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ABSTRACT
The deacetylation of core histones controlled by the action of histone deacetylases
(HDACs) plays an important role in the epigenetic regulation of plant gene tran-
scription. However, no systematic analysis of HDAC genes in Dendrobium officinale,
a medicinal orchid, has been performed. In the current study, a total of 14 histone
deacetylases in D. officinale were identified and characterized using bioinformatics-
based methods. These genes were classified into RPD3/HDA1, SIR2, and HD2 subfam-
ilies. Most DoHDAC genes in the same subfamily shared similar structures, and their
encoded proteins contained similar motifs, suggesting that theHDAC family members
are highly conserved and might have similar functions. Different cis-acting elements in
promoters were related to abiotic stresses and exogenous plant hormones. A transient
expression assay in onion epidermal cells by Agrobacterium-mediated transformation
indicated that all of the detected histone deacetylases such as DoHDA7, DoHDA9,
DoHDA10, DoHDT3, DoHDT4, DoSRT1 and DoSRT2, were localized in the nucleus.
A tissue-specific analysis based on RNA-seq suggested that DoHDAC genes play a
role in growth and development in D. officinale. The expression profiles of selected
DoHDAC genes under abiotic stresses and plant hormone treatments were analyzed by
qRT-PCR. DoHDA3, DoHDA8, DoHDA10 and DoHDT4 were modulated by multiple
abiotic stresses and phytohormones, indicating that these genes were involved in abiotic
stress response and phytohormone signaling pathways. These results provide valuable
information for molecular studies to further elucidate the function of DoHDAC genes.

Subjects Agricultural Science, Bioinformatics
Keywords Dendrobium officinale, Histone deacetylation, Phylogenetic analysis, Subcellular
localization, Stress

INTRODUCTION
Higher plants have a sessile lifestyle and often suffer from exposure to abiotic stresses
such as drought, cold or high salinity (Shao, Wang & Tang, 2015). Various stress-inducing
genes and signaling factors with different functions participate in stress responses, and
the expression of these genes usually depends on chromatin remodeling (Kim et al., 2010).
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The eukaryotic genome is stored in a nuclear protein complex composed of nucleosomes
(Teif & Clarkson, 2019). In the nucleosome, two copies of histone H2A, H2B, H3, and H4
form a histone octamer, which is surrounded by DNA 147 base pairs long (Luger et al.,
1997). The basic residues such as lysine and arginine in the N-terminal tail of each histone
are covalently modified by acetylation to regulate the transcription of genes wrapped
around the core histone (Srivastava, Singh & Dubey, 2016). Since a report that indicated
that gene activity is related to histone acetylation, the modification of histone acetylation
and deacetylation have received increasing attention (Grunstein, 1997). Generally, the
acetylation of lysine residues in H3 and H4 N-tails neutralizes the positive charge of the
histone tails, thereby reducing their affinity for DNA strands, hence histone acetylation
mediated by histone acetyltransferases (HATs), which connect acetyl groups to histones,
promotes loosening of the chromatin structure and activates gene transcription (Berger,
2007; Kim et al., 2015; Shahbazian & Grunstein, 2007). Conversely, histone deacetylation
mediated by histone deacetylases (HDACs), which remove an acetyl group from histones,
facilitates the formation of compact chromatin leading to the repression or silencing of
genes (Hollender & Liu, 2008).

HDACs are widespread in eukaryotes from yeast to mammals and plants, and the
mechanism by which histone modification leads to the repression of gene expression
is conserved (Kim et al., 2015). For example, in Arabidopsis thaliana, histone acetylation
modification sites were identified by mass-spectrometry and biochemical assays, and were
shown to be highly conserved in other eukaryotes (Kim et al., 2015). Based on sequence
homology with yeast HDACs, plant HDACs are classified into three different groups,
including Reduced Potassium Dependency-3/Histone Deacetylase 1 (RPD3/HDA1), which
requires a zinc ion cofactor for deacetylase activity (Yang & Seto, 2007), Silent Information
Regulator 2 (SIR2), which depends on nicotinamide adenine dinucleotide (NAD+), and
Histone Deacetylase 2 (HD2), which is unique in plants (Hirschey, 2011; Pandey et al.,
2002). Researchers have identified and characterized some HDAC genes in a wide range of
plant species, such as maize (Zea mays) (Forestan et al., 2018),A. thaliana (Hollender & Liu,
2008), rice (Oryza sativa) (Fu, Wu & Duan, 2007), barley (Hordeum vulgare) (Demetriou et
al., 2009), potato (Solanum chacoense) (Lagacé et al., 2003), grape (Vitis vinifera) (Busconi et
al., 2009), tobacco (Nicotiana tabacum) (Bourque et al., 2011), black cottonwood (Populus
trichocarpa) (Alinsug, Yu & Wu, 2009), banana (Musa acuminata) (Fu et al., 2018), soybean
(Glycine max) (Yang et al., 2018), litchi (Litchi chinensis) (Peng et al., 2017), common bean
(Phaseolus vulgaris) (Hayford et al., 2017), common liverwort (Marchantia polymorpha)
(Chu & Chen, 2018) and tomato (Solanum lycopersicum) (Zhao et al., 2015), and have
studied the functions of certain HDAC genes. For example, HDAC genes are involved in
plant responses to stress-related hormones such as salicylic acid (SA), abscisic acid (ABA)
or jasmonic acid (JA) and stress stimuli such as drought, cold, salt, and pathogens (Ma et
al., 2013). AtHDA6 and AtHDA19 regulate gene expression induced by ABA and salt stress
in A. thaliana (Chen & Wu, 2010). Overexpression of AtHD2C made transgenic A. thaliana
plants insensitive to ABA and tolerant to salt and drought stresses (Sridha & Wu, 2006).
However, the molecular functions of many of these HDAC proteins, which are histone
modifiers, have not yet been well characterized.

Zhang et al. (2020), PeerJ, DOI 10.7717/peerj.10482 2/30

https://peerj.com
http://dx.doi.org/10.7717/peerj.10482


Dendrobium Swartz is the second largest genus of the Orchidaceae, which consists of
nearly 1,600 accepted species (Juswara, Schuiteman & Champion, 2019). Among them,
Dendrobium officinale Kimura et Migo is a popular tonic and traditional Chinese medicine
(TCM) with high commercial value, containing compounds with antioxidant and
antitumor activity (Li et al., 2011;Teixeira da Silva & Ng, 2017;Wu et al., 2014). In addition
to polysaccharides thought to be among the major active ingredients ofD. officinale, a wide
variety of low molecular weight compounds including bibenzyls, phenanthrenes, and
flavanones have been detected by phytochemical analyses (Chen et al., 2012). D. officinale
grows well under a suitable environment (Ding et al., 2018; Yang et al., 2014). In a natural
environment, D. officinale is in an epiphytic state, often growing on humid rocks in
mountain climates at an altitude of 500–1600 m, or on the tree trunks in virgin forests with
warm andmoist environments (Zeng et al., 2019). Based on its growth habits,D. officinale is
susceptible to abiotic stresses such as high and low temperatures, drought and salinization,
resulting in low natural reproduction rate and slow growth (Zeng et al., 2019).

Phytohormones not only mediate developmental processes in plants but can also
sustainably alleviate adverse effects of abiotic and biotic stresses in plants (Wolters &
Jurgens, 2009). For instance, SA improved plant abiotic stress tolerance via SA-mediated
control of major plant metabolic processes by strengthening salinity and drought stress
tolerance (Khan et al., 2015). The JA signaling pathway plays a key role in coordinating the
activation of biosynthetic routes involved in defense-related metabolites (Ballare & Austin,
2019). Secondary metabolites, including terpenes, phenolics, compounds with nitrogen,
and others, which are biosynthetically derived from primary metabolites, have also been
established as beneficial for plants’ tolerance to biotic and abiotic stresses (Ramakrishna
& Ravishankar, 2011). Environmental stresses trigger the biosynthesis of certain secondary
metabolites in plants which are important candidates for human nutrition (Ashraf et al.,
2018). Furthermore, epigenetic regulation of gene expression is important for a plant’s
adaptation to environmental changes (Zheng et al., 2020). Therefore, understanding
how histone acetylation modification is involved in the responses of D. officinale to
environmental stresses will contribute significantly to our understanding of the molecular
mechanisms underlying epigenetic regulation in this orchid. However, studies on the
evolutionary relationships and functional characteristics of HDAC genes in D. officinale
(DoHDAC genes) are scarce.

The genome and transcriptome sequences of D. officinale are now available, allowing
the DoHDAC genes to be isolated and identified (Shen et al., 2017). In this study, fourteen
DoHDAC genes were identified from the D. officinale genome and their structure,
phylogeny, conserved motifs, and putative promoter were analyzed. Subsequently, the
subcellular localization and expression patterns of selectedDoHDAC genes under hormone,
salt, drought and cold treatments were analyzed. These results provide a foundation for
further clarifying the functions of DoHDAC proteins.
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MATERIAL AND METHODS
Identification and bioinformatics analysis of DoHDAC genes
To identify potential DoHDAC genes, the coding sequences (CDSs) of AtHDAC genes
were used for a BLASTP algorithm-based query against the D. officinale genome database
(https://www.ncbi.nlm.nih.gov/genome/?term=Dendrobium, NCBI Biosample ID:
SAMN03083363). Genes were identified by a hidden Markov model search based on the
HDAC domain using the Pfam protein domain database. To determine the sequence
identity among HDACs, full-length amino acid sequences of HDAC proteins were
aligned and compared using DNAMAN 8 software (Lynnon Biosoft, San Ramon, CA,
USA). For phylogenetic analysis, the amino acid sequences of HDAC proteins from
D. officinale, A. thaliana and O. sativa in FASTA format were aligned with Clustal
X 2.0 (Larkin et al., 2007), and sequence identity was calculated by UniProt BLAST
(http://www.uniprot.org/blast/), and then a neighbor-joining phylogenetic tree was
constructed using theMEGA 7 program (Kumar, Stecher & Tamura, 2016) with a bootstrap
analysis of 1000 replicates. Nucleus localization signals (NLSs) were found in amino acid
sequences of DoHDAC proteins at http://localizer.csiro.au/ (Sperschneider et al., 2017).
Recognizable conserved domains of DoHDAC proteins were identified with EBL-EBI
(http://www.ebi.ac.uk/interpro/search/sequence-search) and also verified by the CDD
database (https://www.ncbi.nlm.nih.gov/cdd). The domain architecture was drawn using
DOG2.0 software (Ren et al., 2009). The protein sequence motifs of DoHDAC proteins
were identified using MEME (http://memesuite.org/tools/meme) (Bailey et al., 2009).
Gene structure analysis of the DoHDAC genes was conducted with GSDS (Gene Structure
Display Server, http://gsds.gao-lab.org/) (Hu et al., 2014). The functional interacting
networks of functional proteins were integrated in STRING (https://string-db.org/) based
on an A. thaliana association model with the confidence parameter set at a threshold of
0.700 and no more than 20 interactors (Szklarczyk et al., 2019). DNA sequences about
2000 bp long upstream of the initiation codon ATG of DoHDAC genes were regarded
as putative promoters. Cis-elements in these promoters were analyzed using the online
program PlantCare (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/). The
predicted cis-acting elements of promoters of DoHDAC genes were illustrated by TBtools
software (Chen et al., 2020).

Subcellular localization assays
The CDSs of DoHDA7, DoHDA9, DoHDA10, DoHDT3, DoHDT4, DoSRT1 and DoSRT2
without a termination codon were cloned into binary vector pCAMBIA1302 with the green
fluorescent protein (GFP) (GenBank Accession No. AF234298) with the Nco I restriction
enzyme. The resulting binary vectors, pCAMBIA1302-DoHDA7, pCAMBIA1302-
DoHDA9, pCAMBIA1302-DoHDA10, pCAMBIA1302-DoHDT3, pCAMBIA1302-
DoHDT4, pCAMBIA1302-DoSRT1 and pCAMBIA1302-DoSRT2, were transferred into
Agrobacterium tumefaciens strain EHA105 (Shanghai Weidi Biotechnology Co. Ltd.,
Shanghai, China), according to the manufacturer’s protocol. Then, using Agrobacterium-
mediated transformation, these recombinant binary vectors were transformed into
epidermal cells of onion (Allium cepa L. ‘‘Red Sun’’) (Huang et al., 2011). A Zeiss Model
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Axio Imager A2 upright fluorescence microscope (Carl Zeiss, Oberkochen, Germany) was
used to observe gene expression in transformed onion epidermal cells. In order to show the
nucleus, according to the manufacturer’s protocol, the epidermal cell layers were stained
with 2-(4-amiylphenyl)-6-indolecarbamoyl dihydrochloride (DAPI) staining solution
(Beyotime Biotech Inc., Shanghai, China). The positive control was onion epidermal cells
with an empty pCAMBIA1302-GFP vector. ZEN 2011 software (Carl Zeiss) was used to
analyze cellular localization.

Plant materials and treatments
Based on previously reported concentrations (He et al., 2017), D. officinale plantlets with
a stem length of about three cm growing on half-strength Murashige and Skoog (MS;
(Murashige & Skoog, 1962) (1/2 MS) agar medium containing 2% sucrose were separately
exposed to one of several abiotic stresses: 100 µM gibberellic acid (GA3), 100 µM ABA,
100 µM SA, 200 µM methyl jasmonate (MeJA), 15% polyethylene glycol (PEG)-6000
(all compounds: Sigma-Aldrich, Shanghai, China), 250 mM NaCl (Guangzhou Chemical
Reagent Factory, Guangzhou, China) and 4 ◦C , separately. Five D. officinale plantlets were
used for each treatment. Plant tissues, including roots, stems and leaves, were harvested at
different selected time points after applying the above treatments, then immediately frozen
in liquid nitrogen for further gene expression experiments. Based on the transcriptome
data, the expression patterns of DoHDAC genes in different tissues were analyzed, and a
heatmap was generated with the heatmap software package on the BMKCloud platform
(http://www.biocloud.net).

About 100 mg of samples, including leaves, roots and stems from previously collected
D. officinale plants, were placed in a pre-chilled mortar and ground with liquid nitrogen
to a fine powder. Each finely powdered sample was transferred to a 2 mL microcentrifuge
tube containing 1.5 mL of pre-warmed extraction buffer (50 mM Tris–HCl, 20 mM EDTA,
1 M NaCl, 2% SDS and 4% β-mercaptoethanol; pH 8.0). Samples were incubated in
a water bath at 65 ◦C for 15–20 min. The tube was centrifuged at 13,000 g for 10 min
at 4 ◦C and the supernatant was transferred to a sterile 2 mL centrifuge tube. An equal
volume of water-saturated phenol (pH 4.5) was added, vortexed for 2 min, then kept at
room temperature for 10 min. The tube was centrifuged at 13,000 g for 10 min at 4 ◦ C,
the supernatant was transferred to a sterile 2 mL centrifuge tube, then equal volumes of
chloroform and isoamyl alcohol (24/1, v/v) were added and mixed thoroughly. The tube
was again centrifuged at 13,000 g for 10 min at 4 ◦C, the supernatant was transferred to
a sterile two mL centrifuge tube, and an equal volume of isopropanol was added. The
solution in the centrifuge tube was mixed, placed in a refrigerator at −20 ◦C for 10 min,
and then centrifuged at 13,000 g for 10 min at 4 ◦C. The supernatant was discarded, the
pellet was washed with 75% chilled ethanol, and the tube was centrifuged at 13,000 g for
15 min at 4 ◦C. The RNA pellet was dried at room temperature for 5 min. The dried RNA
pellet was resuspended in 50 µL of diethyl phosphorocyanidate (DEPC) in distilled water.
According to the manufacturer’s instructions, samples were treated with Recombinant
DNase I (RNase-free) (Takara Bio Inc., Kusatsu, Shiga, Japan) to remove genomic DNA,
and stored at−80 ◦C. The NanoDrop One/OneCmicro nucleic acid protein concentration
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analyzer (Thermo Fisher Scientific, Waltham, MA, USA) was used to assess the purity
and concentration of RNA samples. Agarose gel electrophoresis was used to survey the
RNA integrity by Clinx GenoSens gel documentation system (Clinx Science Instruments,
Shanghai, China).

Quantitative real-time reverse transcriptase-PCR analysis
Following the manufacturer’s instructions, the first-strand cDNAwas synthesized using the
GoScriptTM Reverse Transcription System (Promega, Madison, WI, USA). Quantitative
real-time reverse transcriptase-PCR (qRT-PCR) assays of three biological replicate
samples were performed on a LightCycler 480 system (Roche, Basel, Switzerland) using
the AptamerTM qPCR SYBR

R©
Green Master Mix (Tianjin Novogene Bioinformatics

Technology Co. Ltd., Tianjin, China). The reaction conditions were as follows: 95 ◦C
for 5 min, followed by 40 cycles of 95 ◦C for 10 s, and 60 ◦C for 30 s. D. officinale
actin (NCBI accession number JX294908) was used as an internal control gene based on
the advice of He et al. (2015). The relative expression levels of genes were calculated
using the 2−11CT method (Livak & Schmittgen, 2001). The expression of genes was
significantly altered upon different treatments when the fold change was greater than
2 (Li et al., 2016). The gene-specific primers for qRT-PCR were designed by Primerquest
(https://sg.idtdna.com/Primerquest/Home/Index) and are listed in Table S1.

RESULTS
Identification and phylogenetic analysis of the DoHDAC genes
In this study, 14 DoHDAC genes were identified in the D. officinale genome. The CDS
length of DoHDAC genes was diverse, ranging from 267 bp to 2085 bp (Table 1). Analysis
of gene structure helps to understand gene function and evolution (Feng et al., 2016).
Hence, the structure of the DoHDAC genes was analyzed. Our results showed that their
conserved coding regions consisted of different numbers of exons, while DoHDA10 and
DoHDT4 have only one exon (Fig. 1). Amino acid sequence alignment of the 14 DoHDAC
proteins showed that, except for DoHDA4 and DoHDA10, the eight histone deacetylases
with amino acid sequences between 200 aa and 312 aa all contained a typical histone
deacetylase catalytic domain. DoHDA4 and DoHDA10 showed significantly low sequence
identity with other RPD3/HDA1 family proteins in D. officinale (Fig. 2), suggesting that
they might play some unique roles in certain cellular events. Functional domain analysis
revealed that DoHDA6 possessed a RanBP2-type zinc finger domain (Fig. 2). DoHDT3
contained a conserved domain with a pentapeptide (MEFWG) on the N-terminus and a
C2H2 zinc finger domain on the C-terminus of the protein (Fig. S1, Fig. 2). In addition,
DoSRT1 andDoSRT2 possessed a single copy of the sirtuin-typeHDACdomain (Fig. 2). To
investigate the conserved nature of motifs in DoHDAC proteins, we investigated 10 motifs
among the 14 DoHDAC proteins. The width of these 10 motifs ranged from 21 (motif 6,
8 and 9) to 50 (motif 3, 4 and 5) amino acids (Fig. 3). Closely related proteins, such as
DoHDA3, DoHDA7, DoHDA9, DoHDA1, DoHDA6, DoHDA2, DoHDA5, DoHDT3 and
DoHDT4, had similar conservedmotifs. For instance,most of theD. officinale RPD3/HDA1
superfamily proteins contained HDACs domain motifs 1 and 2. However, the HDAC
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Table 1 Overview of histone deacetylase genes identified inD. officinale.

Gene CDS length (bp) Protein attributes

Length (aa) MW (Da)* pI*

DoHDA1 945 314 34352.98 6.49
DoHDA2 2058 685 76108.86 5.06
DoHDA3 1269 422 105199.42 5.06
DoHDA4 432 143 15457.30 5.69
DoHDA5 1149 382 41545.88 5.44
DoHDA6 1695 564 62307.71 6.31
DoHDA7 1536 511 57896.33 5.30
DoHDA8 816 271 30616.14 6.25
DoHDA9 1500 499 55436.99 5.45
DoHDA10 456 151 16728.54 6.27
DoHDT3 960 319 76918.49 5.15
DoHDT4 267 88 10000.50 6.25
DoSRT1 1230 409 45501.65 8.19
DoSRS2 840 279 30821.09 7.04

Notes.
*The theoretical isoelectric point (pI) and molecular weight (Mw) of the D. officinale HDAC proteins were calculated with the
Compute pI/Mw online tool (https://web.expasy.org/compute_pi/).

domain motif was not found in DoSRT1 and DoSRT2. We constructed a protein–protein
interaction network of the 14 DoHDAC proteins using STRING (http://string-db.org/)
based on anA. thaliana associationmodel (Fig. 4). DoHDA9 showed a high degree of amino
acid sequence similarity to AtHDA6, thus it might interact with the flavin-containing amine
oxidoreductase family protein (FLD), which might be histone demethylase that promotes
flowering by repressing FLOWERING LOCUS C (FLC) (Table S3, Fig. 4, Table S4).
Moreover, DoHDA9 might interact with the WD40 repeat-containing protein HOS15
in response to abiotic stress (Table S4). To study the evolutionary relationships among
DoHDAC proteins, a phylogenetic tree was constructed by aligning the amino acid
sequences of histone deacetylases of four, ten and one HDAC proteins from A. thaliana,O.
sativa, and Z. mays using MEGA 7.0. In the phylogenetic tree, 14 DoHDAC proteins were
divided into three families: RPD3/HDA1, SIR2, and HD2 (Fig. 5). DoHDA9, AtHDA6
homologue, shared approximately 71.1% amino acid sequence similarity with AtHDA6. In
addition, DoHDA7, AtHDA19 homologue, had approximately 80% amino acid sequence
similarity with AtHDA19.

Subcellular localization analysis of selected DoHDAC genes
To verify the subcellular localization of certain DoHDAC proteins, an Agrobacterium-
mediated transient transformation systemwas used in onion epidermal cells. The expression
ofGFP fused toDoHDA7,DoHDA9,DoHDA10,DoHDT3,DoHDT4,DoSRT1 andDoSRT2
was tracked by the GFP marker signal. The blue fluorescence pattern of DAPI-stained cells
completely merged with the green fluorescence pattern, showing the nuclear localization of
DoHDAC proteins in onion epidermal cells (Fig. 6). As shown in Fig. 6, the positive control
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Figure 1 Exon-intron structures ofDoHDAC genes. Untranslated regions, exons and introns are indi-
cated by blue, green and black, respectively. The green scale bar represents 10 kb. The black scale line rep-
resents 20 kb.

Full-size DOI: 10.7717/peerj.10482/fig-1

Figure 2 Conserved domain ofDoHDAC genes. The location and size of domains are shown by differ-
ent colors. Proteins belonging to each family are grouped together.

Full-size DOI: 10.7717/peerj.10482/fig-2

was distributed throughout the onion cells. In contrast, DoHDA7, DoHDA9, DoHDA10,
DoHDT3, DoHDT4, DoSRT1 and DoSRT2 were localized in the nucleus.

Analysis of cis-acting elements in the putative promoters of DoHDAC
genes
A cis-acting element is a non-coding part of DNA, is usually limited to the 5′ upstream
region of a gene, and is responsible for transcriptional regulation. To better predict gene
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Figure 3 Conserved motifs analysis of the DoHDAC proteins. The conserved protein sequence motifs
of the DoHDAC proteins were identified using the MEME program. Each motif is represented by a differ-
ent color.

Full-size DOI: 10.7717/peerj.10482/fig-3

functions, we identified the cis-acting elements within the putative∼2 kb promoter region
of DoHDAC genes. In addition to the core cis-acting elements, such as the TATA-box and
the CAAT-box, several other cis-elements related to plant growth or development, stress
responses, and hormone responses were detected (Table S2, Fig. 7). Cis-acting elements
related to growth or development included light-responsive elements such as Box4, G-box,
GT1-motif, Sp1, and TCT-motif, elements expressed only in the endosperm such as
the AACA_motif and GCN4_motif, and elements under circadian control or showing
meristem-specific activation such as CAT-box and NON-box. Cis-acting elements related
to phytohormone responses included GA-responsive elements such as GARE-motif, P-box
and TATC-box, MeJA-responsive elements such as CGTCA-motif and TGACG-motif,
ABA-responsive element (ABRE), and SA-responsive element such as TCA-element.
Cis-acting elements related to abiotic stresses included drought-responsive elements such
as MBS and a low-temperature-responsive (LTR) element. For example, both DoHDA3
and DoHDT3 had cis-acting elements involved in MeJA-responsiveness, low-temperature
responsiveness and drought inducibility. Therefore, based on the large number of cis-acting
elements related to these stresses, the D. officinale plantlets were treated with SA, MeJA,
ABA, GA3, cold stress and drought stress.
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Figure 4 Interaction networks of DoHDAC proteins according to the orthologs in A. thaliana. Differ-
ent colored lines represent types of evidence for the association.

Full-size DOI: 10.7717/peerj.10482/fig-4

Expression analysis of DoHDAC genes in different tissues
Since high-throughput sequencing has been performed on D. officinale tissues at different
developmental stages, the publicly available RNA-seq data obtained is a useful resource
for studying gene expression profiles. We used previously reported transcriptome data
(Zhang et al., 2017) to examine the expression pattern of DoHDAC genes in different
tissues. The heat map (Fig. 8) revealed that three DoHDAC genes (DoHDA3, DoHDA7,
and DoHDT3) were highly expressed with FPKM values > 25 in all detected tissues, while
DoHDA10 showed a low expression with FPKM values < 5 in all the detected tissues. In
addition, some genes displayed a tissue-specific expression pattern. For example, DoHDA5
and DoSRT1 were most highly expressed in the white parts of root, while DoHDA6 and
DoHDT4 were expressed predominantly in flower buds (Fig. 8). These results suggested
that DoHDAC genes might play an important role in the development of different organs.

Expression analysis of DoHDAC genes in response to exogenous
phytohormones
Hormones play a vital role in the vegetative and reproductive growth of plants. Analysis
of the cis-acting elements in promoters indicates that the DoHDAC genes might respond
to a variety of stresses and signaling molecules. Therefore, based on potential cis-acting
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Figure 5 Phylogenetic tree of the deduced amino acid sequences of HDAC proteins inD . officinale,
O. sativa, A. thaliana, and Z. mays. Abbreviations for species are as follows: D. officinale (Do), A.
thaliana (At), O. sativa (Os), and Z. mays (Zm). Enzymes used for alignment were as follows: AtHDA6,
AT5G63110; AtHDA19, AT4G38130; AtSRT1, AT5G55760; AtSRT2, AT5G09230; OsHDA704,
Os07g0164100; OsHDA705, Os08g0344100; OsHDA706, Os06g0571100; OsHDA711, Os04g0409600;
OsHDA712, Os05g0440100; OsHDA713, Os07g0602200; OsHDA714, Os12g0182700; OsHDT701,
Os05g0597100; OsSRT701, Os04g0271000; OsSRT702, Os12g0179800, ZmHDA116, Zm00001d046388.

Full-size DOI: 10.7717/peerj.10482/fig-5

elements, we selected some genes and used qRT-PCR to detect their expression patterns
under various phytohormone treatments. We analyzed the expression patterns of 12
DoHDAC genes in different subfamilies after GA3 treatment (Fig. 9). The results showed
that after 4 h of GA3 treatment, 11 genes in roots were highly up-regulated, DoHDA8 and
DoHDA10 were the highest (> 20-fold), and DoSRT2 was highly up-regulated in stems. In
addition, after 24 h of GA3 treatment, DoHDA10 and DoHDT4 were highly up-regulated
in leaves. At the same time, cis-acting elements involved in the GA3-response were found in
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Figure 6 Subcellular localization analysis of DoHDAC proteins. pCAMBIA1302-DoHDA7,
pCAMBIA1302-DoHDA9, pCAMBIA1302-DoHDA10, pCAMBIA1302-DoHDT3, pCAMBIA1302-
DoHDT4, pCAMBIA1302-DoSRT1 and pCAMBIA1302-DoSRT2 was inserted into onion epidermal
cells by Agrobacterium-mediated transformation to determine their subcellular localization. (A–D) GFP
fluorescence distributed throughout the entire cells from the GFP empty vector. (continued on next
page. . . )

Full-size DOI: 10.7717/peerj.10482/fig-6
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Figure 6 (. . .continued)
(E–H) GFP fluorescence from cells expressing DoHDA7-GFP fusion protein localized to the nucleolus. (I–
L) GFP fluorescence from cells expressing DoHDA9-GFP fusion protein localized to the nucleolus. (M–
P) GFP fluorescence from cells expressing DoHDA10-GFP fusion protein localized to the nucleolus. (Q–
T) GFP fluorescence from cells expressing DoHDT3-GFP fusion protein localized to the nucleolus. (U–X)
GFP fluorescence from cells expressing DoHDT4-GFP fusion protein localized to the nucleolus. (Y–BB)
GFP fluorescence from cells expressing DoSRT1-GFP fusion protein localized to the nucleolus. (CC–FF)
GFP fluorescence from cells expressing DoSRT2-GFP fusion protein localized to the nucleolus. The panels
from left to right correspond to brightfield, fluorescence (GFP), DAPI staining images and the merged im-
ages of fluorescence and brightfield, respectively. Scale bars: 100 µm.

Figure 7 About 2 kb upstream sequences ofDoHDAC genes and distribution of predicted cis-
elements. Different cis-elements are represented using different colored boxes.

Full-size DOI: 10.7717/peerj.10482/fig-7

these four genes (Table S2). Most selected DoHDAC genes were induced by exogenous SA
treatment (Fig. 10). All genes in roots were highly up-regulated after 2 h under SA treatment,
while the expression of DoHDA10 and DoHDT4 in leaves was highly up-regulated after 24
h of SA treatment. Moreover, cis-acting elements in response to SA were found in these
two genes (Table S2). ABA is a widely distributed plant hormone in land plants and plays
an important role in plant development (Finkelstein, Gampala & Rock, 2002). After 4 h of
ABA treatment, 11 DoHDAC genes, especially DoHDA8, DoHDA10 and DoHDT4, were
up-regulated in roots (Fig. 11), and cis-acting elements in response to ABA were found in
the promoters ofDoHDA8 andDoHDT4 (Table S2). After 24 h of treatment with MeJA, 12
DoHDAC genes in roots were up-regulated and two DoHDAC genes were down-regulated
(Fig. 12). Interestingly, we found that after 2 h ofMeJA treatment,DoHDA10 andDoHDT4
were significantly up-regulated in stems and leaves (> 9-fold), and cis-acting elements in
response to MeJA were found in the promoters of these two genes (Table S2). These results
indicate that DoHDT4 might be involved in GA3-, SA-, ABA- and MeJA-mediated signal
transduction pathways, DoHDA10 might be involved in GA3-, SA- and MeJA-mediated
signal transduction pathways, and DoHDA8 might be involved in ABA-mediated signal
transduction pathways.
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Figure 8 Expression profiles ofDoHDAC genes in different tissues based on the transcriptome data.
These data were used to analyze the expression profiles of DoHDAC genes in five different tissues: the
white part of root (Wr), green root tip (Gr), stem (St), leaf (Le), and flower bud (Fb). The color bar repre-
sents the log2(FKPM+1) values of each gene and transcript in different tissues. Red represents high relative
expression, and blue represents low relative expression.

Full-size DOI: 10.7717/peerj.10482/fig-8

Expression analysis of DoHDAC genes in response to abiotic stresses
HDAC proteins appear to activate positive and negative responses in salinity stress, with
some discrepancies. For example, AtHDA9 and AtHD2D negatively regulate the salt
response, whereas AtHDA6 and AtHD2C positively regulate it (Ueda et al., 2017). After
salt (NaCl) treatment, most of the selected DoHDAC genes were highly up-regulated
in leaves, especially DoHDA10 and DoHDT4, which showed similar expression patterns
(Fig. 13). After PEG treatment, most genes were highly up-regulated in roots, stems and
leaves, especially DoHDA10 and DoHDT4, which showed similar expression patterns
(Fig. 14). In addition, cis-acting elements involved in responsiveness to drought were
found in the promoters of DoHDA10 and DoHDT4 (Table S2). The drought stress
response in plants is related to the status of histone acetylation. In response to drought
stress, the level of acetylation of histone H3K9 increased in drought-responsive genes (Kim
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Figure 9 Quantitative real-time reverse transcriptase-PCR analysis of expression of selectedDoHDAC
genes at different hours of GA3 treatment in different tissues. A–L represent DoHDA1, DoHDA2, Do-
HDA4, DoHDA5, DoHDA6, DoHDA7, DoHDA8, DoHDA9, DoHDA10, DoHDT4, DoSRT1, DoSRT2, re-
spectively. Error bars represent the standard error of the means of three independent replicates. Expres-
sion levels were calculated relative to 0 h of each organ.

Full-size DOI: 10.7717/peerj.10482/fig-9

et al., 2008). Drought stress significantly induced four HAT genes in rice (OsHAC703,
OsHAG703, OsHAF701, and OsHAM701) (Fang et al., 2014). However, in this study,
the up-regulated expression of DoHDAC genes under drought stress may be related to
the inhibited expression of drought-insensitive genes. AtHD2C-overexpressing A. thaliana
plants showed ABA insensitivity, reduced transpiration, and enhanced tolerance to drought
stress (Sridha & Wu, 2006). After low-temperature treatment, the selected DoHDAC genes
were weakly up-regulated in roots, stems and leaves (Fig. 15). This is consistent with the
expression ofmostHDAC genes in rice being regulated by salt and drought, but less affected
by cold (Hu et al., 2009). Therefore, DoHDA10 and DoHDT4might play an important role
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Figure 10 Quantitative real-time reverse transcriptase-PCR analysis of expression of selectedDo-
HDAC genes at different hours of SA treatment in different tissues. A–L represent DoHDA1, DoHDA2,
DoHDA4, DoHDA5, DoHDA6, DoHDA7, DoHDA8, DoHDA9, DoHDA10, DoHDT4, DoSRT1, DoSRT2,
respectively. Error bars represent the standard error of the means of three independent replicates. Expres-
sion levels were calculated relative to 0 h of each organ.

Full-size DOI: 10.7717/peerj.10482/fig-10

in the regulation of salt and drought stress responses during the growth of D. officinale
plants.

DISCUSSION
Plant HDAC proteins are a large family composed of multiple gene members. A variety of
HDAC proteins have different subcellular localization and expression patterns, indicating
that they have diverse functions. Reversible changes in histone deacetylation and acetylation
play a crucial role in regulating gene expression involved in various developmental processes
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Figure 11 Quantitative real-time reverse transcriptase-PCR analysis of expression of selectedDo-
HDAC genes at different hours of ABA treatment in different tissues. A–L represent DoHDA1, Do-
HDA2, DoHDA4, DoHDA5, DoHDA6, DoHDA7, DoHDA8, DoHDA9, DoHDA10, DoHDT4, DoSRT1,
DoSRT2, respectively. Error bars represent the standard error of the means of three independent repli-
cates. Expression levels were calculated relative to 0 h of each organ.

Full-size DOI: 10.7717/peerj.10482/fig-11

and plant responses to abiotic stress (Liu et al., 2014). Plant HDAC proteins have been
identified and characterized in some plant species such as A. thaliana, rice, soybean,
tomato and others. For instance, a total of 18 AtHDAC proteins have been identified,
12 of which belong to the RPD3/HDA1 family, four belong to the HD2 family, and two
belong to the SIR2 family (Pandey et al., 2002; Wang et al., 2014). Furthermore, at least
18 HDAC proteins have been identified in the rice genome, 14 of which belong to the
RPD3/HDA1 family, two belong to the HD2 family, and two belong to the SIR2 family
(Hu et al., 2009). In this study, we identified 14 HDAC proteins in D. officinale by using
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Figure 12 Quantitative real-time reverse transcriptase-PCR analysis of expression of selectedDo-
HDAC genes at different hours of MeJA treatment in different tissues. A–N represent DoHDA1, Do-
HDA2, DoHDA3, DoHDA4, DoHDA5, DoHDA6, DoHDA7, DoHDA8, DoHDA9, DoHDA10, DoHDT3,
DoHDT4, DoSRT1, DoSRT2, respectively. Error bars represent the standard error of the means of three in-
dependent replicates. Expression levels were calculated relative to 0 h of each organ.

Full-size DOI: 10.7717/peerj.10482/fig-12
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Figure 13 Quantitative real-time reverse transcriptase-PCR analysis of expression of selectedDo-
HDAC genes at different hours of NaCl treatment in different tissues. A–L represent DoHDA1, Do-
HDA2, DoHDA4, DoHDA5, DoHDA6, DoHDA7, DoHDA8, DoHDA9, DoHDA10, DoHDT4, DoSRT1,
DoSRT2, respectively. Error bars represent the standard error of the means of three independent repli-
cates. Expression levels were calculated relative to 0 h of each organ.

Full-size DOI: 10.7717/peerj.10482/fig-13

bioinformatics analysis. However, the number of members of the HDAC proteins in D.
officinale identified was less than that in A. thaliana and rice. The other DoHDAC proteins
need to be identified and characterized in a future study.

Histone post-translational modifications (PTMs) are a major regulator of gene
transcription. A number of PTMs are located within interfaces between H3/H4 tetramers
and/or H2A/H2B dimers, such as the acetylation of H4(K91) (Zhang et al., 2003). Shortly
after synthesis, histones H3 and H4 are acetylated by histone acetyltransferase 1/2 in the
cytoplasm and then imported into the nucleus together with the histone acetyltransferase 1
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Figure 14 Quantitative real-time reverse transcriptase-PCR analysis of expression of selectedDo-
HDAC genes at different hours of PEG-6000 treatment in different tissues. A–M represent DoHDA1,
DoHDA2, DoHDA3, DoHDA4, DoHDA5, DoHDA6, DoHDA7, DoHDA8, DoHDA9, DoHDA10, DoHDT4,
DoSRT1, DoSRT2, respectively. Error bars represent the standard error of the means of three independent
replicates. Expression levels were calculated relative to 0 h of each organ.

Full-size DOI: 10.7717/peerj.10482/fig-14
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Figure 15 Quantitative real-time reverse transcriptase-PCR analysis of expression of selectedDo-
HDAC genes at different hours of cold (4 ◦C) treatment in different tissues. A–M represent DoHDA1,
DoHDA2, DoHDA3, DoHDA4, DoHDA5, DoHDA6, DoHDA7, DoHDA8, DoHDA9, DoHDA10, DoHDT3,
DoHDT4, DoSRT2, respectively. Error bars represent the standard error of the means of three independent
replicates. Expression levels were calculated relative to 0 h of each organ.

Full-size DOI: 10.7717/peerj.10482/fig-15

complex. In the nucleus, H3-H4 dimers or tetramers are recognized by chaperones such as
CAF-1, Asf1 andHif1, perhaps through their acetylationmarkers and are deposited together
with histone H2A-H2B dimers onto newly replicated DNA to form nucleosomes, and then
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rapidly deacetylated by histone deacetylase (Shahbazian & Grunstein, 2007). Moreover,
some researches have shown that almost all acetyl-lysine-binding, bromodomain proteins
(acetyl-lysine readers) are localized in the nucleus, and many of them are directly involved
in the regulation of transcription (Narita, Weinert & Choudhary, 2019). Therefore, most
HDAC proteins were localized in the nucleus in this study, which may be related to their
function of removing acetyl groups from histones. The localization of HDAC proteins
are also diverse in different environments. Some HDAC proteins are shuttled between the
cytoplasm and the nucleus. For example, AtHDA15 shuttled from the cytoplasm to the
nucleus in the presence of light, but exported out of the nucleus in darkness, implying
that it could participate in the light signaling pathway (Alinsug et al., 2012). Moreover,
the localization of HDAC proteins is variable in different plant tissues. For an instance,
in anthers/endosperm, maize ZmHDA108 was localized in the nucleus and cytoplasm,
while in shoot apexes, it was mainly found in the cytoplasm (Varotto et al., 2003). The
green fluorescence of the DoHDA7-GFP and DoHDA9-GFP fusions were observed in the
nucleus by Agrobacterium-mediated transient transformation used in onion epidermal
cells (Fig. 6). Similarly, AtHDA6 and AtHDA19 was localized in the nucleus, which was
consistent with the roles of these proteins as HDAC proteins (Kurita et al., 2019; Wu et
al., 2008; Zhou et al., 2005). It should be noted, however, that the subcellular localization
assays in the present study were performed using onion epidermal cells, and therefore, it is
entirely possible that D. officinale-specific interactions could affect the localization pattern
in situ.

Zinc finger proteins are a class of important transcription factors that regulate plant cell
development (Sun et al., 2015). According to the number and position of cysteine residues
and histidine residues, which bind zinc ions in the secondary structure of fingers, zinc finger
proteins are classified into several types: C2H2, C2C2, C2HC, C2C2C2C2, and C2HCC2C2

(Ciftci-Yilmaz & Mittler, 2008). Among them, the C2H2-type zinc finger proteins are one
of the most important groups and are involved in downstream gene regulation (Sakamoto
et al., 2000; Tague, Gallant & Goodman, 1996). They are mainly involved in regulating
biological processes such as plant branch and flower development, stress response and
hormone signaling pathways (Sun et al., 2015). In this study, a typical C2H2-type zinc
finger domain was found on the C-terminus of DoHDT3 (Fig. 2). Therefore, DoHDT3
might interact with other proteins to regulate plant development and stress response.
AtHDA6 and AtHDA19 are the most well-studied RPD3/HDA1 family of HDAC proteins
in plants, and they play a vital role in the growth and development of plants (Alinsug, Yu
& Wu, 2009). Flowering is vital for plants to complete the life cycle and produce offspring.
AtHDA6 and AtHDA19 are global repressors involved in flowering or flower development
(Alinsug, Yu & Wu, 2009). Due to the high sequence similarity between DoHDA9 and
AtHDA6 and between DoHDA7 and AtHDA19, DoHDA7 and DoHDA9 may have
similar functions in regulating plant development as their homologs in A. thaliana. For
example, when AtHDA6 is suppressed, the expression of jasmonate-responsive genes is
down-regulated (Wu et al., 2008). Similarly, after MeJA treatment, the expression level of
DoHDA9 was up-regulated in roots (Fig. 12). AtHDA19 plays a pivotal role in tolerance
to salinity stress (Ueda et al., 2017). Correspondingly, after NaCl treatment, the expression
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level of DoHDA7 was up-regulated in stems and leaves (Fig. 13). The expression of HDAC
genes occurs in response to stresses and is regulated by stress-related hormones like SA, JA
or ABA (Fu, Wu & Duan, 2007; Hu et al., 2009). ABA is the plant hormone most directly
involved in stress signal transduction (Xiong, Schumaker & Zhu, 2002). JA generally inhibits
plant growth and promotes defense responses against insect pests and pathogens while
ABA is involved in the water stress response, regulating plant water balance and osmotic
stress tolerance (Ma et al., 2013). After ABA treatment, the expression levels of AtHD2C,
which is a synonym of AtHDT3, OsHDT701, OsHTD702, OsSRT701 and OsSRT702 were
down-regulated (Fu, Wu & Duan, 2007; Sridha & Wu, 2006). In contrast, the expression
levels of DoHDA10, DoHDT4, and DoSRT1 were significantly up-regulated in roots after
ABA treatment and in leaves after NaCl treatment (Figs. 11 & 13), so they may affect the
expression level of some stress-responsive genes. In addition to their functions in plant
development and stress responses, HDAC proteins are also involved in cellular processes
such as cell death. OsSRT1 in rice and NtHD2a and NtHD2b in tobacco act as negative
regulators of cell death (Bourque et al., 2011; Huang et al., 2007). Programmed cell death
(PCD) in the maize aleurone layer is induced by GA, and HDAC activity is required for
this process. HDAC activity gradually increased relative to histone acetyltransferase (HAT)
activity, leading to a global decrease in histone H3 and H4 acetylation levels during PCD
after treatment with GA (Hou et al., 2017). These data further prove that the DoHDAC
genes play an important role in the growth and development ofD. officinale and in response
to environmental stresses. Further research is required to identify proteins that interact
with DoHDAC proteins and their global targets in D. officinale.

CONCLUSIONS
We comprehensively identified and analyzed the HDAC genes from D. officinale. We
performed a phylogenetic analysis, as well as analyses of conserved motifs, cis-acting
elements, gene structure, protein interactions, and subcellular localization of some
DoHDAC genes. These results help to elucidate the classification and function of the
DoHDAC genes. Expression pattern analysis in different tissues showed that the DoHDAC
genes were widely expressed in roots, stems, leaves and flower buds. The expression pattern
of DoHDAC genes under abiotic stresses and various phytohormone treatments show that
some DoHDAC genes were modulated by abiotic stresses such as salt, cold and drought,
as well as plant hormones such as GA3, SA, ABA and MeJA. In summary, this information
about the HDAC genes in D. officinale helps to reveal their role in epigenetic regulation of
plant growth, development, and response to stresses.
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