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ABSTRACT One of the strongest associations between human genetics and the gut
microbiome is a greater relative abundance of Bifidobacterium in adults with lactase
gene (LCT) single nucleotide polymorphisms (SNPs) associated with lactase nonper-
sistence (GG genotypes), versus lactase persistence (AA/AG genotypes). To gain a
finer-grained phylogenetic resolution of this association, we interrogated 1,680 16S
rRNA libraries and 245 metagenomes from gut microbiomes of adults with various
lactase persistence genotypes. We further employed a novel genome-capture-based
enrichment of Bifidobacterium DNA from a subset of these metagenomes, including
monozygotic (MZ) twin pairs, each sampled 2 or 3 times. B. adolescentis and B.
longum were the most abundant Bifidobacterium species regardless of host LCT ge-
notype. LCT genotypes could not be discriminated based on relative abundances of
Bifidobacterium species or Bifidobacterium community structure. Three distinct met-
agenomic analysis methods of Bifidobacterium-enriched DNA revealed intraindividual
temporal stability of B. longum, B. adolescentis, and B. bifidum strains against the
background of a changeable microbiome. Two of our three methods also observed
greater strain sharing within MZ twin pairs than within unrelated individuals for B.
adolescentis, while no method revealed an effect of host LCT genotype on Bifidobac-
terium strain composition. Our results support a “rising tide lifts all boats” model for
the dominant bifidobacteria in the adult gut: their higher abundance in lactase-
nonpersistent than in lactase-persistent individuals results from an expansion at the
genus level. Bifidobacterium species are known to be transmitted from mother to
child and stable within individuals in infancy and childhood: our results extend this
stability into adulthood.

IMPORTANCE When humans domesticated animals, some adapted genetically to di-
gest milk into adulthood (lactase persistence). The gut microbiomes of people with
lactase-persistent genotypes (AA or AG) differ from those with lactase-nonpersistent
genotypes (GG) by containing fewer bacteria belonging to the bifidobacteria, a
group which contains beneficial species. Here, we asked if the gut microbiomes of
adults with GG and AA/AG genotypes differ in the species of bifidobacteria present.
In particular, we used a novel technique which allowed us to compare bifidobacteria
in adults at the strain level, without the traditional need for culturing. Our results
show that the GG genotype enhances the abundance of bifidobacteria regardless of
species. We also noted that a person’s specific strains are recoverable several years
later, and twins can share the same ones. Given that bifidobacteria are inherited
from mother to child, strain stability over time in adulthood suggests long-term,
multigenerational inheritance.
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Lactose tolerance arose in European, African, and Middle Eastern human populations
with animal domestication (1–3). The genetic underpinnings of lactose tolerance

represent one of the strongest signals of recent selection in the human genome (3). The
enzyme lactase metabolizes lactose, the primary carbohydrate in mammalian milk.
The gene regulatory region of the lactase gene (LCT) controls the downregulation of
lactase after weaning (4). Allelic variants that inhibit downregulation, resulting in
lactase persistence, occur in an estimated 35% of humans (1). Lactase persistence
allows hydrolyzation of lactose and uptake of the resulting glucose and galactose
directly in the small intestine of adults and is linked to lactose tolerance.

In a striking parallel, one of the strongest signals for human genotype effects on the
gut microbiome also relates to lactase persistence. In Western populations, individuals
with a lactase-persistent genotype harbor a significantly lower relative abundance of
Bifidobacterium in their gut microbiomes than do nonpersistent individuals (5–8). The
association was found to be stronger when dairy consumption in the lactase-
nonpersistent individuals was considered (9). Together, these observations suggest that
for lactase-nonpersistent individuals, Bifidobacterium may benefit from the availability
of lactose in the gut. Bifidobacterium is a large genus whose members are often
metabolic specialists with regard to particular nutrients (10), which suggests that not all
Bifidobacterium species may respond equally to lactose availability. However, beyond
an overall enrichment of the Bifidobacterium genus, the effects of the lactase persis-
tence genotype on the bifidobacterial community in the gut remain unclear.

Here, we aimed to interrogate the LCT-Bifidobacterium link at a finer phylogenetic
resolution. We reexamined public metagenomic (11) and 16S rRNA gene data (5) from a UK
twin cohort with both lactase-persistent (AA, AG) and nonpersistent (GG) individuals. We
then performed genome-capture enrichment of Bifidobacterium from 11 twin pairs of each
genotype across two or three time points per individual and sequenced each metagenome
before and after genome capture. With these data, we asked if lactase persistence genotype
influenced strain composition, longitudinal stability within an individual, or similarity within
families for three species (B. longum, B. adolescentis, and B. bifidum). Our results suggest a
proportional increase of the predominant Bifidobacterium species in the gut microbiomes
of the lactase-persistent compared to nonpersistent individuals. We observed strong strain
stability within individuals, and sharing of some strains between MZ twins, independent of
LCT genotype group.

RESULTS

Our analysis of 16S rRNA gene sequence variants (SVs) confirmed our previous
operational taxonomic unit (OTU)-based report (5) of significantly greater mean relative
abundance of Bifidobacterium in lactase-nonpersistent (GG) versus persistent (AA/AG)
individuals (mean AA/AG � 0.96% � 0.05% and mean GG � 3.22% � 0.4% [standard
error {SE}], linear mixed-model P � 4.5e�16) (Fig. 1A; see also Table S1, tab 1, in the
supplemental material). This analysis revealed 13 Bifidobacterium SVs which occurred in
at least two of 1,680 samples. Five of the 13 SVs were unambiguously identified to the
species level, while two fell within a broader B. longum/B. breve clade. Both host
genotype groups (GG versus AA/AG) were dominated, in order of abundance, by B.
adolescentis, B. longum/breve, B. pseudocatenulatum, B. animalis, and B. bifidum. To-
gether these taxa represented over 98.6% of all sequences assigned to the Bifidobac-
terium genus, although only 1.1% of all sequences across all taxa (Table S1, tab 1). These
five species had similar proportions of the total Bifidobacterium community in both
genotype groups and almost identical rank orders (GG, 93%; AA/AG, 91%) (Fig. 1B;
Table S1, tab 1). Based on SVs, B. animalis and B. dentium were the only taxa with
species-level designations that did not have significantly greater relative abundance in
GG than in AA/AG genotypes.

After normalization of Bifidobacterium within each genotype (thereby removing the
effect of an overall enrichment of the genus), discriminant analysis using linear dis-
criminant analysis effect size (LEfSe) (12) revealed no discriminant Bifidobacterium SVs
between GG and AA/AG individuals (data not shown). This result indicates similar
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proportional abundances of each Bifidobacterium species within each host genotype
group, despite an overall greater relative abundance of all taxa in GG versus AA/AG
genotypes. Analysis of similarity (ANOSIM) permutation tests on the Bray-Curtis Dis-
similarity (BCD) matrix of within-genotype normalized Bifidobacterium SV matrices also
revealed no significant community clustering by host genotype group (ANOSIM
P � 0.05), further supporting a proportional increase across most taxa rather than
genotypic selection of specific species or strains within the genus.

We also assessed the association between frequency of dairy consumption and
Bifidobacterium SVs for the 783 samples for which both data sets were accessible. Linear
mixed-effect models, with genotype as a random variable, revealed no overall associ-
ation between dairy consumption and the relative abundance of the genus (linear
mixed model P � 0.113). When SVs were interrogated independently, B. animalis and
an unclassifiable bifidobacterium were the only two SVs which showed significant
associations (B. animalis, P � 0.0023; B. unknown1, P � 0.014). Interestingly, when each
genotype was considered independently, significant associations with levels of dairy
consumption were observed for B. animalis within GG individuals, but not in AA/AG
individuals (generalized linear model: GG, P � 0.03; AA/AG, P � 0.13).

Our taxonomic annotations of metagenomic reads from existing TwinsUK metag-
enomes (11) revealed an overall enrichment of the Bifidobacterium genus in lactase-

FIG 1 Lactase-persistent genotype enriches most human associated Bifidobacterium species. (A) Relative
abundance of reads annotated as Bifidobacterium at the genus level from lactase-persistent (AA/AG) and
nonpersistent (GG) individuals based on 16S rRNA SV taxonomic annotations (n: AA/AG � 1,549, GG � 131).
(B) Mean relative abundance of Bifidobacterium species in AA/AG (x axis) and GG (y axis) individuals based on
16S rRNA SV taxonomic annotations. Colors indicate significant enrichment in GG. The 1:1 line designates
equal proportion in each genotype, and points above the line therefore indicate enrichment in GG and vice
versa. Taxa that occurred in only one genotype are not shown. Species are B. adolescentis (adol), B. longum
(long), B. pseudocatenulatum (pseu), B. animalis (anim), B. bifidum (bifi), B. dentium (dent), and B. catenulatum
(cate; appears only in panel D). Unknown (unkn) indicates SVs that cannot be resolved beyond genus level.
NS/S represents nonsignificant or significant enrichment in GG, respectively, according to bootstrapped
Wilcoxon rank sum tests. (C) Relative abundance of reads annotated as Bifidobacterium at the genus level from
lactase-persistent (AA/AG) and nonpersistent (GG) individuals’ metagenomic annotations (n: AA/AG � 222,
GG � 23). Red diamonds indicate means and P values from linear mixed models. (D) Mean relative abundance
of Bifidobacterium species in AA/AG (x axis) and GG (y axis) individuals as revealed by metagenomic
annotations. For clarity, only the 7 most abundant taxa with species-level annotations are labeled (full list
available in Table S1). Colors are as in panel B.
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nonpersistent individuals (mean AA/AG � 1.1% � 0.15% and mean GG � 2.8% � 0.9%,
linear mixed model P � 0.0025) (Fig. 1C; Table S1, tab 1) and a proportional increase
across most Bifidobacterium species in GG versus AA/AG individuals (Fig. 1D). Largely
concordant with the results of the 16S rRNA SV analysis, Bifidobacterium metagenome
annotations from both host genotype groups were dominated by B. adolescentis, B.
longum, B. bifidum, and B. animalis, which together represented more than 80% of all
Bifidobacterium sequences, though only 1% of the overall community (Fig. 1D; Table S1,
tab 1). Taxonomic annotations from metagenomes showed a greater diversity of
Bifidobacterium taxa across the full data set compared to the 16S rRNA gene SV-based
analysis, despite a lower sample count (245 metagenomes versus 1,680 16S rRNA
samples), with 65 species and subdivisions identified (versus 13 SVs).

Functional annotations of the 245 metagenomes revealed no MetaCyc Bifidobacte-
rium metabolic pathways with significantly different relative abundances between the
two genotype groups (pairwise Kruskal-Wallis H-tests for mean abundance of each
Bifidobacterium pathway in GG versus AA/AG individuals, Bonferroni multiple-
comparison correction, implemented in HUMAnN2; data not shown). However, low or
zero read coverage for most Bifidobacterium pathways in the metagenomes limited the
power to assess differences between host genotype groups at the functional level.

Genome capture enriches Bifidobacterium DNA. We used genome capture (13,
14) to enrich for Bifidobacterium DNA in metagenome libraries generated from 22
individuals each with 2 or 3 samples obtained at different time points (46 samples total
representing 11 GG and 11 AA individuals). Each genotype group also included 4 sets
of adult monozygotic twin siblings (Table S1, tab 2). Our custom genome-capture array
included a total capture space of �94 Mb and 89k capture targets built from 47
reference Bifidobacterium genomes spanning the entire diversity of the genus (Table S1,
tab 3). The capture reaction was largely genus specific, with low levels of enrichment
of non-Bifidobacterium Bifidobacteriaceae and other non-Bifidobacterium Actinobacteria
(Fig. 2A). The capture reaction increased the mean relative abundance of all bifidobac-
teria across our metagenomic sample subset from 2.1% (�0.27% [SE]) to 60.2% (�3.7%

FIG 2 Bifidobacterium is proportionally enriched using genome capture. (A) Relative abundance of all species-level annotations from
the genome capture subset (n � 46), with each point representing the mean relative abundance of a distinct species-level
classification before (precapture) and after (postcapture) the Bifidobacterium-DNA capture assay. Points are colored by taxonomic
relatedness to Bifidobacterium. Pre- and postcapture libraries from a single sample were shotgun sequenced independently. The
dashed 1:1 line represents equal relative abundances in pre- and postcapture libraries, and points below the 1:1 line are enriched in
postcapture libraries relative to precapture libraries. The solid black line shows the least-squares regression between pre- and
postcapture for the Bifidobacterium annotations. The shallower slope of the Bifidobacterium enrichment line than of the 1:1 line
indicates greater enrichment of more common taxa. The red diamond shows the total relative abundance of Bifidobacterium (i.e., the
sum of all Bifidobacterium annotations) in each of the pre- and postcapture libraries. (B) Same data as plot A but showing only
Bifidobacterium annotations. The blue line shows least-squares regression with 95% confidence intervals; Spearman’s rho is shown
along with the significance of the correlation.
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SE]), representing a nearly 30-fold increase from pre- to postcapture libraries. The mean
relative abundance of sequences annotated as a specific Bifidobacterium taxon across
all postcapture libraries was proportional to that taxon’s initial relative abundance in
the precapture libraries (rho � 0.99, P � 2.2e�16, Fig. 2B), and the mean relative abun-
dance ranking order of the top 5 taxa was the same in pre- and postcapture libraries
(data not shown). We note that no analysis method presented below uses post-
genome-capture data to make conclusions regarding abundance or relative abun-
dance, given the uncertainties of differential capture between species. Only sequence-
composition-based analyses are used (e.g., multilocus sequence alignments [MLSAs],
marker single nucleotide polymorphisms [SNPs], and synteny) from postcapture data.

Strain-level analysis of Bifidobacterium spp. in postcapture metagenomes. We
compared strains recovered from postcapture metagenomes using three methods: (i)
we generated genome-wide strain phylogenies using multilocus sequence alignments
(MLSAs) via StrainPhlAn (15), (ii) we used a marker-SNP strain tracking analysis imple-
mented in the Metagenomic Intra-Species Diversity Analysis System (MIDAS) (16), and
(iii) we used a custom synteny-based approach. We compared strains in all possible
pairwise sample comparisons from our genome-capture subset (n � 46). We then
grouped each comparison into one of three categories: intraindividual (comparison
between samples from the same person over time), same family (between monozygotic
twins within a twinship), and unrelated (between samples from unrelated individuals).
These categories allowed us to assess strain stability through time within an individual
(intraindividual comparisons) and the influence of monozygotic twins (same-family
comparisons). Our postcapture libraries yielded sufficient reads to conduct these
analyses in four species, B. longum, B. adolescentis, B. animalis, and B. bifidum, with
sample numbers shown in Table 1.

MLSAs showed greater similarities of strain sequences in intraindividual than
in unrelated comparisons. Using StrainPhlAn, we created MLSAs across nearly 200
strain-resolving marker genes derived from a species’ core genome (genes shared by all
strains in the species). Of the postcapture shotgun metagenomes, B. adolescentis, B.
longum, B. bifidum, and B. animalis had sufficient coverage for 43, 39, 19, and 11
samples, respectively (minimum of 2� coverage across entire alignment) (Table 1). The
marker gene MLSAs ranged from 36 to 83 kb in length depending on species (Table S1,
tab 4). The mean number of polymorphic sites within a sample across an alignment
ranged from 0.39% to 0.92%, while the dominant allele at each site ranged upward
from 76%, suggesting low strain diversity within samples (Table S1, tab 4, and Fig. S1).

Mean patristic distance (i.e., branch length) was significantly less in intraindividual
than in unrelated comparisons in phylogenies of B. adolescentis, B. longum, and B.
bifidum strains (bootstrapped Wilcoxon rank sum P � 0.05 in all three cases, Fig. 3). This
result indicates strain stability: an individual’s strains are more similar for the same
person sampled over time compared to strains from a different person. We did observe
some instances of large patristic distance between samples of the same individual
(Fig. 4), and in both cases where three samples per individual were included, one of the

TABLE 1 Sample number and comparison category overview for StrainPhlAn and MIDAS strain-level analyses

StrainPhlAn MIDAS

No. of samples
with sufficient
coverage for
phylogeny

No. of comparisons

No. of samples
with sufficient
coverage for
marker-SNP
analysis

No. of comparisons

Intraindividual Same family Unrelated Intraindividual Same family Unrelated

B. adolescentis 43 23 37 843 37 17 30 619
B. longum 39 20 29 692 36 15 24 591
B. bifidum 19 8 8 155 20 6 8 176
B. animalis 11 3 2 50 15 4 3 98

Total 54 76 1,740 42 65 1,484
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three samples had a large patristic distance more typical of unrelated comparisons
(Fig. 4). These large interindividual patristic distances could result from detection errors
(i.e., a strain was present in both samples but failed to be detected in one), or from
differences in the relative abundance of strains between time points (this analysis picks
the most abundant), or from loss and regain of strains.

Mean patristic distance of same-family comparisons was not significantly different
from that of unrelated comparisons for any of the four taxa examined (Wilcoxon rank
sum of mean distances in intertwin versus unrelated, P � 0.05 in all cases, Fig. 3). Thus,
the MLSA-based RAxML phylogenies did not show that co-twins harbored similar
strains of these 4 species. Furthermore, this analysis did not reveal any significant
grouping of strains according to lactase genotype (ANOSIM permutations of phyloge-
netic distance matrix P � 0.05, Fig. 4) and longitudinal intraindividual comparisons
were not significantly different between genotype groups for any of the four species we
examined either individually (Fig. S2) or in aggregate (Fig. S3) (Wilcoxon rank sum test
of mean intraindividual distance, AA versus GG, P � 0.05; Table 2A and Table S1, tab 5).
The time interval between repeated samples from the same individual and patristic
distance did not reveal any relationship for any species (Spearman’s rho nonsignificant
in all cases, Fig. S4), supporting strain stability with time.

Marker-SNPs are shared at higher percentages in intraindividual than in un-
related comparisons. To further interrogate Bifidobacterium strain stability within
individuals over time, we employed a “strain tracking” feature, implemented in the

FIG 3 Patristic distances between samples from RAxML phylogenies of four strains show intraindividual strain
similarity. Patristic distances (branch lengths) between all samples within our StrainPhlAn phylogenies, with
each point representing the distance between two samples on a single phylogeny. Distances are separated
by the category of comparison: intraindividual (same person over time), same family (comparisons between
twin siblings), and unrelated (comparisons between unrelated people). Species are B. adolescentis (A), B.
longum (B), B. bifidum (C), and B. animalis (D). Boxplots show median and quartiles, while red diamonds show
means. Significance levels are median Wilcoxon rank sum tests after 999 bootstraps to smallest group size. ns,
P � 0.05; *, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001.
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MIDAS software, to identify rare marker-SNPs highly discriminant for a specific strain in
an individual at a single time point. We had sufficient coverage to employ this approach
for each of B. longum, B. adolescentis, B. animalis, and B. bifidum species (Table 1). Our
results show that microbe marker-SNPs of an individual are far more likely to be found
in the same individual at a different time point than in an unrelated individual in three
of the four species examined (bootstrapped Wilcoxon rank sum of mean percent shared
SNPs, intraindividual versus unrelated, P � 0.0001 in all cases, Fig. 5). B. animalis was the
one exception, where SNP sharing was not significantly higher in intraindividual than
in unrelated comparisons (bootstrapped Wilcoxon rank sum P � 0.32; Fig. 5, Table 2B,
and Table S1, tab 5).

We observed greater mean intraindividual sharing of B. adolescentis and B. longum
in GG than in AA individuals (Fig. S2), as well as when all species were considered in
aggregate (Wilcoxon rank sum of mean intraindividual percent shared SNPs, GG versus
AA individuals, P � 3.3e�9; Fig. S3). This pattern was driven by B. longum and B.
adolescentis, the two most abundant species (Fig. S2).

The marker-SNP analysis revealed that high stability in either B. longum, B. bifidum,
or B. adolescentis was a good predictor of stability in the other two species within that
same individual (Fig. 6). This suggests some individuals carry stable strains, while others
witness strain replacement, across all three species together. We detected higher
marker-SNP sharing within families (i.e., a twin effect) for B. adolescentis (bootstrapped
Wilcoxon rank sum P � 0.021) but not the other three species examined, possibly due
to a lower power to detect this pattern in B. bifidum (for which synteny analysis shows
a twin effect [see below]). The percentage of shared marker-SNPs for a given intrain-
dividual comparison was not correlated with time between sample collection, nor with
other metrics of overall microbiome similarity (Fig. S5), meaning the percentage of
shared marker-SNPs between samples does not decrease with time, and the patterns
observed here are therefore not a function of time-induced SNP accumulation.

FIG 4 Strain phylogenies show longitudinal intraindividual strain similarities. RAxML phylogenies of
StrainPhlAn MLSAs for each of the four species considered. Tree branches are colored by lactase
persistence genotype. Columns of colors at each node reference family IDs, with multiple samples from
the same individual and their twin having the same color. Samples are labeled by family ID, then by twin
ID within the family. Identical labels imply samples from different time points of the same individual (i.e.,
intraindividual sample). Twin IDs marked with “X” imply that only a single twin had representation on the
tree or that the individual had no twin in the data set. Scales show patristic distances while circle sizes
represent RAxML bootstrap support of each division.
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Notably, Bifidobacterium strains exhibited intraindividual longitudinal stability de-
spite high variability in overall microbiome communities around them. Only a very
weak, nonsignificant association was observed between an individual’s overall micro-
biome stability (assessed using Bray-Curtis Dissimilarity [BCD] of precapture metag-
enomes) and the number of shared marker-SNPs for a given Bifidobacterium strain
(Fig. 6 and Fig. S6). This pattern held when microbiome community dissimilarity was
assessed using either Simka BCD values, a k-mer-based annotation-independent
method, or BCD values for annotations of metabolic pathways of precapture metag-
enomes (Fig. S6). These results suggest Bifidobacterium stability may be independent
from the dynamics of microbiome communities in which the bacteria exist.

Synteny analysis reveals sharing of strains within twin pairs and strain persis-
tence in individuals over time. The analyses described above are based on single
nucleotide variations and gene-content comparisons. Gene synteny is defined as the
conservation of gene order between chromosomes, along an evolutionary gradient
(17), and was previously used as a measure of the distance between genomes (18, 19).
Here, we identify syntenic blocks, regions of conserved DNA sequence occurring in the
same order in two different chromosomes, to determine the relatedness of Bifidobac-
terium strains. We created a pipeline to compare the synteny of different genomic
regions in three Bifidobacterium species for which we had sufficient coverage from
captured metagenomes: B. longum, B. adolescentis, and B. bifidum (see Materials and
Methods). Briefly, we performed a de novo assembly of postcapture metagenomes in
each sample and used a subset of randomly selected genes to perform a BLAST search
against the metagenomic assemblies. Next, we performed a pairwise synteny compar-
ison between all genomic regions, which included the gene used as BLAST query and
its flanking regions (3.5 kbp upstream and downstream of the gene). Finally, we defined
a synteny score and performed the same pairwise comparisons as outlined above for
regions which were identified in �15 single-individual assemblies. In summary, we
analyzed 10, 7, and 4 regions for B. longum, B. adolescentis, and B. bifidum, respectively.

For all three species, intraindividual comparisons yielded significantly higher syn-
teny scores than comparisons of unrelated individuals (Fig. 7), although this pattern
varied somewhat by region; 6/7 genomic regions for B. adolescentis, 2/4 regions for B.
bifidum, and 4/10 regions for B. longum (results are summarized in Table 2C and P
values are shown in Table S1, tab 6). These results indicate that the same strains persist

TABLE 2 Overview of analyses for each of the four species examined at the strain level
and for all species combined in aggregatea

Adol Long Bifi Anim In aggregate

A Marker gene-based
phylogeny
(StrainPhlAn)

Longitudinal stability Yes Yes Yes No Yes
Stability GG � stability AA/AG No No NA NA No
Twin effect No No No No No

B % of shared
marker-SNPs
(MIDAS)

Longitudinal stability Yes Yes Yes No Yes
Stability GG � stability AA/AG Yes Yes NA NA Yes
Twin effect Yes No No No No

C Synteny (all
regions for
each species
in aggregate)

No. of gene regions 7 10 4 0 21
Longitudinal stability 6/7 4/10 2/4 NA Yes
Stability GG � stability AA/AG 0/2 0/8 0/0 NA No
Twin effect 4/7 0/8 1/4 NA No

D Enriched in GG vs AA/AG (16S rRNA SVs) Yes Yes Yes No Yes
aPanels A to C show significance for our three strain-level approaches. StrainPhlAn results are based on best
tree values from the RAxML hill-climbing algorithm. Within each panel, “longitudinal stability” refers to
significantly greater similarity of Intra (same person over time) versus Unrelated (between unrelated people)
comparison categories. “Stability GG � stability AA/AG” refers to greater mean “Intra” values for GG
individuals than for AA/AG individuals (i.e., is there greater stability within lactase-nonpersistent than
lactase-persistent individuals). Finally, “Twin effect” refers to greater similarity of Same Family (between twin
siblings) than Unrelated comparison categories. Panel D shows significance of genotypic enrichment from
16S rRNA SV data across the broad TwinsUK data set (n � 1,680). In each panel, “yes” and “no” refer to
significance of the statistical test as described in the main text, while “NA” indicates that 3 or fewer samples
were available in at least one category. In panel C (synteny), the number of significant regions out of the
total number of regions with sufficient comparisons is shown. P values are shown in Table S1, tabs 5 and 6.
Species abbreviations are as follows: Adol, B. adolescentis; Long, B. longum; Bifi, B. bifidum; Anim, B. animalis.
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in the gut over time. Comparisons of synteny between individuals within a twin pair
yielded significantly higher scores (relative to comparisons of unrelated individuals) in
4 regions in B. adolescentis and in one region in B. bifidum. In B. longum, although not
statistically significant, 3 regions showed lower synteny scores for individuals within a
pair (P values 0.055 to 0.08, Table S1, tab 6). Finally, LCT genotype did not influence
longitudinal strain stability as measured by synteny. No differences were seen in mean
intraindividual synteny scores between lactase persistence genotypes (Wilcoxon rank
sum test of mean intraindividual synteny, AA versus GG, P � 0.05), and each genotype
independently showed significant differences between intraindividual and unrelated
comparisons (bootstrapped Wilcoxon rank sum test, P � 0.0005 for AAs and P � 6.1e�5

for GGs, Fig. S3). Together, these results support strain-sharing events within the
families and maintenance of strains over time within individuals.

DISCUSSION

One of the strongest signals of host genetic effects on microbiome communities is
the association between Bifidobacterium and an SNP in the regulatory region of the
lactase gene LCT. Several independent studies have noted a greater relative abundance
of the genus Bifidobacterium in the gut microbiomes of lactase-nonpersistent com-

FIG 5 Marker-SNP sharing over time and between individuals shows strain stability and twin sharing in
three of four species. Percentage of marker-SNPs shared for all pairwise comparisons, separated by the
category of comparison: intra (same person over time), same family (comparisons between twin siblings),
and unrelated (comparisons between unrelated people). Shown are the four taxa for which sufficient
coverage existed to calculate marker-SNPs. Species are B. adolescentis (A), B. longum (B), B. bifidum (C),
and B. animalis (D). Boxplots show median and quartiles, while red diamonds show means. Significance
levels are median Wilcoxon rank sum tests after 999 bootstraps to smallest group size. ns, P � 0.05; *,
P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001.
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pared to lactase-persistent individuals of European origin (5, 7–9). We did not detect an
interaction between dairy consumption, LCT genotype, and levels of Bifidobacterium
here, as reported by Bonder et al. (9). However, our results show that compared to the
lactase-persistent genotypes (AA/AG), the lactase nonpersistence genotype (GG) en-
hances the proportion of prevalent and abundant Bifidobacterium species, without bias
toward particular species, strains, or genome content. Our results also indicate that
strains of certain Bifidobacterium species are shared within twin pairs and persist over
time within individuals against a background of a dynamic microbiome community.

Corroborating results of previous reports (20–22), we observed that B. adolescentis
and B. longum dominated the Bifidobacterium communities of the adult gut micro-
biome. Strain comparisons within an individual over time indicated that B. adolescentis,
B. longum, and B. bifidum were stable within adults over multiyear timescales as reveled
by multiple methods. Strain sharing between twins showed a weaker signal in general,
with B. adolescentis as the only species with a significant twin effect across multiple
methods. Mechanisms leading these four species to vary in regard to longitudinal
stability or twin effects remain to be elucidated. Nevertheless, it is interesting that B.
animalis, the one species for which stability was not shown, was also among the few
species not enriched in GG versus AA/AG genotype groups from our broader 16S rRNA
and metagenomic surveys. These observations may reflect a different ecology of B.
animalis compared to the others. B. animalis is commonly isolated from dairy and other
sources outside the human microbiome (23) and has a reduced genetic repertoire for
carbohydrate metabolism versus other taxa in the genus (24). B. animalis may therefore
be a more transient autochthonous member of the adult gut microbiome. It is also
important to consider that B. adolescentis and B. longum both showed the highest
number of significant patterns across our methods and had the largest sample num-
bers. The lack of significant findings for B. animalis and B. bifidum must therefore be
considered in light of the low power attributable to their analyses. Adding additional
samples with future research could confirm that variability in longitudinal stability
between species and strains is not due to sample number biases.

A leading hypothesis for the greater relative abundance of Bifidobacterium in
lactase-nonpersistent individuals is a greater availability of undigested lactose in the
large intestine, which may be preferentially used by bifidobacteria (9, 25). The avail-
ability of undigested lactose in the guts of lactase-nonpersistent individuals could in
principle result in niche partitioning between the different species. Indeed, many taxa
within the Bifidobacterium genus are considered specialists (20, 26), and some devote

FIG 6 Intraindividual marker-SNP sharing across different Bifidobacterium species. Each plot shows the percentage
of marker-SNPs shared within an individual over time for two different Bifidobacterium species; each of three
comparison possibilities is shown across plots A, B, and C. Each point represents a comparison between
longitudinal samples from the same individual. Points are colored by the Simka Bray-Curtis Dissimilarity (BCD) value
between the two samples, as measured from precapture metagenomes, and is therefore a measure of overall
microbiome dissimilarity over time within an individual. Blue line shows least-squares regression with 95%
confidence intervals, and Spearman’s rho along with the significance of the correlation is shown.
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significant proportions of their genomes to particular host-derived resources including
human milk oligosaccharides in Bifidobacterium longum subsp. infantis (27), and mucin
glycans in B. bifidum (26). B. longum subsp. infantis, for example, is known to specialize in
human milk oligosaccharide metabolism, while Bifidobacterium longum subsp. longum is
specialized in metabolism of plant-derived carbohydrates (10, 28). Furthermore, gut Bifido-
bacterium taxa are known to follow successional patterns with a gradual shift from B.
longum subsp. infantis, B. breve, and B. bifidum in infant guts to B. catenulatum, B. adoles-
centis, and B. longum subsp. longum in adults (21, 22). These shifts are thought to result in
part from shifts in diet and are associated with breastfeeding versus formula, weaning, and
intake of solid food (29, 30). However, our results instead point to lactose utilization as
enhancing all the common Bifidobacterium species, without altering their population
structure. This implies that in the adult gut microbiome, common Bifidobacterium species
use lactose without competing for it and it does not become a limiting resource. The
nondifferentiating effect of host LCT genotype on the Bifidobacterium community results
suggests a “rising tide raises all boats” scenario, where a lactose utilization advantage is
equally distributed among common Bifidobacterium species.

The strain comparisons in this study relied on enrichment of Bifidobacterium DNA by
genome capture. This worked well for the most abundant species, B. adolescentis and
B. longum, and allowed a reduced set of comparisons possible for B. bifidum and B.
animalis due to lower coverage. To compare strains of the other bifidobacteria present
would require deeper sequencing or a more tailored set of probes in the genome
capture. To compare strains, we used two published methods based on sequence
composition: one using an alignment of marker-genes (StrainPhlAn) and another using
individually discriminant marker-SNPs (MIDAS). The novel synteny-based method that
we developed allows for the identification of differences in the organization of genomic
regions even when the sequence similarity is high. Generally, the two published
methods agreed with the synteny approach, with some discrepancies (Table 2). All
three methods detected intraindividual longitudinal stability for B. adolescentis, B.
bifidum, and B. longum, while no method detected stability in B. animalis. The three
methods were divided, however, in their detection of within-family sharing of strains (a
twin effect) and on the influence of lactase persistence genotype on strain stability.
Both the marker-SNP and synteny approaches detected greater similarity of B. adoles-

A B                             C

FIG 7 Within-species synteny scores over time and between individuals. Pairwise synteny scores for
genomic regions of the three Bifidobacterium species for which sufficient read depth was generated for
synteny analyses. Plots show all pairwise comparisons, separated by the category of comparison: intra
(same person over time), same family (comparisons between twin siblings), and unrelated (comparisons
between unrelated people). Species are B. adolescentis (A), B. longum (B), and B. bifidum (C). Boxplots
show median and quartiles, while red diamond shows mean. For each species, all regions were combined
into a single analysis. Significance levels are Wilcoxon rank sum tests. ns, P � 0.05; *, P � 0.05; **, P � 0.01;
***, P � 0.001; ****, P � 0.0001.
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centis strains between twins than between unrelated individuals, while our marker gene
alignments did not. Only the synteny approach detected twin sharing in B. longum and
B. bifidum. The marker-SNP approach was the only method to reveal any influence of
lactase persistence on longitudinal stability and did so only in B. adolescentis and B.
longum. Why each method varied in its ability to detect a particular pattern is not clear;
however, their agreement with regard to longitudinal stability of B. adolescentis, B.
longum, and B. bifidum gives strong support to the conclusion that these species are
stable within adults over multiyear timescales.

Temporal stability, along with vertical transmission within families, is expected to be
associated with heritability. In addition to temporal stability and within-family sharing
of strains shown here, we had previously noted that the genus Bifidobacterium was
both heritable and stable over time, based on 16S rRNA gene analysis (31). For the
relative abundances of microbial taxa or genes to be stably heritable over time, they
must be present every generation and associated with host genetic variation. If the
acquisition of microbes from the environment or other individuals is less reliable than
acquisition from parents, the heritability of horizontally acquired microbes should be
less stable over time than the heritability of vertically acquired microbes. These results,
together with previous observations, continue to reveal the bifidobacteria as highly
human-adapted members of the microbiome.

B. adolescentis, B. longum, and B. bifidum have also previously been shown to be
temporally stable in the gut microbiomes of infants, where they are far more abundant
than in the adult gut microbiome. Strains of these species were stable within children
for up to 3 years of age across diverse geographic cohorts (30), and B. longum subsp.
longum was stable from infancy until 6 years of age (32). Furthermore, B. bifidum and
B. longum are transmitted from mother to infant (33, 34). By extending existing
evidence of Bifidobacterium strain stability to an adult cohort and demonstrating strain
sharing within families for B. adolescentis, our results contribute to an overall picture of
this genus, one which suggests long-term maintenance of specific strains within an
individual which can be transmitted across generations.

MATERIALS AND METHODS
Sample inclusion and access. All existing samples from the TwinsUK cohort were included assuming

they had both (i) metagenomic or 16S rRNA sequence data and (ii) genotype data at the 13910 G/A allele.
All work involving the use of these previously collected samples was approved by the Cornell University
IRB (protocol ID 1108002388).

16S rRNA gene-based community analyses. 16S rRNA reads were extracted from existing data sets
(n � 1,680) and analyzed via the Qiime2 pipeline (35) with minor deviations. Briefly, PCR amplicons for
the V4 region of the 16S rRNA gene were generated with primers 515F-806R and were sequenced with
the Illumina MiSeq 2 � 250 v2 kit at the Cornell University Institute for Biotechnology as previously
described (5). DADA2 (36) was used to call 100% sequence identity sequence variants (SVs, also known
as 100% OTUs or ASVs). Taxonomy was assigned to SVs with the QIIME2 q2-feature-classifier (37) using
the SILVA database (v119) (38). Taxonomic annotations of 16S rRNA sequence variants (SVs) were
improved from the standard DADA2 output by extracting each SV representative sequence and querying
it against the NCBI type strain database. In one case all NCBI annotations fell within the B. longum/B. breve
clade, and it was thus assigned as “B. longum/breve” in subsequent analyses; in all other cases the original
DADA2 assignment was kept.

Statistical testing for the influence of genotype was done using a nonparametric Wilcoxon rank sum
test of the total relative abundance of all Bifidobacterium SVs between genotypes. Only SVs that occurred
in at least 2 individuals across the data set of 1,680 samples were included. Individuals with either AA or
AG at 13910*A (rs4988235) were considered lactase persistent, while only GG was considered lactase
nonpersistent. Independent Wilcoxon rank sum tests were run for each Bifidobacterium SV independently
across the two genotype groups. Because our data set included replicate samples from the same
individual (therefore not independent), we determined the overall influence of genotype on Bifidobac-
terium SV relative abundance using a linear mixed-effect model, with participant ID as a random effect,
in the R package “lmr4”: BifidobacteriumRA � Genotype 	 (1 | ParticipantID).

To assess the community structure of the genus without the influence of an overall enrichment in GG
individuals, all SVs annotated as “bifidobacterium” were extracted into new SV tables and again
normalized by 1 within an individual and then input into LEfSe (12) via the Galaxy web interface with
default parameters, genotype set as class, and no subclass. Longitudinal analyses of Bifidobacterium SVs
narrowed the total sample count to 556 (278 matched pairs), and Spearman’s rho was calculated
assigning time 1 and time 2 to one sample or another at random. To overcome unequal sample sizes
(GG � 30, AA/AG � 248), a mean Spearman rho was calculated after subsampling to n � 15 for each
genotype over 999 permutations. All analyses were done in RStudio (v. 1.0.136).
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Dairy intake was assessed as the portion size frequency for dairy for a week, adjusted for energy
intake, using food frequency questionnaires developed and described elsewhere (50). Associations with
Bifidobacterium SVs were conducted using linear mixed-effect models, with genotype as a random effect,
in the R package “lmr4”: BifidobacteriumRA � DairyFrequency 	 (1 | ParticipantID). Statistical significance
was assigned using Satterthwaite’s method in the R package “lmerTest” (39).

Metagenomic community analyses. Metagenome sequences were used from existing data sets
(n � 245) which were extracted as described above with library preparation previously described (40).
Taxonomic assignments were made using Kraken2 (41). We assessed the influence of genotype on the
relative abundance of Bifidobacterium annotations using a mixed-effect model as described above.
Metabolic pathway annotations were generated using the HUMAnN2 pipeline against the MetaCyc
database (42), and significantly discriminant gene pathways were revealed using HUMAnN2’s built-in
‘humann2_associate’ script with default parameters at the gene pathway level (42).

Subset for genome capture, strain-level analyses, and discriminant functional pathways. An
additional subset of the TwinsUK cohort was selected for genome capture based on (i) the availability of
genotype data at the lactase persistence gene (rs4988235) and (ii) at least 2 longitudinal samples
between 8 months and 4 years apart with a body mass index (BMI) change of less than 3. We note that
variation in temporal distance between sampling events had no impact on stability, community composition,
or synteny values (see Fig. S4 and S5 in the supplemental material). In total 20 individuals with 2 time points
and 2 individuals with 3 time points were selected (a total of 46 samples across 11 GG individuals/11 AA
individuals). Each genotype also contained 4 sets of twin siblings (Table S1, tab 2). DNA samples were brought
through metagenome creation, capture reaction, and sequencing according to NimbleGen (Madison, WI,
USA) SeqCap EZ HyperCap Workflow v.1.0. Briefly, genomic DNA (gDNA) underwent enzymatic fragmentation
and adapter-mediated PCR using KAPA HyperPlus library preparation, followed by a 16-h hybridization with
a custom set of biotinylated long oligonucleotide probes (the “probe array”), followed by a final reamplifi-
cation. The probe array was designed and manufactured by NimbleGen and included overlapping coverage
of a total capture space of �94 Mb and 89k capture targets which covered 47 type strain Bifidobacterium
genomes (Table S1, tab 3). Precapture and postcapture metagenomes were then sequenced across two
Illumina paired-end 300-cycle sequencers (HiSeq 3000).

Analyses on each pre- and postcapture library from our 46-sample longitudinal subset (92 metag-
enomes total) were conducted with Simka, an annotation-independent k-mer-based metric (43), and the
annotation-based HUMAnN2 pipeline against the MetaCyc database (42). Simka Bray-Curtis Dissimilarity
(BCD) matrices were calculated directly within the software. HUMAnN2 BCD matrices were generated from
gene pathway relative abundance tables, after removal of collapsed pathway stratifications, using vegdist in
the Vegan R package (V. 1.0.136). Each pairwise comparison within the BCD matrices was then classified into
one of three categories: intraindividual (same person over time), same family (comparisons between twin
siblings), and unrelated (comparisons between unrelated people). Wilcoxon rank sum tests were used to
determine differences between comparison categories. To overcome issues of nonindependence related to
multiple samples from the same individual within the data set, we ran 9,999 permutations of Wilcoxon rank
sum tests using subsets of individuals equal to the smallest number of samples from either category and
reported the mean value. Finally, ANOSIM tests of BCD hierarchical clustering were conducted using the
‘anosim’ script part of the ‘vegan’ R package with 9,999 permutations. ANOSIM permutation tests were run
on intraindividual clusters, unrelated clusters, and same-family clusters.

MIDAS marker-SNPs and StrainPhlAn MLSAs. Strain-level assessments were made using the
Metagenomic Intra-Species Diversity Analysis System (MIDAS) (16) and StrainPhlAn (15). MIDAS’s ‘strain-
_straintracker.py’ program was used with default settings to identify marker-SNPs as previously described
(16). Briefly, MIDAS initially identifies abundant species by mapping unassembled metagenomic reads to
a database of 30,000 reference genomes and then identifies per-species SNPs for each abundant species
within a sample. To identify the SNPs used in our analyses, we had MIDAS identify rare, sample-
discriminatory SNPs from a pool of 1 sample per individual (i.e., SNPs that were unique to that individual).
We term these sample-discriminatory SNPs “marker-SNPs.” Each individual’s additional sample(s) was
then added back into the pool, and marker-SNP overlap was assessed between sets of two samples in
all possible pairwise comparisons across the data set. The percentage of shared marker-SNPs was the
number of marker-SNPs shared between two samples, divided by the total number across both
individuals. Bootstrapped Wilcoxon rank sum tests were performed on the mean percentage of marker-
SNPs shared in each comparison category described above (i.e., intraindividual, same family, and
unrelated). Bootstrapping was done down to the lowest number in a single category for any given
comparison and run for 9,999 permutations, and the mean P value was reported.

StrainPhlAn multilocus sequence alignment (MLSA) phylogenies were created using the standard
RAxML hill-climbing algorithm, as described elsewhere (15, 33). Bootstrap values were generated using
the rapid bootstrapping RAxML algorithm with 100 iterations (44). Resulting phylogenies were uploaded
into the ITOL program (45) for graphical display of family and twin ID annotations, and best tree
phylogenies from the hill-climbing algorithm were uploaded into Geneious (v 6.1.8) to retrieve patristic
distances (branch lengths). Mean patristic distances were compared across comparison categories using
bootstrapped Wilcoxon rank sum tests as described above.

All software was run parallelized on a high-performance computing cluster at the Max Planck
Institute for Developmental Biology via Snakemake (46).

Synteny analyses. First, a de novo assembly of postcapture metagenomes was performed for each
sample by using the MetaCompass software (47). Next, a set of genes representing different genomic
regions was selected randomly (using a custom script) from each of the reference genomes of B. longum,
B. adolescentis, B. animalis, and B. bifidum. Each gene was used as a query for a BLASTn (48) search against

Bifidobacteria versus Lactase Persistence Genotype

September/October 2020 Volume 5 Issue 5 e00911-20 msystems.asm.org 13

https://msystems.asm.org


the assembled metagenomes, with minimal identity of 97% and minimal coverage of 90%. For each of
the blast hits in the assembled metagenomes, the gene and flanking sequences (3.5 kb upstream and
downstream of the blast hit) were retrieved and used for synteny comparison. Further analysis was
carried out only for regions found in �15 samples. If for a given species the final number of suitable
regions was lower than 4, the process iterated with a new set of genes, keeping a minimal gap of 5 genes
between each two selected genes, to avoid overlap between regions.

Pairwise synteny comparison between each two DNA sequences was done using the DECIPHER R
package (49). Breaks in the synteny were defined as nonhomologous regions longer than 15 bp. To
compare the synteny between different types of pairwise comparisons (i.e., intraindividual, twins, and
nonrelated individuals) we defined the synteny score (equation 1):

Syn _ score � 1 � log10
�1

n
Lsb(n)

Lseq � n
(1)

where n is the number of synteny blocks identified in each pairwise comparison, Lseq is the length of the
shorter sequence in each pair of compared sequences, and Lsb(n) represents the length of the nth
synteny block.

We performed a validation of this synteny method using a set of 15 Escherichia coli genomes
classified to two different clades, either K-12 MG1655 or O157:H7 (Table S1, tab 7A). We started our
analysis by randomly selecting five genes from the E. coli O157:H7 reference genome (NCBI reference
sequence NC_002695.2) and analyzing the genomic regions flanking each target gene (10 kb up- and
downstream of the gene). Two genes (mnmC and ubiD) were found in high homology only in O157:H7
genomes while the other genes (polB, hemA, and nupG) were detected in genomes of both groups.
Pairwise comparisons of all three regions showed with high significance that the within-clade synteny
scores are higher than the between-clade synteny scores (Table S1, tab 7B, and Fig. S7).

Ethics approval and consent to participate. All work involving the use of these previously collected
samples from human subjects was approved by the Cornell University IRB (protocol ID 1108002388).

Availability of data and materials. Sequences of pre- and postcapture metagenomes (the only new
data generated for this paper) are available on the European Nucleotide Archive under accession number
PRJEB38000.
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