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Abstract: The sigma-2 receptor was originally defined pharmacologically and recently identified as
TMEM97. TMEM97 has been validated as a biomarker of proliferative status and the radioligand of
TMEM97, [18F]ISO-1, has been developed and validated as a PET imaging biomarker of proliferative
status of tumors and as a predictor of the cancer therapy response. [18F]ISO-1 PET imaging should be
useful to guide treatment for cancer patients. TMEM97 is a membrane-bound protein and localizes in
multiple subcellular organelles including endoplasmic reticulum and lysosomes. TMEM97 plays
distinct roles in cancer. It is reported that TMEM97 is upregulated in some tumors but downregulated
in other tumors and it is required for cell proliferation in certain tumor cells. TMEM97 plays important
roles in cholesterol homeostasis. TMEM97 expression is regulated by cholesterol-regulating signals
such as sterol depletion and SREBP expression levels. TMEM97 regulates cholesterol trafficking
processes such as low density lipoprotein (LDL) uptake by forming complexes with PGRMC1 and low
density lipoprotein receptor (LDLR), as well as cholesterol transport out of lysosome by interacting
with and regulating NPC1 protein. Understanding molecular functions of TMEM97 in proliferation
and cholesterol metabolism will be important to develop strategies to diagnose and treat cancer and
cholesterol disorders using a rich collection of TMEM97 radiotracers and ligands.
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1. Introduction

Sigma receptors represent a class of proteins that were originally classified as a subtype of the
opiate receptors [1]. Subsequent studies revealed that sigma receptor binding sites represented a
distinct class of receptors that are located in the central nervous system as well as in a variety of
tissues and organs [2]. Radioligand binding studies and biochemical analyses have shown that there
are two types of sigma receptors [3,4]. Sigma-1 receptors (σ1Rs) have a molecular weight of 25 kD,
whereas sigma-2 receptors (σ2Rs) have a molecular weight ranging from 18 to 21.5 kD. For many
years, the sigma receptors were described pharmacologically through the binding of the radioligands
[3H](+)-pentazocine and [3H]DTG (Figure 1). The radioligand [3H](+)-pentazocine has a high (3 nM)
affinity for the σ1R and a low (>1000 nM) affinity for the σ2R, whereas [3H]DTG is equipotent at both
σ1 and σ2 receptors. The σ1R was detected and measured by [3H](+)-pentazocine, whereas the σ2R
by [3H]DTG in the presence of 100 nM unlabeled (+)-pentazocine to mask binding to σ1Rs. The σ1R
was cloned in 1996 [5] and is a unique pharmacologically regulated integral membrane chaperone or
scaffolding protein that allosterically modulates the activity of its associated proteins [6]. In contrast,
the gene that codes for the σ2R remained unknown until recently.
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Figure 1. Structures of radioligands used in in vitro binding and PET imaging studies of the s2 
receptor/TMEM97 in cancer patients. 

2. Molecular Cloning of the σ2R 

The σ2R was recently identified as transmembrane protein 97 (TMEM97, also known as 
MAC30) in 2017 [7]. Alon and colleagues synthesized a σ2R ligand and covalently coupled the ligand 
to agarose beads to prepare an affinity chromatography resin that was used to capture σ2Rs 
extracted from calf liver. Candidate proteins were isolated and identified by mass spectrometry. The 
candidate proteins were ectopically expressed and screened by σ2R binding assay using [3H]DTG. 
Among the candidate proteins tested, only TMEM97 resulted in a significant increase of specific 
[3H]DTG binding. Expression of TMEM97 in cells lacking σ2Rs increased σ2R binding and siRNA 
knockdown of TMEM97 proportionally reduced σ2R binding, confirming that TMEM97 is the σ2R. 
This work also demonstrated that Asp29 and Asp56 are essential for ligand recognition. Cloning the 
σ2R allows the use of modern biological methods to study its functions as a therapeutic and 
diagnostic target. 

Previously, Xu et al. proposed that the binding site for the σ2R resided in a protein complex 
containing the progesterone receptor membrane component 1 (PGRMC1) [8]. Subsequent studies 
challenged the validity of these results and the recent identification of TMEM97 as the gene for the 
σ2R seemed to substantiate these reports [9,10]. However, Riad et al. recently reported that TMEM97 
formed a complex with PGRMC1 and the low density lipoprotein receptor (LDLR) and this trimeric 
complex was responsible for the rapid internalization of the low density lipoprotein (LDL) in HeLa 
cells [11]. These data demonstrate that PGRMC1 associates with TMEM97 physically and 
corroborates our previous report that the σ2R represents a binding site in the PGRMC1 protein 
complex. 

3. Evaluation of the σ2R PET Radiotracer for Assessing Proliferative Status and Predicting Drug 
Response 

3.1. Evaluation of σ2R PET Radiotracer for Assessing the Proliferative Status and Growth Rate of Solid 
Tumors 

3.1.1. Evaluation of the σ2R as a Proliferation Biomarker 

In a pioneer study, our lab demonstrated that the σ2R is a promising biomarker of the 
proliferative status in cell culture and mouse models with subcutaneous injection of mouse 
mammary adenocarcinoma line 66 cells, labeling with BrdU over time and assessing the 
proliferation status using flow cytometry compared to expression of σ2R using radioligand binding 
assays [12,13]. Previous studies had shown that line 66 cells displayed exponential growth kinetics 
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Figure 1. Structures of radioligands used in in vitro binding and PET imaging studies of the s2
receptor/TMEM97 in cancer patients.

2. Molecular Cloning of the σ2R

The σ2R was recently identified as transmembrane protein 97 (TMEM97, also known as MAC30)
in 2017 [7]. Alon and colleagues synthesized a σ2R ligand and covalently coupled the ligand to
agarose beads to prepare an affinity chromatography resin that was used to capture σ2Rs extracted
from calf liver. Candidate proteins were isolated and identified by mass spectrometry. The candidate
proteins were ectopically expressed and screened by σ2R binding assay using [3H]DTG. Among the
candidate proteins tested, only TMEM97 resulted in a significant increase of specific [3H]DTG binding.
Expression of TMEM97 in cells lacking σ2Rs increased σ2R binding and siRNA knockdown of TMEM97
proportionally reduced σ2R binding, confirming that TMEM97 is the σ2R. This work also demonstrated
that Asp29 and Asp56 are essential for ligand recognition. Cloning the σ2R allows the use of modern
biological methods to study its functions as a therapeutic and diagnostic target.

Previously, Xu et al. proposed that the binding site for the σ2R resided in a protein complex
containing the progesterone receptor membrane component 1 (PGRMC1) [8]. Subsequent studies
challenged the validity of these results and the recent identification of TMEM97 as the gene for the
σ2R seemed to substantiate these reports [9,10]. However, Riad et al. recently reported that TMEM97
formed a complex with PGRMC1 and the low density lipoprotein receptor (LDLR) and this trimeric
complex was responsible for the rapid internalization of the low density lipoprotein (LDL) in HeLa
cells [11]. These data demonstrate that PGRMC1 associates with TMEM97 physically and corroborates
our previous report that the σ2R represents a binding site in the PGRMC1 protein complex.

3. Evaluation of the σ2R PET Radiotracer for Assessing Proliferative Status and Predicting
Drug Response

3.1. Evaluation of σ2R PET Radiotracer for Assessing the Proliferative Status and Growth Rate of Solid Tumors

3.1.1. Evaluation of the σ2R as a Proliferation Biomarker

In a pioneer study, our lab demonstrated that the σ2R is a promising biomarker of the
proliferative status in cell culture and mouse models with subcutaneous injection of mouse mammary
adenocarcinoma line 66 cells, labeling with BrdU over time and assessing the proliferation status using
flow cytometry compared to expression of σ2R using radioligand binding assays [12,13]. Previous
studies had shown that line 66 cells displayed exponential growth kinetics for a period of 4 days,
followed by a plateau phase that remained stable up to day 14 [14] (Figure 2A). In vitro studies also
revealed that the exponentially growing 66 proliferating (66P) cells had 50% of the population in the



Cancers 2020, 12, 1877 3 of 13

G1 phase of the cell cycle and >90% of the population labeled with [3H]thymidine after 24-h labeling,
indicating the cells were actively proliferating, whereas plateau phase 66 quiescent (66Q) cells have
>97% of the population in G1 and 2% of the population labeled with [3H]thymidine after 24-h labeling
indicating the cells were not proliferating as indicated by the lack of [3H]thymidine incorporation
into newly synthesized DNA, which occurs in the S phase. Furthermore, subsequent studies revealed
that 100% of the 66Q cells can be recruited into the P-cell compartment [15]. These data indicate that
this cell line is an appropriate in vitro model system for studying σ2R expression in proliferating and
quiescent cells.
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Figure 2. Relationship of the s2R with cell proliferation. (A) Comparison of the growth curve of 66 cells
and the density of s2R in proliferating and quiescent cells. (B) Density of s2R in 66P versus 66Q cells.
(C,D) Comparison of the tumor: Background ratio of [18F]ISO-1 uptake (C) and s2R density (D) versus
the P:Q ratio of solid 66 tumors. Adapted from [16,17].

In cell culture models, σ2R Scatchard studies revealed that 66P cells had a 10 fold increase the
σ2Rs/cell than 66Q cells [13] (Figure 2B). The kinetics study of the expression of σ2Rs in 66 cells revealed
a rapid increase in the σ2R density during the exponential growth phase that leveled off during the
early plateau phase, followed by a decrease during the late plateau phase. Despite the kinetics of
σ2Rs expression and cell growth kinetics being similar, the decreased density in the late plateau phase
was delayed until day 10–12 after subculturing the Q-cells. Taken together, these results indicated a
prolonged quiescent period is necessary to maximize σ2R loss from these 66 cells. In the mouse model
of the 66 tumors, the ratio of the number of σ2R per P-cell to the number of σ2R per Q-cell was 10.6,
consistent with the result obtained in the cell culture model [12]. These data indicate that the σ2R is
a biomarker of the proliferative status of solid tumors and radioligands targeting the σ2R have the
potential to noninvasively assess the proliferative status of tumors and the transition from proliferating
to quiescent status using positron emission tomography (PET).
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3.1.2. Development of σ2R Radioligands

The Mach group has developed numerous σ2R radioligands for in vivo imaging of proliferation
status and in vitro σ2R binding studies [18]. A σ2R selective PET radioligand, N-(4-(6,7-dimethoxy-
3,-4-dihydroisoquinolin-2(1H)-yl)butyl)-2-(2-18F-fluoroethoxy)-5-methylbenzamide ([18F]ISO-1;
Figure 1) has been validated as a PET imaging biomarker of the proliferation status in rodent models
and human clinical studies (as described in the sections below). Another iodine-125 labeled σ2R
radioligand [125I]RHM-4 (Figure 1) has been developed for in vitro binding studies. HeLa cells
were used for these studies as they express TMEM97 and PGRMC1 and are able to be genetically
edited efficiently via CRISPR/Cas9. In vitro σ2R binding studies using two different radioligands,
[125I]RHM-4 and [3H]DTG, in HeLa cells demonstrated that knocking out TMEM97 resulted in a
complete reduction in binding of [125I]RHM-4 to TMEM97 knockout (KO) HeLa cells, as well as
significant but incomplete reduction of [3H]DTG binding to TMEM97 KO cells [11]. The results
demonstrate that [125I]RHM-4 specifically binds to the TMEM97 protein, whereas [3H]DTG mainly
binds to TMEM97 with high affinity (Kd = 14.8 nM), but also binds to other sites/proteins with
relatively low affinity (Kd = 302.0 nM). Thus, [125I]RHM-4 is a more specific TMEM97 radioligand
than [3H]DTG.

3.1.3. Clinical Studies with [18F]ISO-1

Dehdashti et al. conducted the first human clinical study and established the feasibility of
using [18F]ISO-1 to image solid tumors in lymphoma, breast cancer and head and neck cancer [19].
Thirty patients with primary breast cancer (n = 13), head and neck cancer (n = 10) and lymphoma
(n = 7) underwent [18F]ISO-1 PET. Time–activity curves reached a plateau value after 20 min post-i.v.
injection of the radiotracer. [18F]ISO-1 uptake values correlated with tumor Ki-67, a gold standard
proliferation biomarker. In the entire group, the tumor maximum standardized uptake (SUVmax) value
and tumor-to-muscle ratio correlated significantly with Ki-67 (τ = 0.27, p = 0.04 and τ = 0.38, p = 0.003,
respectively). The presence of a significant correlation between [18F]ISO-1 and Ki-67 makes this agent
promising for evaluation of the proliferative status of solid tumors. An interesting observation of
[18F]ISO-1 was its high level of protein binding (free fraction 1%) and its high metabolic stability [19].

McDonald et al. conducted the clinical trial of [18F]ISO-1 in women with primary breast cancer
to determine the correlation of [18F]ISO-1 PET uptake and Ki-67 expression [20]. Twenty-eight
women with 29 primary invasive breast cancers were evaluated. The [18F]ISO-1 uptake quantitated
by SUVmax at 55–60 min post-i.v. injection was correlated with the Ki-67 score determined by
immunohistochemistry. Tumors stratified into the high Ki-67 (≥20%) group had SUVmax greater than
the low Ki-67 (<20%) group (p = 0.02). SUVmax exhibited a positive correlation with Ki-67 across all
breast cancer subtypes (ρ = 0.46, p = 0.01, n = 29; Figure 3). The data demonstrated that [18F]ISO-1
uptake in breast cancer modestly correlates with Ki-67 and can be used to provide an in vivo measure
of tumor proliferative status.

3.2. Evaluation of [18F]ISO-1 for the Monitoring and Predicting Response to Therapy

[18F]ISO-1 was evaluated for assessing the proliferative status. Shoghi et al. conducted PET
imaging studies with [18F]ISO-1 in xenografts of mouse mammary tumor 66 [21]. The [18F]ISO-1
uptake was correlated with the in vivo proliferative status determined by flow cytometric measures of
BrdU-labeled tumor cells (Figure 2B,C). Data showed a strong linear correlation between the [18F]ISO-1
uptake and the proliferation status (i.e., ratio of proliferating cells to quiescent cells), indicating that
[18F]ISO-1 can be used to image the proliferative status. In addition, [18F]ISO-1 was evaluated for
assessing the tumor growth rate in a chemically-induced (N-methyl-N-nitrosourea (MNU)) model
of rat mammary carcinoma. Each rat was imaged with [18F]ISO-1 over a 10-week period at 2-week
intervals to assess the σ2R status. MRI was used to monitor the tumor volume. The data showed
that there was a significant correlation (R = 0.68, p < 0.003) between [18F]ISO-1 uptake and changes in
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tumor volume between consecutive MR imaging sessions. These data suggest that a given value of
[18F]ISO-1 uptake provides a predictive measure of an expected change in tumor volume (i.e., growth
rate), which attests to the tumor’s aggressiveness.Cancers 2020, 12, x  5 of 14 
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[18F]ISO-1 was used to assess the response of MNU-induced tumors to bexarotene, a retinoid X
receptor agonist and vorozole, an aromatase inhibitor therapeutic [21]. [18F]ISO-1 uptake determined
by PET was correlated with tumor regression or the progression pattern. [18F]ISO-1 uptakes at week
2 in most tumors decreased upon treatment, which was generally in agreement with changes in
tumor volume. The data suggest that [18F]ISO-1 uptake changes can be used to monitor the early
drug response. The time-courses of [18F]ISO-1 uptake during 8 weeks of treatment and 2 weeks of
drug withdrawal varied among different tumors, suggesting that different tumors have different
sensibilities to a given therapy. This information can be used to guide drug selection and adequate
dosing so that patients without sufficient response to the therapy can benefit from switching to
alternative treatments and/or more aggressive dosage. In addition, the time-courses of [18F]ISO-1 and
18F-labeled 2-fluoro-2-deoxy-D-glucose ([18F]FDG) uptake in the same rat upon therapy were different
in some tumors. This observation is consistent with the notion that [18F]ISO-1 and [18F]FDG, imaging
proliferative status and glucose metabolism, respectively, can provide different information about
molecular processes. Thus, [18F]ISO-1 is a new valuable predictor of the drug response.

Cyclin-dependent kinase 4/6 inhibitor (CDK4/6i) in combination with endocrine-therapy has
emerged as an important regimen of care for estrogen receptor (ER)-positive metastatic breast cancer [22].
Despite the efficacy of this combined approach, not all patients benefit from the combination therapy.
Biomarkers that can monitor changes in tumor proliferation early in the course of therapy can be
used to identify patients most likely to benefit from this combinational therapy versus endocrine
therapy alone. Recently, Elmi et al. assessed the ability of two PET-proliferation tracers, [18F]ISO-1 and
[18F]FLT, for evaluating the response to palbociclib, a CDK4/6i and fulvestrant, an ER-antagonist [23].
PET imaging of MCF7 xenografts showed a significant decrease in [18F]FLT on day 3 and maintained low
uptake on day 14 after treatment in all treatment groups (palbociclib, fulvestrant and the combination
of both). The decrease in [18F]FLT uptake correlated with S phase depletion (Figure 4). On the other
hand, the PET imaging showed no changes in [18F]ISO-1 uptake in all treated mice on day 3 and a
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significant decrease in [18F]ISO-1 uptake upon the combination therapy (but not single agents therapy)
on day 14 (Figure 4). The decrease in [18F]ISO-1 uptake corresponded to G0 arrest. These results
indicate that [18F]FLT can be used to monitor response early in the course of treatment and [18F]ISO-1
PET can be used as a tool for measuring transition of cells from proliferating status to quiescent status,
a relatively later stage of proliferation inhibition. The data demonstrate that [18F]FLT and [18F]ISO-1 PET
have independent and complementary mechanisms in evaluating tumor-proliferation. Longitudinal
[18F]FLT and [18F]ISO-1 PET might serve as a clinically translatable approach for predicting and
monitoring response to combinatorial CDK4/6i and endocrine therapy in patients with ER-positive
breast cancer to guide personalized treatment in oncology.
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Figure 4. Panel (I): [18F]FLT uptake after treatment with palbociclib (PD), fulvestrant (Fulv) or
combination of both at baseline and days 3 and 14 of treatment. (A) Tumor uptake as T/M ratio in
controls and treated mice, showing persistent reduction of the T/M ratio in treated mice on days 3
and 14. (B) Changes in S-phase fraction relative to controls on day 14 of treatment, demonstrating
comparable S-phase reduction across different treatment groups. (C) Representative PET/CT images
of one mouse from the combination treatment group, demonstrating dramatic decline of [18F]FLT
uptake on day 3, which is persistent on day 14. Panel (II): [18F]ISO-1 uptake after treatment with
palbociclib (PD), fulvestrant (Fulv) or combination of both at baseline and days 3 and 14 of treatment.
(A) Tumor uptake as the T/M ratio in controls and treated mice, showing the delayed reduction of the
T/M ratio in treated mice, seen only on day 14. (B) G0 arrest relative to controls on day 14 of treatment,
more pronounced in the combination therapy group. (C) Representative PET/CT images of one mouse
from the combination treatment group, demonstrating delayed decline in [18F]ISO-1 uptake on day 14.
*, p < 0.05; #, p < 0.01 and +, p < 0.001, compared with control group of the respective day. Reproduced
with permission from reference [21].
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4. Biological Characteristics and Functions of σ2R/TMEM97

4.1. Subcellular Localization of σ2R/TMEM97

TMEM97 exists in multiple subcellular locations. (1) TMEM97 localizes in cellular membranes.
Before the σ2R was cloned, it was detected and measured by the σ2R binding assay in membrane
preparations of various tissues and cell lines [4,24]. In fact, the σ2R was purified and identified as
TMEM97 from calf liver membrane fractions [7]. Based on the amino acid sequence of TMEM97,
this protein is predicted to have a four-pass transmembrane topology. Together, these data indicate
that TMEM97 is a membrane-bound protein. (2) TMEM97 localizes in lipid rafts. Gebreselassie and
Bowen demonstrated that the σ2R, detected using [3H]DTG and a lipid raft biomarker flotillin-2,
detected by immunoblotting, colocalized in lipid raft fractions after equilibrium centrifugation of
extracts of rat liver membranes in discontinuous sucrose density gradients [25]. The data indicate that
the σ2R localizes in lipid rafts. (3) TMEM97 localizes in the endoplasmic reticulum (ER), lysosomes
and plasma membranes. TMEM97 sequence analysis shows that the C-terminus contains the predicted
ER-retention sequence “KRKKK” [7]. Transient expression of TMEM97-YFP in HeLa cells revealed
a predominant localization of the protein to reticular ER-like membranes and the nuclear envelope,
consistent with ER localization. On the other hand, in sterol-depleted cells, a prominent fraction of
TMEM97-YFP localized to lysosome and the plasma membrane. Sterol depletion-induced TMEM97
translocation is believed to regulate lysosomal cholesterol export. A confocal microscopy study showed
that σ2R fluorescent ligands were colocalized with ER, lysosome and plasma membrane trackers,
consistent with the aforementioned findings [26]. Subcellular localization of TMEM97 should provide
clues to study TMEM97 biological functions.

4.2. Biological Characterization and Roles of TMEM97 in Cancer Proliferation

4.2.1. Differential Expression of TMEM97 in Normal and Cancer Tissues

TMEM97 expression in normal and cancer tissues has been studied using an σ2R binding assay
and immunohistochemistry to measure protein levels and using northern-blot, quantitative RT-PCR,
DNA microarray or RNAseq methods to determine mRNA levels. Usingσ2R binding assays, Vilner et al.
first demonstrated that the σ2R exists in a number of rodent and human tumor cell lines [24]. Numerous
studies demonstrated that TMEM97 was ubiquitously expressed in a wide variety of normal human
tissues and cancer. TMEM97 mRNA and/or proteins was significantly increased in breast, colon,
gastric, esophageal, lung, ovarian cancer and prostate cancer [27–36], but decreased in meningiomas,
pancreatic and renal cancer [27,37]. TMEM97 upregulation in certain tumors and downregulation in
others suggests that this protein plays a distinct role in human malignancies.

4.2.2. Potential Requirement of TMEM97 in Cancer Proliferation

It is reported that stable knockout of TMEM97 by CRISPR/Cas9 gene editing decreased cell
proliferation in prostate cancer LNCaP cells [36]. It is also reported that transient knockdown of
TMEM97 by siRNA decreased cell viability and migration/invasion in breast cancer, gastric cancer and
glioma cell [38–40]. These data suggest that TMEM97 may be required for cell proliferation in certain
tumor cell lines.

4.2.3. Regulation of TMEM97 Expression in Cancer

The TMEM97 gene is located on chromosome band 17q11.2. The coding nucleotides of TMEM97 in
39 ovarian cancer samples were sequenced [41]. No coding sequence variations were found, suggesting
that the TMEM97 coding sequence is not responsible for ovarian cancer development.

Limited research examined the regulation of TMEM97 expression in cancer. (1) TMEM97 was
found to be a transcriptional target of the BRCA1 gene [42]. Inherited mutations of the BRCA1 gene
predispose to breast, ovarian and other cancers. The role of the BRCA1 gene in the maintenance of
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chromosomal integrity is linked to transcriptional regulation function of the BRCA1 protein. In one
study, differentially expressed genes were identified by comparing control MCF7 breast cancer cells
with MCF7 cells ectopically expressing BRCA1. TMEM97 was among a set of BRCA1-induced
genes. The data suggest that TMEM97 may be related to BRCA1 function in breast cancer cells.
(2) The epidermal growth factor (EGF) transmitted signal transduction pathways play a major role
in carcinogenesis and proliferation of human bladder cancer cells. One study demonstrated that
treatment with 10 ng/mL EGF for 5 days downregulated TMEM97 mRNA expression in the human
bladder cancer cell line J82, but had no effect on TMEM97 mRNA expression in another human bladder
cancer cell line RT4 [43]. The data suggest that TMEM97 expression is differentially regulated by
EGF in different bladder cancer cell lines. (3) TGF-β is known to be overexpressed in pancreatic
cancer. The effects of TGF-β on TMEM97 mRNA expression were examined in pancreatic cancer
cell lines [27]. TMEM97 was transiently downregulated by TGF-β in two pancreatic cancer cell
lines Colo-357 and Panc-1. In contrast, TMEM97 expression was not affected by TGF-β in five other
pancreatic cancer cell lines. The data suggest that TMEM97 expression is differentially regulated by
TGF-β expression in different pancreatic cancer cell lines. (4) MicroRNAs are globally downregulated
in prostate cancer, especially in poorly differentiated tumors. miR-152-3p was identified as a common
epigenetically regulated onco-suppressor in prostate cancer [36]. miR-152-3p was under-expressed in
prostate cancer. Overexpression of miR-152-3p suppressed cell viability and invasion potential and
downregulated TMEM97 mRNA expression in prostate cancer LNCaP cells. Knockout of TMEM97
inhibited proliferation of LNCaP cells. The data indicate that TMEM97 is a target gene of miR-152-3p
and may be related to prostate cancer development and proliferation. Taken together, TMEM97 is
regulated by oncogenic factors in certain cancer cells and may be related to cancer development and
proliferation in certain tumors.

4.2.4. TMEM97 Does Not Mediate σ2R Ligand Cytotoxicity

σ2R ligands with various structures have been shown to induce cell death in cancer cells. Zeng et al.
examined the role of TMEM97 and PGRMC1 in mediating σ2R ligand-induced cell death [44]. The data
showed that knockout of TMEM97, PGRMC1 or both by CRISPR/Cas9 gene editing did not affect
EC50 values, the concentrations of σ2R ligands by which 50% of cell death was induced (Table 1),
suggesting that cytotoxic effects of these compounds are not mediated by TMEM97 and/or PGRMC1.
It is of interest to note that not all σ2R ligands display cytotoxicity. For example, the σ2R ligands
siramesine, SW43 and PB28 display similar cytotoxicity in the above described cell lines, whereas the
benzamide analogs RHM-4 and ISO-1 are not cytotoxic under any conditions (Table 1) [42]. This work
will facilitate elucidating mechanisms of σ2R ligand cytotoxicity.

Table 1. EC50 values of s2R ligands in control, TMEM97 KO, PGRMC1 KO and double KO cell lines.

Ligand Control (µM)
Mean ± SD

TMEM97 KO (µM)
Mean ± SD

PGRMC1 KO (µM)
Mean ± SD

Double KO (µM)
Mean ± SD

Siramesine 12.1 ± 1.7 10.3 ± 1.49 10.7 ± 0.7 10.0 ± 1.3
SW43 33.7 ± 8.6 30.4 ± 3.4 33.2 ± 1.6 32.8 ± 3.8
PB28 58.2 ± 5.9 59.8 ± 10.7 59.4 ± 8.0 57.4 ± 6.9

RHM-4 >200 >200 >200 >200
ISO-1 >200 >200 >200 >200

4.3. Biological Roles of TMEM97 in Cholesterol Homeostasis

Several lines of evidence indicate that TMEM97 plays important roles in cholesterol homeostasis.
Ovarian cancer most often derives from ovarian surface epithelial cells. Increased exposure to
progesterone (P4) protects women against developing ovarian cancer. Wilcox et al. determined
P4-induced gene expression in ovarian surface epithelial cells with oligonucleotide microarrays [41].
The data showed that TMEM97 and cholesterol biosynthesis genes were coordinately upregulated
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upon P4 treatment, suggesting that TMEM97 associates with cholesterol and lipid metabolism.
The P4-induced alterations in cholesterol and lipid metabolism in ovarian surface epithelial cells might
play a role in conferring protection against ovarian cancer.

Elevated plasma cholesterol levels result in excess cholesterol deposition in arterial vessel walls
and are a major risk factor for atherosclerosis. In order to understand cellular cholesterol regulation,
Bartz identified cholesterol-regulating genes by cultivating HeLa cells in sterol-depleted serum to activate
cellular sterol homeostatic regulatory machinery and then performing genome-wide gene expression
analysis with cDNA microarrays and targeted RNAi screening [45]. One of 20 genes identified with this
strategy is TMEM97. The data showed that TMEM97 mRNA was regulated by upstream cholesterol
regulatory factors: sterol depletion upregulated TMEM97 mRNA; low density lipoprotein receptor
(LDLR) knockdown by siRNAs upregulated TMEM97 mRNA under control condition (in the presence of
sterol) and sterol regulatory-element binding protein (SREBP-2) knockdown by siRNAs downregulated
TMEM97 mRNA in sterol-depleted cells. The data also demonstrated that TMEM97 regulated downstream
cholesterol homeostasis: knockdown of TMEM97 by siRNAs considerably inhibited cellular low density
lipoprotein (LDL) uptake under sterol depletion condition and total free cholesterol under control
condition. TMEM97 interacted with LDL cholesterol transport-regulating protein Niemann-Pick C1
(NPC1). NPC1 knockdown induced a robust cholesterol storage, whereas TMEM97 knockdown
increased NPC1 protein level, reduced lysosomal lipid storage and restored cholesterol trafficking
to the endoplasmic reticulum in NPC1-knockdown cells [46]. Thus, TMEM97 was identified as the
cholesterol-regulating gene.

Riad et al. reported that TMEM97 and/or PGRMC1 knockout in HeLa cells reduced LDL
internalization [11]. Immunocytochemistry and proximity ligation assay studies indicated that
TMEM97 interacted with PGRMC1 and LDLR physically, suggesting that this ternary complex was
responsible for this rapid rate of internalization of LDL.

By a computational protein sequence analysis, Sanchez-Pulido and Ponting identified a new
domain, the expanded EBP superfamily (EXPERA) domain, which is conserved among TMEM97,
transmembrane 6 superfamily member (TM6SF1 and TM6SF2), emopamil binding protein (EBP)
and emopamil binding protein-like protein (EBPL) families [47]. This EXPERA domain family of
proteins is implicated in cholesterol homeostasis. Carriers of the Glu167Lys coding variant in the
TM6SF2 gene are more susceptible to non-alcoholic fatty liver disease (NAFLD). EBP is an enzyme with
∆8–∆7 sterol isomerase activity and regulates key steps in the final cholesterol biosynthesis pathway.
EBP mutations are the cause of chondrodysplasia punctata 2 X-linked dominant (CDPX2), a defective
cholesterol biosynthesis disorder. These evidences further indicate that TMEM97, like other EXPERA
domain-containing proteins, is involved in cholesterol homeostasis.

4.4. TMEM97 in the Interplay of Cancer and Cholesterol Homeostasis

The involvement of TMEM97 in cholesterol homeostasis is consistent with the findings that
TMEM97 is upregulated in proliferating versus quiescent breast cancer cells and TMEM97 is
differentially expressed in normal and cancer tissues. Cholesterol is a key component of the cell
membrane. Accelerated cholesterol and lipid metabolism are the hallmarks of cancer [48]. The metabolic
dependency of cancer cells on cholesterol and other lipids is tightly regulated by the cholesterol
homeostasis network, including (1) SREBP, master transcriptional regulators of cholesterol and fatty
acid pathway genes, (2) nuclear sterol receptors (liver X receptors, LXR), which regulate intracellular
cholesterol level through the expression of cholesterol efflux proteins such as ABC transporters and (3)
lipid particle receptors, such as LDLR, providing exogenous sterol and lipids to cancer cells. Besides the
well-established structural role of cholesterol in membranes, the deregulation of metabolite production
at different points in the cholesterol bio-synthesis pathway has been reported to promote cancer or
cause resistance to therapies in different in vitro and in vivo models described in [49]. TMEM97 is
a target gene of SREBP and mediates LDL uptake, cholesterol trafficking and cellular cholesterol
level. Given the metabolic dependency of cancer cells on cholesterol and various effects of cholesterol
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metabolites on cancer, TMEM97 may play roles in cancer via involvement in cholesterol homeostasis
(Figure 5).
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5. Conclusions

TMEM97 has been validated as a biomarker of proliferative status in in vitro and in vivo studies.
[18F]ISO-1, which targets TMEM97, has been validated as a PET imaging biomarker of proliferative
status in human breast cancer patients. [18F]ISO-1 is also a promising predictor of the drug response in
preclinical studies. The proliferative status of a tumor has a profound effect on the outcome of both
chemotherapy and radiotherapy treatments. Thus, [18F]ISO-1 should be useful to guide treatment plan
for cancer patients.

TMEM97 plays distinct roles in cancer. TMEM97 is upregulated in some tumors but downregulated
in other tumors. TMEM97 may be required for cell proliferation in certain tumor cells. TMEM97 is
regulated by upstream oncogenic signals such as EGF, TGF-β and microRNA in some but not other
tumor cells. The data suggest that TMEM97 is associated with cancer proliferation. Emerging evidence
also demonstrates that TMEM97 plays important roles in cholesterol homeostasis. TMEM97 expression
is regulated by upstream cholesterol-regulating factors such as sterol depletion and SREBP expression
levels. TMEM97 regulates the downstream processes such as LDL uptake by forming complexes with
PGRMC1 and LDLR, as well as cholesterol transport out of lysosome by interacting and regulating the
NPC1 protein. Moreover, TMEM97 belongs to the EXPERA domain-containing protein family, which is
implicated in cholesterol biology. Understanding molecular functions of TMEM97 in proliferation
and cholesterol metabolism will be important to elucidate the interplay between cancer proliferation
and cholesterol metabolism and to develop strategies to diagnose and treat cancer and cholesterol
disorders using a rich collection of existing σ2R/TMEM97 radiotracers and ligands [18,50,51].
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