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Abstract 

Ischemia-r e perfusion (IR) induced acute kidney injury (AKI) features increased renal vascular resistance, which is 
pr edominantl y r egulated by adjustments in affer ent arteriolar diameter. Sphingosine-1-phosphate (S1P), a bioacti v e 
sphingolipid metabolite, is a potent vasoconstrictor in afferent arterioles. We hypothesized that IR enhanced afferent 
arteriolar sensitivity to S1P-induced vasoconstriction, thus contributing to renal microvascular dysfunction and kidney 
injury in AKI. The impact of IR on afferent arteriolar reactivity to S1P was assessed using the in vitro blood-perfused 

juxtamedullar y ne phr on pr e par ation in male r ats subjected to 60 min of bilater al renal arterial isc hemia follow ed by 24 h of 
r e perfusion. Baseline diameter of afferent arterioles declined significantly following IR. S1P evoked 

concentration-de pendent v asoconstriction in both sham and IR r ats. How ever, the S1P concentr ation-r esponse curv e 
left-shifted after IR and its EC 50 reduced by 8-fold ( P < 0.05), suggesting enhanced afferent arteriolar reactivity to S1P. S1P 
r ece ptor 2 (S1PR2) blockade with JTE-013 increased arteriolar diameter by 38 ± 7% following IR contrasted to a 9 ± 3% 

increase in sham rats ( P < 0.05), indicating that endogenous S1P exerts a significant impact on afferent arteriolar tone after 
IR. Furthermore, IR upregulated mRNA and protein of S1PR2 in isolated preglomerular microvessels and elevated S1P 
content in kidney homogenates. Conv ersel y, following IR, v asor esponsi v eness to S1PR1 agonist, sphingosine, endothelin-1, 
nor e pine phrine, and angiotensin II did not differ from sham controls. JTE-013 treatment reduced plasma creatinine, tubular 
damage, and kidney ROS accumulation in IR rats. These data establish that IR enhances renal microvascular S1P-S1PR2 
signaling and promotes kidney sphingolipid metabolites that could negatively affect kidney tissue perfusion, leading to AKI. 
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r ansla tional Sta tement 

ffer ent arterioles ar e the crucial pr eglomerular micr ov ascu-
ar segments that regulate r enal b lood flow and glomerular
ydr ostatic pr essur e. This study r ev eals that r enal ischemia-
 e perfusion (IR) enhanced S1P-mediated vasoconstriction of jux-
amedullar y affer ent arterioles via S1P r ece ptor 2 acti v ation
nd increased kidney sphingolipid metabolites. The hyperre-
ctivity of afferent arterioles to S1P-mediated vasoconstriction
ould r e pr esent a pathophysiological mechanism leading to
he persistent increase of renal vascular resistance and kid-
e y h ypoxia in IR. Inhibiting S1P r ece ptor 2 acti v ation may
erve as a therapeutic target for mitigating IR-induced kidney
njury. 

ntroduction 

enal ischemia-r e perfusion injur y (IR) is one of the leading
auses of acute kidney injury (AKI), a significant unsolved clini-
al pr ob lem with high morbidity and mortality. 1 The hallmarks
f IR-induced renal hemodynamic alterations are tubular injury,

ncr eased r enal v ascular r esistance (RVR) and r educed glomeru-
ar filtr ation r ate (GFR) and r enal b lood flo w (RBF). 2-6 P athophys-
olog ic chang es in kidney microcirculation play a critical role
n the development of AKI and the AKI to chronic kidney dis-
ase (CKD) transition, 7-10 but the pathological cellular or molec-
lar signaling mechanisms underlying the increased RVR after

R ar e inconclusi v e. Affer ent arterioles ar e the major r esistance
icr ov essels contr olling r enal v ascular tone and regulating RBF
nd GFR. Afferent arteriolar r eacti vity is influenced by a variety
f vasoconstrictors and vasodilators. 11-13 Inappropriate adjust-
ents of afferent arteriolar reactivity during IR could reduce

BF and oxygen deli v er y to kidney par enchyma and compound
icr ov ascular and epithelial injury. 

S1P is a metabolite of sphingom y elin and is involved in
i v erse physiological and pathophysiological processes includ-

ng cell proliferation and differentiation, ang iog enesis and
mmune cell tr affic king via acti v ation of fiv e S1P r ece ptor (S1PR)
ubtypes, S1PR1-S1PR5. 14 , 15 S1P has also emerged as an impor-
ant mediator of vascular tone on both non-renal and renal
 esistance v essels. 16-22 Our r ecent studies r ev eal that S1P is a
otent vasoconstrictor of the preglomerular microvasculature

PGMV) in rats, pr edominantl y affer ent arterioles via acti v ation
f S1PR1 and S1PR2, while having no detecta b le effect on efferent
rterioles. 21 , 23 The exclusi v e and potent v asoconstrictor effect of
1P on afferent arterioles strongly implies a fundamental impor-
ance of S1P signaling in controlling glomerular capillar y pr es-
ure and RBF. Accumulating evidence supports a critical role
or S1P in the development of IR-AKI in mice but these stud-
es were largely focused on tubular injury or endothelial per-

eability. 24-30 The role for S1P in renal microvascular dysfunc-
ion, however, has never been addressed under IR conditions.

e hypothesized that renal IR leads to enhanced sensitivity of
fferent arterioles to S1P-mediated vasoconstriction, thus con-
ributing to renal micro vascular d ysfunction and kidney injury
n IR-induced AKI (IR-AKI). 

In this study, we used the bilateral 60-min IR rat model which
isplays renal microvascular dysfunction in the early phase of
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31 , 32 and develops renal microvascular rarefaction 

33 and kid- 
ey fibrosis with persistent apoptosis 34 in 3-4 wk. Moreover, this 
odel is r elev ant to clinical setting in which IR develops, includ- 

ng major car diac sur ger y, sev er e hemorrha ge , intr aoper ati v e
ypotension, and m y ocardial infar ction. 35 The in vitr o b lood- 
erfused juxtamedullar y ne phr on (JMN) pr e paration permitted 

o direct assessment of afferent arteriolar responses to exper- 
mental manipulations by application of e xo genous S1P, S1PR 

gonist or antagonist, S1P precursor, and other common vaso- 
onstrictors associated with renal hemodynamic regulation. We 
etermined mRNA and protein expression of S1PR on isolated 

GMV. Mor eov er, we measur ed the major sphingolipid meta bo- 
ites in kidney homogenates to determine the impact of IR on 

idney sphingolipid metabolism. Finally, we also determined the 
mpact of S1PR2 blockade on kidney function and injury. 

ethods 

nimal 

 total of 265 male Sprague-Da wle y rats weighing 300-400 g 
Charles Ri v er La bor atories) w ere used. All animals w ere housed
n a r ev ersed 12-h light/12-h dark cycle and had ad libitum access 
o water and standar d cho w (PMI Nutrition International, LLC). 
ll animals were maintained according to the National Insti- 

utes of Health Guide for the Care and Use of La borator y Ani- 
als. All pr ocedur es wer e appr ov ed by the Institutional Animal 

are and Use Committee at UAB. 

at IR Model 

idney IR was induced by occluding both renal arteries for 
0 min followed by 24 h of r e perfusion as described previ- 
usly. 31 , 32 , 36 Under anesthesia with ketamine [100 mg/kg. body 
eight (BW)] and xylazine (10 mg/kg. BW) injection intraperi- 

oneally (IP), rats were kept on a homeothermic controlled table 
o maintain body temperature at 36.5-37 ◦C. Buprenorphine SR 

1.2 mg/kg. BW) was given subcutaneously prior to surgery. After 
0 min of ischemia, the clamps wer e r emov ed and the r e perfu-
ion was confirmed by visual inspection of the kidney surface. 
fter 24 h of r e perfusion, the animals wer e r e-anesthetized by 
th yl-1-meth ylprop yl-thiobarbiturate (Inactin 

R ©, 100 mg/kg. BW, 
P), and the right kidney was perfused for the JMN preparation. 
ome r ats w er e pr e par ed for kidney collection and PGMV isola-
ion. Sham-oper ated r ats serv ed as contr ols. Rats wer e randoml y
ssigned to each group and monitored closely post-surgery to 
nsur e no sev er e distr ess ( > 20% weight lost). Group size was
etermined based on our previous studies with a power of 80% 

o detect an effecti v e size of 1.5 statistic deviation or larger under 
he significance level of 0.05. 21 , 22 , 32 , 37-39 

he In Vitro Blood-Perfused JMN in Rats 

he JMN pr e paration w as used for assessing affer ent arteriolar 
 eacti vity as described pr eviousl y. 21 , 22 , 32 , 37-39 Two identical rats 
blood and kidney donors) were used for one JMN preparation 

nd only one afferent arteriole was assessed in each preparation. 
lood was centrifuged and processed to remove white blood cell 
raction and platelets. Plasma and w ashed er ythr ocytes wer e 
econstituted to achieve a final hematocrit of ∼33%. The right 
 enal arter y w as cann ulated and perfused with Tyr ode’s buffer 
ontaining 5.2% bovine serum albumin (BSA). After completion 

f the microdissection, the kidney perfusate was switched from 

.2% BSA perfusate to the r econstituted b lood. Affer ent arteriole 
as identified by tr ac king RBF direction to the attac hed glomeru-
us. The tested drugs were delivered via superfusate (1% BSA- 
yrode’s buffer) onto the inner surface of the kidney via a multi- 
hannel v alv e. At the conclusion of each experiment, the kidney 
as superfused with 55 m m KCl 32 , 38 to exclude a general vas- 

ular failure of the contractile apparatus. The image of the ves- 
els was displayed on a video monitor via a high-resolution NC- 
0 Newvicon video camera (DAGE-MTI) and recorded on digital 
ideo disk for later analysis. The inner arteriolar diameters were 
easured at 12-s intervals at a single site of the middle segment 

f afferent arterioles using an image-shearing monitor (Model 
08, Vista Electronics) and averaged from all diameter measure- 
ents during the last 2 min of each 5-min treatment period. 

xperimental Protocols 

fter an initial equilibration period ( > 20 min) with the reconsti- 
uted blood perfusion at perfusion pressure of 100 mmHg, each 

xperiment started with a 5-min control period to esta b lish the 
teady state arteriolar diameter (Baseline). 

xperiment 1: Impact of IR on Afferent Arteriolar 
esponses to Exogenous S1P 

fter a 5-min baseline recording, the influence of S1P on affer- 
nt arteriolar r eacti vity w as assessed in sham and IR kidneys
y exposure to increasing S1P (ENZO Life Sciences, Inc.) concen- 
rations over a log concentration scale (10 −10 to 10 −5 M, n = 7
idneys/group). Eac h concentr ation of S1P was superfused for 5 
in and the arteriolar diameter was measured. 

xperiment 2: Impact of IR on Afferent Arteriolar 
esponses to S1P Precursor, Sphingosine 

ecause biologically inert S1P analogs are not commercially 
v aila b le , w e used sphingosine as a “physiologically inert ne g-
ti v e contr ol” to determine if the v asoconstriction observ ed is
1P specific or a non-specific effect of S1P. Similar to the S1P 
oncentration-responses, after a 5-min baseline was recorded, 
phingosine (Cayman Chemical, 10 −10 to 10 −5 M) was assessed 

n sham and IR kidneys ( n = 6 kidneys/group). 

xperiment 3: Impact of IR on Afferent Arteriolar 
esponses to S1PR1 Activ a tion 

1RP1 was detected in PGMV. 21 To determine if the enhanced 

ensiti vity of affer ent arterioles to S1P is via S1PR1 acti v a-
ion, the concentration-response to the selective S1PR1 agonist, 
EW2871 (10 −10 to 10 −5 M, Cayman Chemical) was assessed in 

ham and IR kidneys ( n = 6 kidneys/group). 

xperiment 4: Effect of S1PR2 Antagonist on Afferent 
rteriolar Diameter of IR Rats 

e applied a selecti v e S1PR2 b locker (JTE-013) to the inner corti-
al surface of kidneys to determine if the enhanced RVR in IR rats
r ose fr om S1PR2 acti v ation, because specific pharmacological 
1PR2 agonists were not available. After a 5-min baseline period, 
idneys were exposed to JTE-013 (10 −5 M, Tocris Bioscience) over 
0 min. Three groups were studied: sham + JTE-013, IR + JTE- 
13 compared to the time-course in IR kidneys without JTE-013 
 n = 6 kidneys/group). 
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xperiment 5: Impact of IR on Afferent Arteriolar 
esponses to Endothelin-1 (ET-1), Norepinephrine (NE), 
nd Angiotensin II (Ang II) 

o verify if the enhanced vasoconstriction of afferent arterioles
s unique to S1P or uniform to vasoconstrictors in IR rats, we
ssessed the vasoconstrictor properties of other G-protein cou-
led r ece ptors using ET-1, NE, or Ang II. Briefly, after a 5-min
aseline period, kidneys were exposed to increasing concentra-
ions of ET-1 (10 −13 -10 −8 M), NE (10 −8 , 10 −7 and 10 −6 M), or Ang II
10 −12 -10 −7 M). Each JMN pr e paration w as onl y used for one drug
ested ( n = 6 kidneys/group). 

GMV Isolation for S1pr mRNA Expression 

GMV were isolated as described previously. 21 , 40 , 41 Under anes-
hesia, abdominal aorta was cannulated for retrograde perfu-
ion with physiological buffer solution (PBS) to flush out blood
rom kidneys. Medulla and intrarenal arteries were removed.
ortical tissue was gently pressed through a 100 μm nylon sieve

BioDesign, Inc.), and the retentate washed with ice-cold PBS.
he vascular tissue on the sieve was transferred into RNAlater 

TM 

tabilization solution (Invitrogen, Thermo Fisher Scientific) and
tored at −20 ◦C to prevent mRN A de gr adation. Se gments of ar cu-
te and interlobular arteries with attached afferent arterioles, or
GMV, were identified and collected by microdissection using a
tereoscope for mRNA extraction. 

Total RNA was extracted from isolated PGMV or kidney cor-
ical tissue homogenates with TRIzol (Invitrogen) and treated
ith DNAase I to r emov e genomic DNA and then purified with

n RNA purification kit (Invitrogen). The DNA-fr ee RNA w as
 ev erse transcribed to cDNA with use of the SuperScript IV
T Kit (Invitrogen). cDNA was amplified with SYBR Green PCR

n the LightCycler R © 480 system (Roche Diagnostics) and spe-
ific primers ( Supplementary Table 1 ) for 40 cycles. Steady-state
RN A levels w ere calculated according to threshold cycle gen-

rated with the LightCycler R © 480 softw ar e. Expr ession of each
RNA was normalized to 18 s and standardized to the sham

roup as 1. 

estern Blot Analysis for S1PR in Isolated PGMV 

he isolation of PGMV was described pr eviousl y. 21 , 40 Simi-
ar to the aortic r etr ograde perfusion as mentioned a bov e,
ut the kidneys were flushed with 5.2% BSA perfusate fol-

owed by 1% Evans blue. The renal cortical tissue was pressed
hrough a 100 μm nylon sieve and rinsed with ice-cold PBS.
he vascular tissue remaining on the sieve was transferred

o a 20 mL-PBS containing albumin, dithiothreitol, collage-
ase type II and trypsin inhibitor (4 mg/each) for a 20-min

ncubation at 36.5 ◦C. The vascular tissue was removed from
he enzyme solution and transferred to a 70 μm nylon sieve
her e it w as vigor ousl y rinsed with ice-cold PBS. The sieve
ith the retained vascular tissue was transferred to a petri
ish containing ice-cold PBS. Segments of interlobular artery
ith attached afferent arterioles were collected using a stere-
scope and wer e stor ed at −80 ◦C until anal ysis. Pr oteins (20 μg)
er e se parated on a 4-12% Bis-Tris electr ophor esis gel (Invitro-

en) and were electrophoretically transferred onto nitrocellu-
ose membranes. The membranes were blocked with 5% fat-free

ilk in Tris-buffered saline and were incubated with subtype-
pecific primary antibodies against S1PR1 (1:500, ab77076, 
bcam), S1PR2 (1:500, sc-25491, Santa Cruz), and S1PR3 (1:500,
b108370, Abcam) overnight (4 ◦C), 21 respectively. The washed
embr anes w ere then incubated with donkey anti-rabbit IgG

orseradish peroxidase conjugate (GE HealthCare). Densitome-
r y w as performed using enhanced chemiluminescence detec-
ion (Konica Corporation, Japan) and was normalized by β-
ctin expression using UN-SCAN-IT software (Silk Scientific,
nc.). 

phingolipid Metabolite Measurement 

ndogenous sphingolipid metabolites were measured in kidney
ortical and medullary tissue homogenates and plasma using
he high-performance liquid c hromatogr aphy-tandem mass
pectr ometr y (HPLC-MS/MS) technologies at the Lipidomics
ore Facility, Medical University of South Carolina (MUSC).
riefly, after 24 h of post-sham or IR ( n = 4 rats/group), kid-
eys were perfused with PBS to flush out blood. Cortical and
edullary tissue were separated and were immediately frozen

n liquid nitrogen. The kidney tissues were homogenized with a
issue homogenation buffer containing 0.25 M sucrose, 25 m m
Cl, 50 m m Tris, and 0.5 m m EDTA as described by Bielawski
t al. 42 Pr otein w as measur ed by Bio-Rad pr otein assay (Bio-Rad
aboratories, CA, USA). Each kidney sample contained 1 mg pro-
ein in ∼ 100 μL and was shipped with dry-ice for analysis by the
USC Lipidomics Core Facility team. 

reatment With S1PR2 Bloc k er on Kidney Function, 
istology, and Reacti v e Oxygen Species Accumulation 

n IR Rats 

ecause mRNA and pr otein expr ession of S1PR2 were increased
n PGMV after IR, a set of rats was randomly treated without or
ith JTE-013 ( n = 6-8 r ats/eac h group). JTE-013 (0.1 mg/kg. BW,

P) w as gi v en 30 min prior to isc hemia and w er e r e peated at
he time of r e perfusion (IR + JTE-013). After 24 h of r e perfusion,
 lood w as collected, and the left kidneys were harvested and
nap frozen in OCT blocks. The right renal artery was cannu-
ated and flushed with PBS followed by a 4% paraformaldehyde
olution. The fixed kidney sections (3-4 μm) were stained with
ematoxylin and eosin (HE) for histopathological analysis. 31 , 39 , 43 

lasma creatinine was assessed by picric acid assay based on the
 affe r eaction. Kidney injur y w as assessed in a blinded fashion
n 10 randomly selected non-overlapping fields from the cortex
sing Paller’s semiquantitati v e scale. 44 Ten pr oximal tubule sec-
ions from each field were randomly scored. A score was given
or loss of brush-border of the proximal tubule (1 point), cyto-
lasmic vacuolization (1 point), tubular epithelial cell flatten-

ng (1 point), interstitial edema (1 point), cell necrosis (1 or 2
oints), cell membrane bleb formation (1 or 2 points), and tubu-

ar lumen obstruction (1 or 2 points). A count of zero indicated
o evidence for these changes. The maxim um scor e per field

rom the average of ten tubule sections was 10 and the total was
00 for each kidney, with higher scor es r e pr esenting mor e sev er e
amage. 

For the in situ detection of ROS, a new set of sham, IR and
TE-013 treated IR rats ( n = 5-7 rats/each group) was prepared
4 h post-surgery for the snap-frozen kidney collection using
 cryosectioning technique and fluorescence microscopy. 45-47 

riefly, after the kidney was harvested and cut longitudinally
nto three portions, the middle portion was embedded in OCT
ollowed by rapidly freezing on a dry-ice chilled isopentane bath.
ryosections (5-7 μm) were prepared immediately and were

https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf024#supplementary-data
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Figure 1. Impact of ischemia-r e perfusion (IR) on affer ent arteriolar r eacti vity to e xo genous S1P. A: Afferent arteriolar response to S1P was assessed in male sham- 
operated (sham) and ischemia-r e perfusion (IR) rats ( n = 7/each group) using the in vitro blood-perfused juxtamedullary nephron preparation while perfusion pressure 

was held at 100 mmHg. B: The same data are normalized as a percentage of the baseline diameter [Control (Con)]. The EC 50 was calculated and analyzed based on 
a non-linear r egr ession with Sigmoidal dose-response (GraphPad Prism 10). IR left-shifted the S1P r esponse-curv e with a significant decline in EC 50 ( P < 0.05). Values 
ar e expr essed as the mean ± SEM. For within-gr oup anal ysis, a one-w ay r e peated-measur es ANOVA with a Dunnett’s post hoc test was performed. ∗P < 0.05 vs. 
control diameter in the same group. Comparisons between groups were performed with unpaired t- test. † P < 0.05 vs. sham at the same concentration. n r e pr esents 

the numbers of rats. 
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ncubated with the fluorogenic probe, H 2 DCFDA (20 μm , Invit- 
ogen) for 30 min at 37 ◦C. Images were captured under the same 
xposure time (1 s) and ×20 magnification using a digital cam- 
ra (Olympus DP12) attached to an Olympus BX40 microscope 
Olympus America). The density of fluorescence staining was 
nal yzed using Ima geJ 48 in a b linded fashion. Ten fields were 
andoml y taken fr om r enal cortex or outer medulla and aver- 
ged for each kidney. 

ta tistical Anal ysis 

ll values are expressed as a mean ± SEM. Arteriolar diame- 
er w as pr esented as actual diameter and/or is normalized as 
ercentage of baseline diameter. The concentration for a half- 
aximal vasoconstriction (EC 50 ) of S1P was calculated by an 

bjecti v e appr oach using a sigmoidal curve (GraphPad PRISM 

oftw ar e). The comparisons within group were made by one- 
ay ANOVA for repeated measures followed by post-hoc anal- 

sis with Dunnett’s multiple range test. Statistical differences 
cr oss m ultiple gr oups wer e determined using one-w ay ANOVA 

nd Tukey’s post-hoc test while unpaired t -test w as onl y used 

or the comparisons between two groups. A P value < 0.05 was 
onsider ed statisticall y significant. 

esults 

R Enhanced Afferent Arteriolar Vasoconstriction to S1P 

igure 1 illustrates the effect of e xo genous S1P on afferent arteri- 
le diameter of sham and IR rats after 24 h of r e perfusion. Base-

ine arteriolar diameter significantl y decr eased in IR compared 

o sham rats ( Figure 1 A, 11.9 ± 0.7 vs. 14.7 ± 0.5 μm, P < 0.05).
uperfusion of S1P evoked profound concentration-dependent 
asoconstriction in both groups. The S1P response, however, was 
ignificantly enhanced in IR as evidenced by a leftward shift in 

he S1P concentration-response curve ( Figure 1 B). The EC 50 of 
1P (calculated using a sigmoidal dose-response curve) was sig- 
ificantly lower in IR than the EC 50 in shams (64 vs. 521 n m ,
 < 0.05), indicating that IR afferent arterioles ar e mor e sensi- 

i v e to S1P. 
fferent Arteriolar Responses to Sphingosine or S1PR1 

gonist Were Unaltered by IR 

ecause of the lack of “biologically inert S1P analogs,” we used 

phingosine as the S1P negati v e contr ol. Superfusion of sphin- 
osine to sham rats caused mild vasoconstriction of afferent 
rterioles, reducing the diameter to 85 ± 6% of the baseline at 
0 −5 M ( Figure 2 A). The sphingosine concentration profile was 
ndistinguisha b le between sham and IR, suggesting that S1P acts 
hrough its specific S1PR activation. 

We also determined afferent arteriolar response to S1PR1 
gonist, SEW2871. Similar to our previous report, 21 application of 
EW2871 caused vasoconstriction in sham rats, reducing diam- 
ter to 78 ± 4% of the baseline at 10 −5 M ( Figure 2 B). IR did not
lter the SEW2871 concentration-response profile. 

1PR2 Inhibition Markedly Increased Afferent 
rteriolar Diameter in IR Rats 

igure 3 A shows the impact of the selective S1PR2 antagonist, 
TE-013, on baseline arteriolar diameter over a time-course. As 
xpected, baseline diameter declined significantly in IR versus 
hams ( P < 0.05). Acute exposure to JTE-013 (10 −5 M) slightly 
ncreased the sham arteriolar diameter but dilated IR arteri- 
les dr amatically ( F igure 3 A). The diameter of afferent arte-
ioles was almost completely recovered in the IR + JTE-013 
r oup compar ed to the sham gr oup after a 30 min super-
usion with JTE-013 (15.3 ± 1.4 vs. 16.1 ± 0.7 μm). Figure 
 B illustrates a 38 ± 7% of increase in IR contrasted to a
 ± 3% increase in shams ( Figure 3 B, P < 0.05). Without JTE-
13, the IR arteriolar diameter r emained sta b le ov er the entir e
tudy. This suggests that endogenous S1PR2 acti v ation exerts 
 greater influence on afferent arteriolar tone in IR than in 

hams. 

fferent Arterioles From IR Rats Maintained Normal 
asoconstriction to ET-1, NE, or Ang II 

o determine if the enhanced vasoconstriction is uniform to 
asoconstrictors or is unique to S1P in IR kidneys, we assessed 
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Figure 2. Impact of ischemia-r e perfusion (IR) on afferent arteriolar reactivity to sphingosine and S1P receptor 1 (S1PR1) agonist. Afferent arteriolar responses to 
sphingosine (A, the precursor of S1P) or SEW2871 (B, a selecti v e S1PR1 a gonist) wer e assessed in male sham and IR rats. The data are normalized as a percentage of 

the baseline diameter [Control (Con)] for each group. No differences were detected between sham and IR. Values ar e expr essed as the mean ± SEM. For within-group 
anal ysis, one-w ay r e peated-measur es ANOVA with a Dunnett’s post hoc test w as performed. ∗P < 0.05 vs. baseline diameter in the same gr oup. n r e pr esents the 
numbers of rats. 

Figure 3. Impact of S1P r ece ptor 2 (S1PR2) inhibition on afferent arteriolar diameter of ischemia-r e perfusion (IR) rats. A: Inhibition of S1PR2 acti v ation with JTE-013 (10 

μm ) on afferent arteriolar diameter was assessed in male sham and IR rats after 24 h of r e perfusion. JTE-013 led to greater vasorelaxation in IR than the response in 
sham while IR afferent arteriolar diameter remained unchanged during superfusion of a vehicle. B: Data are expressed as the percentage increases in diameter at the 
end of JTE-013 superfusion. Values are means ± SEM ( n = 6/group). For within-group analysis, one-way repeated-measures ANOVA with a Dunnett’s post hoc test was 
performed. ∗P < 0.05 vs. baseline diameter in the same group. Comparisons between groups were performed with a one-way ANOVA and Tukey’s post-hoc test with 

† P < 0.05 vs. sham rats and # P < 0.05 vs. IR rats. n r e pr esents the numbers of rats. 
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ffer ent arteriolar r esponses to the most common r enal v aso-
onstrictors, ET-1, NE, and Ang II. Afferent arteriolar responses
o ET-1 ( Figure 4 A) or NE ( Figure 4 B) were almost identical
etween sham and IR rats. The vasoconstrictor response to Ang
I ( Figure 4 C) was also similar betw een the tw o gr oups exce pt
ng II at 10 −8 M where the vasoconstriction to Ang II was atten-
ated in IR ( P < 0.05 vs. shams). These observations support that
he enhanced vasoconstriction in our IR rat model is unique to
1P. 

R Upregulated S1pr2 Mrna and Its Protein Expression 

n Isolated PGMV 

igure 5 illustrates the mRNA and protein expression of three
1PR1, S1PR2, and S1PR3 in isolated PGMV of sham and IR rats
4 h of r e perfusion. S1pr2 mRNA expr ession incr eased signifi-
antly in PGMV of IR rats ( Figure 5 A). In contrast, both S1pr1
nd S1pr3 mRNA expressions wer e unalter ed in PGMV after
R. Figure 5 B shows immunoblot images of S1PR protein expres-
ion in isolated PGMV from sham and IR rats. Consistent with
RNA expression, S1P2R protein expression was also signif-
cantl y incr eased in IR PGMV ( Figur e 5 C, P < 0.05) whereas
1PR1 was similar between IR and sham rats. Similar to our
revious study, 21 we did not detect S1PR3 from both groups.
hese results demonstrate that IR increased S1PR2 expression in
GMV. 

R Increased Sphingolipid Metabolite Contents in 

idney Tissues 

igure 6 represents a total of 18 sphingolipid metabolites
easur ed in r enal cortical and the outer medullary tissue

omogenates at 24 h post-IR. The data are normalized by the
 especti v e sham contents, ther efor e, the data a bov e 1 indicate
ncreases in the sphingolipid metabolites. The raw data are pro-
ided in Supplementary Table 2 . Among them, ther e wer e 12
nd 8 sphingolipid metabolites that increased significantly in
ortical ( Figure 6 A) or medullary ( Figure 6 B) homogenates of IR
idneys, r especti v el y ( P < 0.05). Importantl y, S1P content w as

ncreased 2.6-fold from 1.2 ± 0.1 to 3.2 ± 0.5 pmol/mg protein
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Figure 4. Afferent arteriolar responses to endothelin-1 (ET-1, A), norepinephrine (NE, B) and angiotensin II (Ang II, C) in male sham-operated (sham) or ischemia- 
r e perfusion (IR) rats. Data are normalized by a percentage of the baseline diameter [control (Con)]. No difference was detected on ET-1, NE, or Ang II between sham and 

IR exce pt an atten uated v asoconstriction to 10 −8 M Ang II in IR. Values are means ± SEM ( n = 6/per group in each set). For within-gr oup anal ysis, one-w ay r e peated- 
measures ANOVA with a Dunnett’s post hoc test was performed. ∗P < 0.05 vs. baseline diameter in the same group. Comparisons between groups were performed 
with unpaired t -test. † P < 0.05 vs. sham at the same concentration. n represents the numbers of rats. 

Figure 5. mRNA and protein expression of S1P receptors (S1PR) 1-3 in isolated preglomerular microvessels (PGMV) of sham-operated rats (sham) and rats subjected 
isc hemia follow ed by 24 h of r e perfusion (IR). A: The total mRNA of S1pr2 w as significantl y incr eased in PGMV isolated fr om IR rats wher eas the mRNA lev els of S1pr1 

and S1pr3 remained unchanged. B: Re pr esentati v e Western b lot ima ges for S1PR1, S1PR2, and S1PR3 expression in PGMV isolated from sham and IR rats. β-actin 
serves as a loading control and is shown in the bottom of each panel. C: densitometry analysis of S1PR protein expression. S1PR2 protein expression was significantly 
increased in IR PGMV. Values are means ± SEM. Comparisons between groups were performed with unpaired t- test. † P < 0.05 vs. sham for each S1PR. n r e pr esents the 
numbers of rats. 

Figure 6. Sphingolipid metabolites are upregulated in kidney tissue homogenates of ischemia-r e perfusion (IR) rats. The content levels of 18 endogenous sphingolipid 
meta bolites in r enal cortical (A) and medullar (B) tissue homogenates of sham and IR rats after 24 h of r e perfusion, r especti v el y, by using the liquid c hromatogr aphy- 
mass spectr ometr y (LC/MS) method. The data are normalized by the r especti v e sham contents. The data a bov e 1 indicate incr eases. The raw data ar e pr ovided 
in Supplementary Table 1 . Values are expressed as means ± SEM. Comparisons between groups were performed with unpaired t -test. † P < 0.05 vs. sham for each 

metabolite. n = 4/each group. Cer: ceramide; dhSph: dihydrosphingosine; dhS1P: dihydrosphingosine-1-phosphate; Sph: sphingosine; S1P: sphingosine-1-phosphate. 
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Figure 7. Inhibition of S1P2 r ece ptor acti v ation on kidney function and proximal 

tubular injury in renal isc hemia-reperfusion (IR) r ats after 24 h of r e perfusion. 
A: Treatment with a S1PR2 blocker, JTE-013 (JTE), reduced plasma creatinine (Cr) 
concentration in IR rats. B: JTE-013 treatment reduced proximal tubular injury as 
scored using Paller’s semiquantitative scale 44 as described in the text. The total 

injur y scor e w as counted in 10 fields per kidney. C: Re pr esentati v e findings of 
proximal tubular changes of renal cortex and medulla from sham (Top panels), 
IR (Middle panels), and JTE-013 treated IR (IR + JTE, bottom panels) rats, respec- 
ti v el y. Formation of casts in tubular limens ( φ phi), cytoplasmic vacuolization ( ∗

asterisk), tubular necrosis (# hash signs), cell swelling ( § silcrow), sloughed cells 
in tubular lumens ( δ delta), loss of brush-border ( ↑ arrow), flattening of tubular 
e pithelium ( � arr owhead), and trapping of er ythr ocytes ( ∧ circumflex). Values 

are means ± SEM. Statistical analysis was performed using one-way ANOVA fol- 
lowed by a Tukey’s post-hoc test. † P < 0.05 vs. sham; # P < 0.05 vs. IR alone rats. 
n r e pr esents the n umbers of rats. 
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nd 2-fold from 1.8 ± 0.4 to 3.7 ± 0.5 pmol/mg protein in IR cor-
ical or medullary homogenates, respectively ( P < 0.05 vs. sham).
n contrast, the plasma S1P concentration was not statistically
ifferent between IR and shams (77 ±8 vs. 91 ± 1 pmole/100 μL,
 > 0.05, Supplementary Table 2 ). These results suggest that IR
timulates kidney sphingolipid metabolism. 

reatment With the S1PR2 Bloc k er Reduced Plasma 

reatinine, Tubular Injury, and Kidney ROS 

ccumulation in IR Rats 

s expected, plasma creatinine concentration was markedly ele-
ated in IR rats (3.7 ± 0.2 vs.1.2 ± 0.1 mg/dL in sham, Figure
 A, P < 0.05) but significantly lower in IR treated with JTE-013
2.4 ± 0.3 mg/dL, P < 0.05), albeit it was still high compared
o sham rats ( P < 0.05). Morphological anal ysis ( Figur e 7 B&C)
 ev ealed that sev er e cell dama ge w as detected in IR kidneys,
ncluding cell swelling and necrosis, loss of brush-border of
he proximal tubule, cellular vacuolization, and the presence of
uminal casts and sloughed cells in proximal tubules. The tubu-
ar injur y scor e w as significantl y higher in IR kidneys than the
core in sham kidneys (67.6 ± 7.6 vs. 9.9 ± 0.3, Figure 8 B, P < 0.05).
he extent of tubular injur y w as significantl y decr eased in JTE-
13 treated IR kidneys. The tubular structure was better pre-
erved as evidenced by less necrosis and cell damage in the prox-
mal tubules and the reduced injury score (46.8 ± 2.6, P < 0.05),
lthough ther e wer e still some cell casts and necrosis in the
idneys. Figure 7 C represents light microscopic images of renal
ortex and medulla from sham, IR and JTE-013 treated IR rats,
 especti v el y. Ther e w as significant trapping of er ythr ocytes in
he IR medulla but less in JTE-013 treated IR kidney. These data
uggest that S1PR2 blockade mitigates kidney injury, consistent
ith S1P being inv olv ed in IR-induced AKI. 

Incr eased R OS accum ulation plays an important r ole in the
evelopment of renal microvascular dysfunction after IR. 32 , 49 

igur e 8 A r e pr esents the fluor escence ima ges in kidney sections
sing the fluorogenic probe, H 2 DCFDA. The fluorescence inten-
ity markedly increased in IR cortex (18.7 ± 2.4 vs. 10.9 ± 0.7
n sham, Figure 8 B, P < 0.05) and in medulla (19.0 ± 2.5 vs.
.6 ± 0.7 in sham, Figure 8 C, P < 0.05), r especti v el y. JTE-013
r eatment r educed both cortical and medullar y R OS lev els to
 alues that wer e not differ ent fr om sham (13.5 ± 1.1 and
5.4 ± 1.5, P > 0.05 vs. sham, r especti v el y). These data sug-
est that S1PR2 acti v ation incr eased R OS accum ulation in IR
idneys. 

iscussion 

arly studies established a critical role for S1P in IR-associated
ubular injury in mice. 24-30 S1P is a strong vasoconstrictor of
r eglomerular micr ov asculatur e. 16 , 21 The current stud y pro vides
ompelling evidence that S1P might also play an important
ole in the pathological microvascular alterations in IR rats.

e r ev eal that affer ent arterioles of IR rats exhibited hyper-
 eacti vity to e xo genous S1P-mediated vasoconstriction as evi-
enced by a leftward shift of S1P concentration-response curve
ith an 8-fold reduction in EC 50 . Afferent arteriolar responses to

he S1P precursor, sphingosine, and the specific S1PR1 agonist,
EW2871, were minimal and remained unaltered by IR. Acute
xposure to the S1PR2 inhibitor, JTE-013, markedly increased
fferent arteriolar diameter in IR rats, suggesting that endoge-
ous S1P exerts a pronounced vasoconstrictor influence on
fferent arteriolar tone of IR rats via S1PR2 activation. Further-
or e, IR upr egulated both mRNA and pr otein expr ession of

1PR2 in isolated PGMV. Importantly, the majority of sphin-
olipid metabolite contents including S1P wer e elev ated in IR
idney tissue homogenates. Treatment with JTE-013 reduced
lasma creatinine concentration, tubular injury and kidney ROS
ccumulation in IR r ats. Over all, these results demonstrate
hat IR upregulates sphingolipid metabolites in rat kidneys and
nhances renal microvascular S1P signaling via upregulation of
GMV S1PR2 expression. 

One of the common features of renal hemodynamic changes
fter IR is increased RVR along with tubular injury and con-
omitant reduction of RBF and GFR, and a particularly persis-
ent reduction of medullary blood flow (MBF). 7 , 50 , 51 The ele-
ated RVR could result from multiple factors such as hyper-
 eacti vity to v asoconstrictors, endothelial injur y, and impair-

ent of renal autoregulation. 32 , 33 , 52 , 53 Afferent arterioles are the
ajor renal resistance vessels controlling RBF and GFR through

he adjustment of its diameter. 54 Consistent with our previous
 e port, 32 the baseline diameter of afferent arterioles significantly
eclined in IR rats, suggesting increased RVR post-IR. We fur-
her demonstrated that IR enhanced afferent arteriolar response
o e xo genous S1P as evidenced by the leftward shift of the S1P
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Figure 8. Inhibition of S1P r ece ptor 2 acti v ation r educes R OS accum ulation in ischemia-r e perfusion (IR) rat kidneys after 24 h of r e perfusion. A: Re pr esentati v e fluor es- 
cence images using the fluorogenic probe, H 2 DCFDA, in renal cortical and medullary regions of sham, IR and IR rats treated with JTE-013 (IR + JTE), a selecti v e S1PR2 

inhibitor. B and C: Quantification of fluorescence intensity in renal cortical and medullary regions, respectively. A total of 10 fields per kidney were randomly selected. 
Values are expressed as means ± SEM. Statistical analysis was performed using one-way ANOVA followed by a Tukey’s post-hoc test. † P < 0.05 vs. sham; # P < 0.05 vs. 
IR alone rats. n r e pr esents the numbers of rats. White bar indicates 100 μm. 
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 asoconstrictor pr ofile and an 8-fold decrease in EC 50 , reflect- 
ng increased afferent arteriolar sensitivity to S1P. Neverthe- 
ess, we performed control experiments to determine whether 
he enhanced vasoconstriction observed in IR is S1P specific. 

e applied sphingosine which is the substrate for sphingosine 
inases (SK) to produce S1P as the negative control agonist. Sph- 

ngosine only caused a mild afferent arteriolar vasoconstriction 

hich was not altered by IR, implicating that S1P acts through 

ts specific r ece ptors. 
Most biological functions of S1P are through activation of five 

pecific G protein-coupled receptors, S1PR1-5. 15 S1PR1, S1PR2, 
nd S1PR3 are the predominant S1PR in car dio vascular system. 
ur previous stud y sho wed that S1PR1 and S1PR2 are the major 
1PR expressed in PGMV. 21 In the current study, we found that 
oth mRNA and protein expression for S1PR2 but not for S1PR1 
nd S1PR3 were highly upregulated in PGMV of IR rats. Stud- 
es in mice showed that all S1pr1 , S1pr2 , and S1pr3 mRNA lev- 
ls were elevated in IR cortical tissue with a robust increase 
or S1pr2 . 29 Others however, found that mRNA expression for 
1pr1 and S1pr3 increased in mouse IR kidneys but not for 
1pr2 . 24 Curr entl y, ther e ar e no data av aila b le for S1PR expr es-
ion in renal microvessels of IR mice or rats. In our subsequent 
tudy, we observed a trend of increased S1pr2 mRNA expres- 
ion in cortical homogenates at 48 h post-IR while S1pr1 and 

1pr3 mRNA r emained essentiall y unchanged in both PGMV 

nd cortical tissue ( n = 5-7, Supplementar y Figur e 1 ). Collec- 
i v el y, our r esults support the upr egulation of S1PR2 in PGMV of
R rats. 

Several studies indicate that S1P protects against IR or 
isplatin-induced kidney injury through S1PR1 activation in 

ice. 24-30 , 55 Since acti v ation of S1PR1 causes vasoconstriction 

f afferent arterioles, 21 the enhanced S1P-mediated vasocon- 
triction in IR rats could reflect S1PR1 activation. The present 
tud y, ho wever, sho ws that the v asoconstrictor r esponse to 
EW2871, a specific S1PR1 agonist, was similar between sham 

nd IR rats, consistent with the unchanged mRNA and pro- 
ein expression of S1PR1 in isolated PGMV. These results indi- 
ate that S1PR1 contributes little to the S1P-mediated vaso- 
onstriction and hyperr eacti vity of afferent arterioles in our 
R rats. 

Global S1PR2 knockout mice exhibit a significantly ele- 
 ated RBF compar ed to wild-type mice. 56 Our previous study 
emonstrated that inhibition of S1PR2 acti v ation with JTE-013 
aused mild but significant vasodilation of afferent arterioles 
nd shifted the S1P concentration-response curve to the right 
n rats. 21 Those studies suggest the inv olv ement of S1PR2 in 

 egulating affer ent arteriolar tone. In the current study, acute 
dministration of JTE-013 dramatically increased afferent arte- 
iolar diameter in IR rats and returned it to diameters simi- 
ar to sham controls, which represents a nearly 40% increase 
n IR contrasted to a 9% increase in the sham group ( Figure
 B). The profound impact of JTE-013 on afferent arteriolar tone 
n IR kidneys suggests that endogenous S1P, via S1PR2 acti v a- 
ion, exerts a pr onounced v asoconstrictor influence on affer- 
nt arteriole resistance. Combined with the mRNA and pro- 
ein data on S1PR2 expression in isolated PGMV, our results 
ndicate that the S1P-S1PR2 signaling pathway is upregulated 

n the PGMV of IR rats, and that the enhanced S1P-mediated 

asoconstriction could contribute to the increased RVR in IR, 
ltimately leading to persistent reduction of RBF. This study 
ay provide partial explanation for the studies showing the 

ack of beneficial effects of vasodilator therapies in combating 
KI. 57 , 58 and imply that RBF ma y ha ve a weakened response 

o vasodilators. Furthermore, the enhanced S1P-induced vaso- 
onstriction of juxtamedullary afferent arterioles could also 
e an important factor contributing to the vascular conges- 
ion in the renal medulla after IR 

9 caused by the medullary 
ypoperfusion. Ther efor e, a further study needs to be con- 
ucted to determine the impact of S1PR2 inhibition on renal 
erfusion. 

Afferent arteriolar tone is regulated by a variety of vasocon- 
trictors. 11–13 Following IR, many vasoconstrictors are released 

ncluding ET-1 and Ang II. 59-62 Enhanced afferent arteriolar reac- 
i vity could r eflect a general incr ease in r eacti vity to any v aso-
onstrictors rather than being unique to S1P. ET-1 is the most 
otent vasoconstrictor 63 and is elevated in plasma and kidneys 
fter IR. 64 Afferent arteriolar responses to ET-1, however, were 
naffected in our IR rat model, consistent with the r e port in
enal interlobular and arcuate arteries of IR rats. 65 Besides ET-1, 
ng II also plays an important role in controlling renal hemo- 
ynamics. 61 The r enin-angiotensin-aldoster one system is acti- 
ated after IR. 59 , 62 A large reduction of RBF in response to acute 
ng II infusion was reported in rats 5-wk post-IR, 61 suggesting 
nhanced sensitivity of renal vasoconstrictor responses to Ang 
I stim ulation. Nev ertheless, it r emains unclear if Ang II sup-
r esses RBF mor e intensel y in the earl y sta ge of post-IR. Intrigu-

ngly, the afferent arteriolar response to Ang II was indistin- 
uisha b le between IR and sham rats at low concentrations and 
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ay show a slight attenuation at high concentration in IR, simi-
ar to the observation in isolated afferent arterioles of IR mice. 49 

e also found normal vasoconstrictor responses to NE and KCl
n IR rats, 32 suggesting a generally intact contractile apparatus
n afferent arterioles in our IR model. Overall, the current data
ndicate that the enhanced vasoconstriction of afferent arteri-
les observed in our IR rat model is not uni v ersal to all vasocon-
trictors but is unique to S1P. 

Growing evidence indicates that sphingolipid metabolites 
r e elev ated under a v ariety of pathophysiological conditions
ncluding diabetic kidneys, infar cted br ain tissue , and metabolic
isorders. 66-71 Using LC/MS method, we found that the major-

ty of sphingolipid metabolites, particularly the active sphin-
olipid metabolite S1P, were significantly elevated in IR kidney
omogenates without changes in plasma S1P concentration.
his suggests that the increased S1P content in IR kidneys is
aused by local sphingolipid metabolic dysregulation, however,
he mechanism that leads to elevation of select sphingolipid

etabolites in post-IR kidneys remains unclear. In general, S1P
s generated from sphingosine catalyzed by SK1 and/or SK2, 72 , 73 

nd de phosphor ylated to sphingosine by S1P phosphatase (SPP)
ut can be irr ev ersib l y de gr aded by S1P ly ase . 74 , 75 It w as r e ported
hat IR selecti v el y upr egulated SK1 but not SK2 acti vity in mouse
idneys and inhibition of SK1 developed sev er e kidney injur y in
R mice. 28 In contrast, a recent study in mice indicated that IR
ncreased local S1P released and secreted from kidney perivas-
ular cells via SK2 acti v ation which pr ompted kidney inflamma-
ion and fibrosis after IR. 76 It is curr entl y unclear if IR alters SK or
PP activities in rat kidneys and requires further investigation. 

ROS play a critical role in S1P-mediated vasoconstriction and
n IR-mediated renal microvascular dysfunction. 20 , 22 , 32 To sup-
ort the in vitro observation, we pr etr eated IR rats with JTE-013

n vi v o to determine if S1PR2 b lockade mitigated kidney injur y.
ndeed, plasma creatinine was significantly reduced in IR rats
 ecei ving JTE-013 tr eatment compar ed to IR alone. This is fur-
her confirmed by the reduction of renal ROS accumulation as
emonstrated by the fluorogenic staining with H 2 DCFDA. Sim-

lar to the r e port in S1PR2 knockout IR mice, 29 JTE-013-treated
ats still showed necrosis and cell damage in the proximal
ubules but these findings of tubule injur y wer e significantl y
 educed compar ed to the untr eated IR gr oup. Gi v en the sev er e
idney injury in this extended ischemic (60-min) rat model
nd the complexity of multiple factors involved in IR kidney
njur y, it w as not surprising that two intraperitoneal injections
f JTE-013 produced only partial kidney protection. The timing
f the injections—30 min prior to ischemia and at the time of
 e perfusion—further suggest a longer intervention with JTE-013

ight pr ovide mor e effecti v e r enopr otection a gainst IR. Ov erall,
hese studies suggest that S1PR2 blockade provides renoprotec-
ion against IR, consistent with S1P being involved in IR-AKI via
1PR2 acti v ation. 29 , 56 

It w as r e ported that the r eductions in medullar y b lood flow
receded changes in overall RBF following IR and is persistent
fter complete r ecov er y of the total RBF and cortical RBF. 7 , 77 , 78 

ere , w e used the b lood-perfused JMN pr e par ation whic h is ide-
lly suited to this study because the afferent arterioles of jux-
amedullar y ne phr ons exert a major influence in controlling

edullary perfusion. While we provided compelling evidence 
howing that enhanced S1P-mediated vasoconstriction of jux-
amedullar y affer ent arterioles after IR injur y, it is worth men-
ioning that juxtamedullary nephrons represent just 10-15% of
he total ne phr on population. 79 Future studies will therefore be
 equir ed to determine the impact of S1P on whole or regional
BF (cortical vs. medullary) in IR-AKI. 
In conclusion, the current studies reveal that renal IR
eads to enhanced sensitivity of juxtamedullar y affer ent arte-
ioles to S1P-mediated vasoconstriction and upregulated S1PR2
xpression in PGMV. IR evokes upregulation of sphingolipid
etabolism in kidneys. IR-induced reduction of afferent arte-

iolar diameter w as r ev ersed by acute blockade of S1PR2 acti-
ation. Inhibition of S1PR2 acti v ation impr ov ed kidney function
nd reduced kidney ROS accumulation and tubular injury. The
yperr eacti vity of affer ent arterioles to S1P-mediated vasocon-
triction after IR could r e pr esent a common pathophysiological
echanism leading to profound and persistent increases of RVR

n IR-AKI. 
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