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ABSTRACT

Using an enhancer-associated epigenetic signature,
we made genome-wide predictions of transcription-
al enhancers in human B and T lymphocytes and
embryonic stem cells (ES cells). We validated and
characterized the predicted enhancers using four
types of information, including overlap with other
genomic marks for enhancers; association with
cell-type-specific genes; enrichment of cell-type-
specific transcription factor binding sites; and
genetic polymorphisms in predicted enhancers.
We find that enhancers from ES cells, but not B
or T cells, are significantly enriched for DNA se-
quences derived from transposable elements. This
may be due to the generally relaxed repressive epi-
genetic state and increased activity of transposable
elements in ES cells. We demonstrate that the
wealth of new enhancer sequences discerned here
provides an invaluable resource for the functional
annotation of gene-distal single nucleotide poly-
morphisms identified through expression quantita-
tive trait loci and genome-wide association studies
analyses. Notably, we find GWAS SNPs associated
with various cancers are enriched in ES cell enhan-
cers. In comparison, GWAS SNPs associated with
diseases due to immune dysregulation are
enriched in B and T cell enhancers.

INTRODUCTION

One of the most prominent features displayed by tran-
scriptional enhancers, compared to that of promoters
and insulator elements, is their cell-type-specific activities.
These cell-type-specific regulatory interactions play an
essential role in establishing cell type and developmental

stage specific gene expression patterns in higher
eukaryotes.
Several recent genome-wide expression quantitative

trait loci (eQTLs) studies in humans have provided us a
first glimpse of regulatory variations in the human popu-
lation (1–5). Strikingly, about 70–80% of regulatory
variants operate in a cell-type-specific manner and are
found at larger distances from protein-coding genes, sug-
gesting that a large proportion of these variants could be
located in distal enhancers.
In terms of human diseases, a large body of previous

studies has uncovered many causal and risk-conferring
mutations located in transcriptional enhancers.
Examples include thalassemia (6,7), preaxial polydactyly
(8,9), Hirschsprung’s disease (10,11), cleft clip (12) and
prostate cancer (13), among others. At a genome scale,
Visel et al. (14) recently performed a meta-analysis of
1200 single nucleotide polymorphisms (SNPs) identified
as the most significantly trait- and/or disease-associated
variants in a compendium of genome-wide association
studies (GWAS) published up to March 2009 (15).
Using conservative parameters that tend to overestimate
the size of linkage disequilibrium blocks, they found that
in 40% of cases (472 of 1170) no known exons overlap,
either the linked SNP or its associated haplotype block,
suggesting that in more than one-third of cases
non-coding sequence variation causally contributes to
the traits under investigation. The major classes of
non-coding sequences include enhancers, proximal pro-
moters, insulators and non-coding RNAs. Among these,
enhancers comprise a large fraction. Therefore, it is likely
that many yet-to-be-discovered causal genetic variations
reside in enhancers.
Taken together, recent genome-wide mapping of regu-

latory variants in both healthy and diseased cells has
demonstrated the abundance of enhancer sequence vari-
ation and its impact on gene expression and disease
etiology. Therefore, a comprehensive set of enhancers
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may facilitate the identification of many causal non-
coding variants. To this end, integrating genome-wide
enhancer catalogs with GWAS data becomes an effective
strategy for linking enhancer mutations with diseases.
Likewise, integrating enhancer catalogs with eQTL data
will enable us to establish regulatory relationships between
enhancers and their target promoters at the systems level.
Transcription enhancers are notoriously difficult to

map, which hinders studies of their biology and links to
diseases. In the past, reporter gene assays, comparative
genomics and transcription factor (TF) ChIP-Chip/Seq
have been used to experimentally map enhancers.
Computational algorithms based on DNA sequence
analysis have also been developed to predict enhancers.
However, significant challenges remain for the aforemen-
tioned approaches, including low through-put, lack of
tissue/specific information, high cost and low accuracy.
Recently, a number of studies (16–21) have demonstrated
that unique chromatin modification patterns associated
with enhancer elements can serve as an effective and
accurate mark for cell-type-specific enhancers. Compared
with previous approaches, this chromatin-signature-based
approach is better suited for finding cell- and
developmental-stage-specific enhancers since the activity
of enhancers is often modulated by chromatin structure
in a condition-specific manner.
Towards the goal of a systems-level understanding of

cell-type-specific enhancers, we have used cell-type-specific
histone modification maps to generate a genome-wide
atlas of transcriptional enhancers in three human cell
types: B and T lymphocytes and embryonic stem cells
(ES cells). We corroborated the set of predicted enhancers
using several complementary lines of evidence, including
overlap with other genomic marks for enhancers; location
bias of enhancers to cell-type-specific genes; enrichment of
cell-type-specific TF binding sites (TFBSs). Our integra-
tive analyses generated a wealth of high-confidence novel
enhancers for each cell type. Most importantly, we used
our set of predictions to gain insights into enhancer evo-
lution and disease link. We first examined the connections
between enhancers and mobile DNA elements (MEs). We
also mapped a compendium of eQTL and GWAS SNPs
onto our predicted enhancers. Our analyses led to a
number of hypotheses suggesting a role of predicted en-
hancers in disease etiology. Further, comparative analyses
of enhancers from different cells revealed unique charac-
teristics of ES cell enhancers in terms of their evolutionary
history and disease association.

MATERIALS AND METHODS

Data sources

Histone modification ChIP-Seq data. Three histone modi-
fications, H3K4me1, H3K4me3 and H3K27ac, were used.
Data sources are as following: Wang et al. (2008) for
T cells (17), the ENCODE Consortium for B cells (22)
and Hawkins et al. (2010) for ES cells (23).

Training set of enhancers. To create a high-confidence
training set of enhancers, we selected distal p300 binding

peaks (2.5K bp away from known RefSeq TSS) mapped
using ChIP-Seq in (24,25), and the ENCODE
Consortium, respectively. We only used p300 peaks
shorter than 2K bp to increase the precision of identifying
the center of p300 sites. From this set of distal and narrow
p300 peaks, we chose those that overlapped with compu-
tationally predicted enhancers from the PreMod database
(26). The resultant training sets contain 394 enhancers for
T cells, 717 enhancers for B cells and 580 enhancers for ES
cells.

Gene expression data. A compendium of microarray ex-
pression profiles of 20 human cell types (including T, B
and ES cells) was compiled from Su et al. (27) and
Mayshar et al. (28). Raw microarray data were
quantile-normalized using the GC-RMA algorithm (29).

eQTL and GWAS SNP data. T cell eQTL SNPs were
obtained from (1). B cell eQTL SNPs were compiled
from (1–5). GWAS SNPs were obtained from (15).

Compendium of TF motifs. TF motifs were obtained from
the JASPAR (30), TRANSFAC (31) and Uniprobe (32)
databases. Redundant motifs were removed by manual
inspection. See Supplementary Data for the description
of additional data sources.

Computational framework for predicting enhancers based
on their chromatin modification patterns

We recently developed a computational method, termed
Chromatin Signature Identification by Artificial Neural
Network (CSI-ANN), for identifying functional DNA
elements using their chromatin signatures (18). The frame-
work consists of a data transformation and a feature ex-
traction step using Fisher Discriminant Analysis, followed
by a classification step using artificial neural network
(Figure 1). Through a series of benchmarking analyses,
we showed that CSI-ANN achieves a significant perform-
ance gain over previous best method by Won et al. (33). In
this article, we introduced the following improvements to
the original CSI-ANN algorithm: (i) use of cross-
validation during ANN model training to choose a
best-trained model with a minimum mean squared error;
(ii) calculation of empirical false discovery rate (FDR) for
the predicted enhancers. Details of the improvement are
described in the following sections.

ANN training and model selection

We generated a training data set for each cell type. Each
training set consisted of known enhancers (data source
above) and 10 times more background sequences
(randomly selected genomic loci). Histone modification
signals in a 2K bp window centered on enhancer or back-
ground sequence centers were used as the input for the
algorithm.

We implemented a 16-fold cross-validation procedure
to select a best-trained ANN model for classification.
The training data were partitioned into 16 subsets of
equal size. At each iteration, 15 subsets of data were
used for training the ANN by particle swarm optimization
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algorithm (Supplementary Data) and the 16th subset for
testing. A best-trained model was selected based on the
minimum mean squared error (MSE) criterion:

MSE ¼
1

n

Xn

i¼1
ðpredictioni � targetiÞ

2:

False discovery rate calculation

To access the statistical significance of predicted enhan-
cers, we calculated an empirical FDR based on random-
ization. Briefly, for a given histone modification,
ChIP-Seq tag counts within a 200 bp window were
randomly re-distributed across the genome. Enhancer pre-
dictions were made using the randomized data set. FDR
was calculated as the ratio of number of predictions in the
randomized data relative to that of real data. For all pre-
dictions reported in this article, we used a FDR cutoff of
0.05.

Transcription factor binding site analysis

Using the program Patser (34), each predicted enhancer
sequence was scanned using the compendium of 446
non-redundant TF binding motifs described above. Sites
scored greater than 70% of the consensus motif score (i.e.
maximal score given the motif) were regarded as binding
sites of a given TF. See Supplementary Data for the de-
scription of additional methods.

RESULTS

Genome-wide prediction of transcriptional enhancers in
human T, B and ES cells

A number of studies have demonstrated that high levels of
H3K4me1 and H3K27Ac modifications in combination
with low level of H3K4me3 modification serve as a

robust epigenetic signature for enhancers (16–21).
Previously, we developed a computational tool,
CSI-ANN, to predict transcriptional enhancers based on
their histone modification signature (18). Here, we applied
our tool to genome-wide maps of the above three histone
modifications obtained from human T, B and ES cells
(Figure 1). At a FDR of 0.05, CSI-ANN predicted
20 214, 21 832 and 31 273 enhancers in B, T and ES cells,
respectively. Overall, we predicted �50% more enhancers
in ES cells than the differentiated cells. Supplementary
Figure S1 presents the number of shared and unique en-
hancers among the three sets of predictions. For all three
cell types, at least 50% of the predictions are
cell-type-specific. On the other hand, only about 1500 pre-
dictions are shared by all three cell types. On average,
35.3%, 59.6% and 5.5% of the predicted enhancers are
located in intergenic, intronic and exonic regions
(Supplementary Table S1), consistent with the general ob-
servation that enhancers mostly reside in non-coding
regions.

Validation of predicted enhancers

We conducted a series of computational analyses using
three types of genome-scale experimental data (except
for sequence conservation), including additional genomic
marks for transcriptional enhancers; genes specifically ex-
pressed in the three cell types studied; and genome-wide
location data of TFs known to function specifically in the
three cell types studied. In the following sections, we
present supporting evidence to our predictions using
these external data sources.

Predicted enhancers significantly overlap with other
genomic marks for enhancers. To corroborate our predic-
tions, we first used genome-scale data of three enhancer
marks: p300 binding sites, DNase I Hypersensitivity Sites

Figure 1. Overview of the study, which includes three major steps: prediction, validation and characterization. FDA, Fisher discriminant analysis.
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(DHS) and PhastCons scores. P300 is a transcriptional
co-activator that is often associated with enhancers.
DHSs are nucleosome-free regions that are often
associated with functional DNA elements, including en-
hancers. PhastCons scores quantify the conservation level
of a DNA sequence using multiple sequence alignment of
17 vertebrate genomes (35). We only considered distal
p300 and DHS sites [>2.5 kb from closest transcription
start site (TSS)] to avoid confusion with promoters.
Using distal p300 and DHS sites as true enhancer
marks, the average sensitivity (fraction of known distal
p300/DHS sites recovered) of enhancer prediction in B,
T and ES cells are 49.3%, 45.5% and 48.5%, respectively
(Supplementary Table S2). The corresponding positive
predictive values (PPV, fraction of predicted enhancers
supported by either distal p300 or DHS sites) are 81.3%,
79.2% and 68.8%, respectively (Supplementary Table S2).
Compared to our previous analysis of HeLa cell enhancers
in the ENCODE region (18), our current predictions have
�10% lower sensitivity but �10% higher PPV. This is
likely due to the stringent FDR we used in this analysis
(5%). In addition to p300 and DHS marks, using
pre-computed PhastCons scores, we found that 40.0%,
28.3% and 19.4% of our predictions are conserved in B,
T and ES cells, respectively. Considering all three lines of
evidence and averaging overall three cell types, 70–80% of
our predictions are supported by at least one line of
evidence.
Figure 2 shows the fraction of predicted enhancers sup-

ported by different combinations of enhancer marks
described above. Focusing on the two most comprehen-
sive marks, DHS site and PhastCons conservation score,
enhancers from the lymphocytes were more supported by
DHSs (75% and 58.7% for B and T cells, respectively)
than those from ES cells (39.8%). On the other hand,
ES cell enhancers were more conserved (39.8%)
compared to enhancers in the lymphocytes (19.5% and
28.3% for B and T cells, respectively).

Predicted enhancers are preferentially located near cell-
type-specific genes. A hallmark of enhancers is their
cell-type-specific activity. In other words, if the predicted
cell-type-specific enhancers are real, then we expect that
they regulate genes having cell-type-specific expression
pattern. To identify genes specifically expressed in a
given cell type, we used a compendium of microarray ex-
pression profiles of 20 human cell types, including B, T
and ES cells. We calculated an expression specificity score
for each gene using an entropy-based measure that
quantifies the skewness of expression level toward a
given cell type (Supplementary Methods). Using this
measure, we ranked genes by their expression specificity
to a given cell type and identified the top 500 genes that
are the most and least specifically expressed. As a baseline
comparison, we randomly selected 500 genes. We repeated
the random selection �100 and reported the average
number for the analysis with random gene set. We then
examined whether predicted enhancers are enriched within
domains of cell-type-specific genes (‘Methods’ section).
Domains are defined as the 20K bp region centered on
the TSS of a gene. All three sets of predictions are

significantly enriched near genes specifically expressed in
their corresponding cell type, but not near either random
genes or non-specifically expressed genes (Supplementary
Figure S2). We also used an alternative definition of
expression domain for the enrichment analysis, i.e. a
genomic region enclosed by two adjacent CTCF binding
sites and contains the TSS of gene under study. We
obtained the same result as with the 20K bp expression
domain definition (Supplementary Figure S3).

The above test examined the entire set of predicted en-
hancers in a given cell type. Next, we did a more stringent
test to determine whether more cell-type-specific predic-
tions are near cell-type-specific genes compared to
shared predictions. It is indeed the case for all subsets of
predicted enhancers (Figure 3). For instance, when
examining T cell-specific enhancers, we found a signifi-
cantly larger number of them were near the top 500T
cell-specific genes (298) while a smaller number of them
are associated with B (142) or ES cells (81), respectively
(Pearson’s �2-test P=4.6� 10�31). The same trend was
observed for enhancers unique to B and ES cells. We
also examined enhancers shared by all three cell types.
As expected, we did not observe any specific association
between shared enhancers and corresponding
cell-type-specific genes (Pearson’s �2-test P> 0.05).

Predicted enhancers are enriched for binding sites of cell-
type-specific TFs. Cell-type-specific enhancers are bound
by cell-type-specific TFs. Therefore, we predicted that
binding sites of cell-type-specific TFs are enriched in our
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Figure 2. Fraction of predicted enhancers supported by different com-
binations of genomic features. Three types of genomic markers for
enhancers are used: distal p300 sites, distal DHS sites, and conserved
sequences identified by the phastCons algorithm. PhastCons, conserva-
tion score based on genome comparison of 17 vertebrates.
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predicted enhancers, particularly in those predictions
unique to each cell type. To this end, we identified a set
of TFs known to play a specific role in a given cell type
based on expert knowledge (36–38). We obtained
ChIP-Seq data for these TFs measured in the specific
cell type. We calculated the overlap between predicted
cell-type-specific enhancers and binding sites of cell-
type-specific TFs. Cell-type-specific enhancers are highly
enriched for binding sites of cell-type-specific TFs
(Figure 4). For instance, B cell-specific enhancers are
enriched for binding sites of Batf, Bcl11a, Ebf, Irf4,
Pax5 and Pu.1, all of which are known to be specific regu-
lators in B cells. The same type of enrichment was also
observed for T and ES cell enhancers. As a control, we
examined the overlap of the predicted enhancers with two
non-specific and irrelevant factors, CTCF and NRSF.
Several recent genome-wide ChIP-Seq studies have
shown that CTCF binding sites are largely cell type invari-
ant (16,39). Consistent with this observation, we did not
observe CTCF binding site enrichment in any subset of
enhancers. NRSF is a repressor of neuronal genes in
non-neuronal cell types, such as stem cells and T and B
cells studied here (40). Consistent with its repressor role,
we did not observe an enrichment of NRSF sites in the
predicted enhancers.

Taken together, the multiple complementary lines of
evidence presented above suggest that the majority of
our predictions could be bona fide enhancers. For
genomic locations of the predicted enhancers and their
supporting evidence, Supplementary Tables S3–S5.

Evolution and sequence polymorphism of T, B and ES cell
enhancers

Next, to gain insights into enhancer evolution and disease
link, we characterized and compared the three sets of

predicted enhancers from two aspects: association with
MEs and impact of enhancer sequence polymorphism on
gene expression and disease etiology.

ES cell but not lymphocyte enhancers are enriched for
exapted sequences derived from transposable
elements. Over the years, researchers had come across
numerous mobile elements that acquired a cellular role,
a process termed ‘exaptation’ (41). Thanks to technology
development such as ChIP-ChIP/Seq, there is a growing
number of reported cases in which highly conserved MEs
act as transcriptional enhancers (25–28). To gain a global
perspective on this phenomenon, we conducted a
genome-wide search for transcriptional enhancers
derived from MEs. To this end, we used a set of 10 402
highly conserved non-coding elements of clear ME origins
in the human genome identified by Lowe et al.(42). These
elements have been under strong purifying selection since
at least the boreoeutherian ancestor (100 Mya) (42). These
sequences are at least 50 bp long and cover just over 1Mb
(0.04%) of the human genome. All four characterized
classes of MEs are present in this set, including long
interspersed elements (LINEs), interspersed elements
(SINEs), DNA transposons and long terminal repeat
retro-transposons (LTRs), with LINEs and SINEs
contributing the bulk of the constrained non-coding
sequence.
We intersected our predicted enhancers with the set of

exapted sequences. Respectively, 137, 168 and 406 pre-
dicted T, B and ES cell enhancers were found to contain
at least one exapted sequence. For all three cell types, the
top three ME families involved are MIR (mammalian
interspersed repeat), CR1 (chicken repeat 1) and L2
(LINE2) (Supplementary Table S6). Notably, these three
families are more ancient compared to younger families
such as Alu and L1. This may reflect the stringent conser-
vation criterion for identifying the exapted MEs by Lowe
et al. Therefore, the actual number of ME-derived enhan-
cers may be higher if less stringent criterion for exapted
sequences is used.
We found two arresting features about the set of enhan-

cers containing exapted MEs. First, ES cell enhancers are
significantly enriched for exapted MEs (P< 10�3) but not
T or B cell enhancers (P=1 and 0.73, respectively)
(Figure 5). Further, ES cell enhancers containing
exapted MEs are significantly enriched near developmen-
tal genes, but not T or B cell enhancers containing exapted
MEs (Supplementary Table S7). Second, we found that
for those enhancers that contain exapted MEs, the
majority of them are cell-type specific (Supplementary
Table S8, Pearson’s �2-test P-values are 6.4� 10�5,
9.6� 10�3 and 9.1� 10�33 for B, T and ES cell enhancers,
respectively). Taken together, our results suggest the
hypothesis that compared to differentiated cells, a larger
proportion of ES cell-specific enhancers are derived
from MEs.

Genetic variations in predicted enhancers and their impact
on gene expression. eQTLs are genomic regions that have
an impact on the expression levels of nearby or distant
genes, either through -cis or -trans action (43).
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Therefore, eQTLs that overlap with putative enhancers
provide functional evidence for the enhancers. To this
end, we compiled a set of eQTL SNPs (termed eSNPs
here for brevity) for both T and B cells from multiple
eQTL studies(1–5). This set contains 76 518 and 7235
SNPs for B and T cell, respectively. We intersected the
eSNPs with our predicted enhancers. Overall, 3.64%
(2786) and 1.52% (110) of eSNPs mapped to B and T
cell enhancers, respectively (Table 1, Supplementary

Tables S9–S10). Compared with the entire set of SNPs
in the dbSNP database (�29 million), the sets of eSNPs
significantly overlap with our predicted enhancers
(One-tailed proportion test P-values are 4.1� 10�239 and
3.4� 10�5 for B and T cell eSNPs, respectively), providing
additional supporting evidence to our predictions.

If an eSNP is embedded in an enhancer then it is likely
part of a transcription factor binding site (TFBS). The
presence of overlapping TFBSs and eSNPs in a predicted
enhancer not only provides strong supporting evidence for
the predicted enhancer it also suggests which TFs bind the
enhancer. To check the overlap between eSNPs and
TFBSs, we compiled a set of 446 non-redundant TF
motifs from three major motif databases, JASPAR (44),
TRANSFAC (31) and Uniprobe (32). We scanned each
enhancer to identify TFBS(s) that overlaps with the
embedded eSNPs. Overall, 34.7% (968) and 71.8% (79)
of the enhancer-associated eSNPs overlap with a TFBS in
B and T cells, respectively. The corresponding TFBSs
belong to 193 and 77 TFs in B and T cells, respectively
(Table 1, Supplementary Tables S9 and S10).

Genetic variations in predicted enhancers and their links to
disease etiology. To date, a genome-wide survey of
enhancer mutations in human diseases has not been con-
ducted. Our catalog of predicted enhancers makes it
possible to systematically predict enhancers involved in
human diseases. To do so, we took advantage of a com-
prehensive catalog of disease/trait-associated SNPs
curated from over 707 GWAS studies (15). For brevity
and in contrast with eQTL-associated SNPs, we term
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these SNPs gSNPs. In total, the current version of the
catalog contains 3409 non-redundant gSNPs implicated
in 424 diseases/traits. Similar to the eSNP analysis
described above, we mapped this collection of gSNPs
onto our full set of predicted enhancers. In total, 3.72%
(127), 3.29% (112) and 4.05% (138) of the gSNPs were
mapped to B, T and ES cell enhancers, respectively
(Table 1, Supplementary Tables S11–S13). Compared to
the entire set of SNPs in the dbSNP database, the sets of
gSNPs significantly overlap with our predicted enhancers
(one-tailed proportion test P-values are 2.5� 10�14 and
3.0� 10�8, and 2.2� 10�7 for B, T and ES cell enhancers,
respectively).

To gain a mechanistic understanding of the
gSNP-associated enhancers in disease etiology, like the
eSNP analysis above, we identified TFBSs overlapping
the gSNPs that are embedded in predicted enhancers.
Overlap with TFBSs suggests that these gSNPs could
modulate the binding of important TFs responsible for
the disease etiology. Among the three sets of gSNPs,
65.4% (B cell), 67.9% (T cell) and 60.9% (ES cell)
overlap with a TFBS (Table 1, Supplementary Table
S11–S13). Supplementary Table S14 shows the top 10
gSNPs for each cell type based on their disease association
P-values from GWAS studies. As expected, B and T
gSNPs are enriched for diseases due to immune
dysregulation or tumor of the lymphoid system, such as
rheumatoid arthritis, systemic lupus erythematosus, psor-
iasis and leukemia. In stark contrast, embryonic stem cell
(ESC) gSNPs are enriched for various types of cancers,
including breast cancer, testicular germ cell cancer, pan-
creatic cancer, colorectal cancer and nasopharyngeal car-
cinoma. The same enrichment trend was also observed in
the full set of gSNPs. Overall, 32, 31 and 34 different
diseases were found to have a link to B, T and ES cell
enhancers, respectively. Among these, 6, 5 and 12 are
cancers, respectively. The proportion of cancers that are
associated with SNPs that map to ES cell enhancers
(37.5%) is significant larger than those for B (17.2%)
and T (16.1%) cell enhancers (one-tailed proportion test
P-values are 0.05 and 0.01, respectively).

Recently, Wong et al. (45) used a compendium of gene
expression profiles in ES cells and various differentiated
cells to identify ES cell-specific gene modules. They then
compared the ES cell gene modules to various human
cancer cell expression profiles and found that many ES

cell gene modules were active in various cancers. This
result provided evidence for the hypothesis that ES cells
and at least some cancer stem cells share a common
genetic program. However, no systematic analysis was
conducted to reveal the cis-regulatory elements (e.g. en-
hancers) for the regulation of the shared gene expression
program. Our result here provides a complementary
evidence for the above hypothesis by reporting a set of
ES cell-specific enhancers that are enriched near
cancer-related genes and harbor SNPs that are linked to
cancers.

DISCUSSION

In summary, we have identified and computationally
validated a large population of enhancers in human B, T
and ES cells. Why there are 50% more enhancers in ES
cells compared to differentiated T and B cells? The answer
may lie in the unique developmental requirement and
chromatin characteristics associated with ES cells. ES
cells exhibit a global chromatin structure that is more
‘open’ than that found in differentiated cells (46).
Therefore, one can speculate that protein–DNA inter-
actions at ES-cell-specific enhancers may be necessary to
prevent the enhancers from assembling into repressive
chromatin structures during differentiation that may be
resistant to activation. In support of this hypothesis,
accumulating lines of evidence suggest that enhancers of
cell-specific genes interact with pioneer TFs in ES cells and
at other early stages of development, long before the genes
are transcribed (47). For instance, the liver-specific
enhancer for the Abl1 gene is occupied by the FoxD3
TF in ES cells. Other examples include enhancers for the
thymocyte-specific Pctra gene and macrophage/dendritic
cell-specific Ill2b gene. It has been proposed that these
early protein–DNA interactions essentially prepare or
poise the enhancers for later activation (20,21,47). In
light of the observation that many cell-specific enhancers
are occupied in ES cells, it is plausible that more enhancers
are occupied in ES cells compared to differentiated cells.
Our results demonstrate that ES cells have a higher

fraction of conserved enhancers than differentiated
lymphocytes. A likely explanation is that the higher con-
servation of ES cell enhancers is simply a measure of es-
sentiality of early embryo maintenance and development.
In ES cells, there might be a higher number of critical

Table 1. eQTL and GWAS SNPs located in predicted enhancers

No. of Enhancers No. of
SNPs

Median distance
to closest TSS (bp)

No. of enhancers
overlap TFBS

No. of SNP
overlap TFBS

Median distance
to closest TSS (bp)

No. of TFs
involved

eQTL SNPs (B:76 518, T:7235)
B 1987 2786 16 609 751 968 15 928 193
T 110 110 5673 77 79 3732 77

GWAS SNPs (3409)
B 128 127 30 654 84 83 30 654 89
T 114 112 10 820 75 76 8640 95
ESC 138 138 14 907 84 84 20 590 94

Total number of eQTL/GWAS SNPs used in this study is shown in parenthesis.
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regulators that need precise protein–DNA interactions
with their cis-regulatory elements to regulate mission-
critical functions, i.e. core self-renewal and pluripotency
genes. Such precise regulatory control may be less critical
during adult homeostasis (e.g. in B and T cells).
In mammals, retro-transposons are particularly active

in germ cells and in early embryos (48). The reason for the
increased ME activity is probably due to the relaxation of
epigenetic control in these cells. Indeed, genome-wide
loss of DNA methylation accompanies the acquisition of
pluripotent states in primordial germ cells and
pre-implantation embryos, which opens a window of op-
portunity for MEs to escape from host restraint (49,50).
This suggests an adaptive strategy for transcriptional
networks associated with germinal and pluripotent
states. Previous studies have reported L1 mobilization
occur during early embryonic development in humans,
as evidenced by the retro-transposition of a transgenic
L1 element observed in human ES cells (51). Our study
provides additional evidence to support the hypothesis
that exapted MEs play a more significant role in shaping
the transcriptional network in ES cells than differentiated
cells.
Our results demonstrate the power of global compara-

tive and integrative analysis for gaining insights into
cell-type-specific enhancers. Traditionally, cell-type-
specific activity of enhancers is difficult to determine.
One approach is to combine DNA sequence analysis
with a compendium of gene expression microarray data,
such as what is done in (52). The advent of global and
cell-type-specific chromatin modification maps provides
another effective means to identify cell-type-specific en-
hancers at a genome scale. Future computational
analyses using additional cell types along with functional
validations will significantly advance the rate and scale at
which cell-type-specific enhancers are characterized in
humans.
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