the result for epoch-
wise testing. Based on these results alone, it needed more
investigation to determine whether the model’s performance is
sufficiently generalizable.

We defined two new terms for further analysis of the results:
three-adjacent accuracy and vertical nearest accuracy, inspired by
the top-N accuracy. Three-adjacent accuracy was defined as the
frequency with which the predicted class was included in the
correct answer class and the two divisions closest to the correct
answer class (both horizontal and vertical). For example, if the
prediction was D1, D2, or D4 when the actual answer should
have been D1, it was treated as the correct answer. To consider
another example, if the prediction was one of D7, D8, or D9
when the actual answer should have been D8, it was treated as
the correct answer.
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TABLE 2 | Results of subject-wise testing.

Test set

Fold #1 Fold #2 Fold #3 Fold #4 Fold #5 Mean ± SD

PPV 0.6501 0.6988 0.6717 0.6676 0.6782 0.6733 ± 0.0177

Sensitivity 0.6528 0.6882 0.6451 0.6535 0.6558 0.6591 ± 0.0168

F-measure 0.6469 0.6785 0.6432 0.6517 0.6475 0.6536 ± 0.0143

PPV* 0.8991 0.9124 0.9157 0.8980 0.8703 0.8991 ± 0.0179

Sensitivity* 0.8931 0.9069 0.9128 0.8897 0.8621 0.8929 ± 0.0197

F-measure* 0.8917 0.9070 0.9133 0.8881 0.8634 0.8927 ± 0.0194

PPV** 0.8794 0.8791 0.8825 0.8677 0.8442 0.8706 ± 0.0158

Sensitivity** 0.8743 0.8715 0.8688 0.8611 0.8333 0.8618 ± 0.0167

F-measure** 0.8712 0.8715 0.8716 0.8592 0.8334 0.8614 ± 0.0165

The metrics with single and double asterisks denote measurements based on the three-

adjacent accuracy and vertical nearest accuracy schemes, respectively. SD, standard

deviation; PPV, positive predictive value.

The vertical nearest accuracywas defined as the frequency with
which the predicted class was correct and in the closest vertical
division. For example, if the prediction was either D1 or D4 when
the actual answer should have been D1, it was treated as the
correct answer. To consider another example, if the prediction
was only D8 when the actual answer should have been D8, it was
treated as the correct answer. D5 was removed because of the
belly button location.

The results evaluated using the two newly defined terms
are summarized in the place marked with an asterisk in
Table 2. Compared to when viewed from the perspective of top-
1 accuracy, it was confirmed that the performance improved
dramatically. In other words, most of the misclassifications
occurred between adjacent divisions, consistent with the results
of epoch-wise testing. Figure 9 shows the confusion matrices
and heat map visualization of the above results. In particular,
Figures 9B–D confirm that most of the predictions occur near
the correct division, verifying that good performance can also
be achieved in subject-wise testing. In summary, the proposed
system can be applied to new subjects who were not a part of
the training dataset. More details on the misclassification can be
found in the Discussion section.

4. DISCUSSION

4.1. Misclassifications
In this study, epoch-wise analysis was performed for determining
the structure of a machine-learning model suitable for regional
classification using inspection, auscultation, percussion, and
palpation data. As a result, a deep multi-modal learning
architecture that utilizes the entire data generated through
percussion and palpation tests (the combined model) was
proposed, and the model’s effectiveness was confirmed. Subject-
wise analysis was performed based on the combined model for
validation, and the results of the analysis demonstrated that the
developed methodology can be used as a pre-screening tool for
determining the abdomen divisions.

As a result of the experiment, in particular, two main
points were found in the pattern of misclassification. First,
misclassification in the vertical direction occurred for the
D1/D4/D7, D3/D6/D9, and D2/D8 groups. Anatomically, on
the abdomen’s right side, D1/D4/D7 is where the ascending
colon is located and the ascending colon passes from D7 to
D1 among the divisions presented in this paper. The confusion
matrix for the top-1 accuracy shows a series of misclassifications
between D1/D4/D7, as shown in Figures 9A,B. Had the area
where the ascending colon is located been measured directly or
indirectly, the series of these three divisions would have reflected
the characteristics of the ascending colon. This phenomenon
was also observed for the D3/D6/D9 series. This area is
anatomically a partitioned surface in which the descending colon
is located. Therefore, for the D3/D6/D9 series, misclassification
was observed, similar to the series of the ascending colon. Here,
it is difficult for the D2/D8 series, excluding the navel area,
to represent anatomically the same organ. There are individual
differences, but D2 includes the stomach or the transverse colon,
and D8 includes the small intestine. From the algorithm view,
the D2/D8 series may have similar stiffness values and/or similar
resonance sounds. The D2/D8 series should be discussed with
the addition of objective long-term verification, with more data
and images.

Second, some misclassification phenomena occurred for
adjacent divisions. Participants had physical characteristics of
168.5 ± 8.5 cm and 64.5 ± 12.6 kg (mean/SD). Therefore,
anatomically, the distinction centered on the belly button
will differ in the microscopic organ positions of individual
subjects. The developed algorithm would have recognized this
acceptable difference as information, and this would have
resulted in uncertain divisions. We predict that this difference
caused misclassification near the right and left divisions. On
the other hand, misclassification that occurs in the outer
area, except for vertical and horizontal neighbors, is an error
that does not reflect the characteristics during the learning
process. The generalization performance can be supplemented
by learning more and various age groups, which requires
additional experiments.

4.2. Limitations and Future Conceptual
Work
Autonomous classification frameworks that allow remote
progression of classical examination modalities have scarcely
been studied. In this study, the investigation of the pre-
development of the iApp system in the form of a wearable
device was primarily focused on verifying whether the proposed
approach can be used for robust and reliable assistance. For
this system to develop into a wearable form, an auscultation
sensor, a percussion sensor, a palpation sensor, and a camera
must be integrated within a single device. The dimensions
of individual devices must be sufficiently small to be worn
and/or be portable and must be operated in low-cost embedded
environments. Compact-size integrated hardware systems can be
made sufficiently configurable by utilizing very small or micro-
actuators/sensors (as in this study). Potential development of
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FIGURE 9 | Normalized confusion matrices and heat map visualization, for subject-wise testing. Rows and columns indicate the actual and predicted classes,

respectively. (A) Top-1 accuracy, 65.79%. (B) Visualization of Top-1. (C) Three-adjacent accuracy, 89.46%. (D) Vertical nearest accuracy, 86.36%.

similar wearable or portable devices is proposed, as shown in
Figure 10.

Ideally, the model should identify eight abdomens regardless
of the subject’s BMI, age, gender, weight, height, ingestion,
and bladder condition. In general, when patients first visit the
hospital, their physiological conditions, such as ingestion and
bladder, may differ. For instance, the patient may be in a fasting
or postprandial state. Therefore, doctors are trained to establish
criteria for abnormalities, even in various patient physiological
conditions. In this study, rather than limiting the various patient
environments for measurement standardization, we attempted
to match the initial treatment stage in which patients and
clinicians come into contact. However, the subjects evaluated in
the current study were young with an average BMI of 22.6, which

falls in the normal range. Thus, experiments on more diverse
subject groups are required to improve the analysis’s generality
further. In addition, we performed percussion and palpation
only at the center of each division, excluding the umbilical
region. To obtain more accurate results, it is desirable to perform
examinations at various locations within each division, including
the umbilical region. Based on these considerations, new analyses
and additional experiments need to be conducted in the future.

In a recent study, the authors confirmed that the deep multi-
modal learning model also works well for embedded machines
(Ryu and Kim, 2020a). Considering that the complexity of the
neural network proposed in this paper is relatively light, it is
expected that real-time predictions will be possible even using
embedded environments. Meanwhile, to use the proposed model
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FIGURE 10 | The proposed system concepts for wearable and portable devices.

in an embedded environment, the computational cost should be
sufficiently low to be acceptable for embedded devices. These
issues will be addressed in more depth in future studies.

In this trial, palpation was limited to approximately 2
cm, corresponding to light palpation. Typically, palpation can
be divided into light and deep palpations. Generally, light
palpation is performed first, followed by deep palpation. Light
palpation is useful for detecting abnormalities in the abdominal
surface, and texture, tenderness, temperature, voice, elasticity,
pulsation, mass, etc., are observed by lightly pressing and
releasing the abdominal wall by 1–2 cm with the front of
the fingers. Deep palpation is intended to palpate internal
organs or masses, and size, tenderness, symmetry, and motility
are observed by pressing and releasing the abdominal wall
4–5 cm with the front of the fingers. Patients may feel
uncomfortable when palpating the deep abdomen and complain
of pain (LeBlond et al., 2015). Future devices should ultimately
integrate deep palpation function. However, monitoring patient
discomfort and tenderness according to palpation depth is
essential to perform deep palpation. To this end, system
advancement in a form that accommodates patient feedback
must be considered. In the framework of this study, we found
that the signals of light palpation, inspection, auscultation, and
percussion could classify organs having different characteristics,
and we believe that better performance will be achieved if deep
palpation is implemented in the future.

Finally, we discuss the direction of this study in developing
a fully telediagnostic system that can be used to classify
abnormal organs in the future. The classification accuracy

showed the usefulness of inferring divisions based on the
characteristics of examination methods used in clinical practice
by analyzing both static and dynamic information. In general,
during abdominal examination for the diagnosis of abdominal
disease, the abdominopelvic cavity is divided into four quadrants
or nine divisions. Since the nine divisions offer more detailed
anatomy than four quadrants, a more detailed diagnosis is
accessible when dividing the abdominopelvic cavity into nine
divisions rather than four quadrants (Floch, 2019). For example,
pain is limited to the right hypochondriac region in gallbladder
disease, and symptoms rarely appear in other areas. On the
other hand, the possibility of the small intestine disease may
be suspected if there is discomfort across various areas of
the abdomen, such as the lumbar, iliac, and umbilical regions
(Walker et al., 1990). However, there is no direct medical basis
leading to the fact that the classification of the nine regions can
distinguish abdominal diseases. Typically, clinicians learn normal
percussion and palpation, and if they notice any changes, they are
trained to suspect abnormalities. If the right iliac region is hard,
the patient feels pain and is feverish while palpating, the patient
is suspected of having appendicitis, diverticulitis, enteritis, or a
ureter stone. Additionally, if the patient is female, she is suspected
of having a right ovarian abscess. In another typical case, if the
right hypochondriac region is hard, the patient feels pain and
is feverish while palpating, the patient is suspected of having
cholecystitis. In other words, the disease is suspected based on the
observation of "anomalies" during the inspection, auscultation,
percussion, and palpation. This procedure is very similar to the
operating principle of the proposed machine learning approach.
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Because organs with different characteristics are located in the
nine regions, each has unique characteristics. Therefore, this
study expanded on the information from a preceding study that
extracted these “different features” and examined the possibility
of classifying the abdomen into eight divisions. Our contribution
in the present study is to prove that if the prediction efficiency of
these normal divisions can be achieved in a clinical environment,
it could form the basis for the prediction algorithms that can be
used to solve a wide range of clinical problems and provide the
location of divisions.

In the future, various follow-up approaches, such as anomaly
detection with unsupervised learning, will be tested. Clinical
trials, including patient groups, are planned for validating
models that are suitable for abnormal tissue detection, and for
developing systems that can be used in wearable or remote
patient-monitoring devices.

5. CONCLUSION

Basic clinical examinations are limited by their subjectivity, and
the outcomes depend on the individual doctor’s experience.
Therefore, to detect abnormalities in the patient’s abdomen in
the future, we conducted a study for developing an algorithm
that allows differentiating the patient’s abdomen locations,
as a first step. Thirty healthy adults completed a voluntary
participation study. Participants were evaluated based on the
inspection, auscultation, percussion, and palpation data for eight
abdominal divisions. The accuracy of this regional distinction
was evaluated by developing a model that responded to
skin changes, sounds, accelerations, displacement, and force
signals through percussion and palpation tests. The deep multi-
modal learning model, which yielded a single prediction from
six modality inputs, was designed for learning distinctive
features of eight abdominal divisions. The subject-wise test
results suggested good performance (top-1 accuracy, 65.97%;
three-adjacent accuracy, 89.46%; and vertical nearest accuracy,
86.36%). Through an automatic examination of the iApp
system, this study demonstrates a sophisticated classification

by extracting distinct features of different abdominal divisions

where different organs are located.It is expected that, in the
future, this finding will serve as the basis for the development of a
fully telediagnostic system that can support disease diagnosis by
capturing distinct features between normal and abnormal tissues
while securing patient data.
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