
Submitted 9 September 2021
Accepted 16 April 2022
Published 4 May 2022

Corresponding author
Ángel Urzúa, aurzua@ucsc.cl

Academic editor
Guilherme Corte

Additional Information and
Declarations can be found on
page 23

DOI 10.7717/peerj.13393

Copyright
2022 Guzmán-Rivas et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Contrasting nursery habitats promote
variations in the bioenergetic condition
of juvenile female red squat lobsters
(Pleuroncodes monodon) of the Southern
Pacific Ocean
Fabián Guzmán-Rivas1,2, Marco Quispe3 and Ángel Urzúa1,2

1Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la
Santísima Concepción, Concepción, Biobío, Chile

2Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción,
Concepción, Biobío, Chile

3Programa de Doctorado en Ciencias con mención en Biodiversidad y Biorecursos, Facultad de Ciencias,
Universidad Católica de la Santísima Concepción, Concepción, Biobío, Chile

ABSTRACT
The red squat lobster Pleuroncodes monodon is an important fishery resource in the
Humboldt Current System (HCS). This decapod is exploited in two fishing units:
(a) the northern fishing unit (NFU, from 26◦S to 30◦S) and (b) the southern fishing
unit (SFU, from 32◦S to 37◦S), each of which have an adjacent nursery area that is
the source of recruits to replace the exploited adult populations (in the NFU: off
the coast of Coquimbo (28◦S) and in the SFU: off the coast of Concepción (36◦S)).
Marked spatial differences in the environmental conditions of the NFU and SFU, and
the biogeographic break that exists between these nursery areas (30◦S) may promote
changes in the bioenergetic condition of new P. monodon juveniles. To evaluate this, we
analyzed the bioenergetic condition (measured as: body mass, lipids, proteins, glucose,
and energy) of new juvenile females in the main nursery areas off the Chilean coast.
The juvenile females from the SFU showed a higher body mass than those from the
NFU. Consistently, the juvenile females from the SFU had a higher content of lipids,
proteins, and glucose than those from the NFU, indicative of higher energy contents
and a higher lipid/protein ratio in the south compared to the north. Considering the
current overexploitation of this fishery resource in the HCS, it is essential to understand
how the bioenergetic condition of juvenile females of P. monodonmay vary in nursery
areas at different latitudes in order to generate sustainable fishery management policies
with an ecological approach, designed specifically to each fishing unit. Furthermore,
identifying the latitudinal variations of these biochemical compounds in P. monodon
juveniles can elucidate the geographic origin of red squat lobsters that present a ’’better
bioenergetic condition’’ in the HCS, which may significantly benefit sustainable fishing
certification processes.
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INTRODUCTION
Marine invertebrates with a wide biogeographic range in the Humboldt Current
System (HCS, from ∼4◦S to ∼45◦S) can exhibit spatial variations in key physiological
parameters, including their morphometry and biochemical components (Fischer & Thatje,
2016; Montecino & Lange, 2009). These variations can be the result of (i) biotic factors:
competition (Cobb & Wahle, 1994), predation (Torossian et al., 2020), parasitism (Powell
& Rowley, 2008); (ii) environmental factors: temperature (Fischer & Thatje, 2016), food
availability (Pansch et al., 2014), oxygen levels (Paschke et al., 2010); upwelling (Isla et
al., 2010), and (iii) anthropogenic factors: fishery pressure (Planque et al., 2010). The
HCS is recognized as one of the most productive and fecund marine ecosystems in the
world (Montecino & Lange, 2009). Within the HCS, sea water temperature and planktonic
food availability and/or productivity (measured as chlorophyll-a) vary with latitude
and/or geographic locality. At lower latitudes, warmer waters have proven to lack marked
seasonality of biological productivity, while at higher latitudes colder waters have registered
a marked seasonality of productivity (Escribano, Fernández & Aranís, 2003; Montecino &
Lange, 2009; Thiel et al., 2007). These differences in environmental conditions across a
latitudinal gradient have a direct impact on the physiological traits of early life stages of
manymarine species that support important fishing activities in the HCS (Fischer & Thatje,
2016; Fischer et al., 2009; Guzmán-Rivas et al., 2021a).

As a consequence of spatial differences in key environmental parameters across the
latitudinal gradient, marine invertebrate species can exhibit variations in their life
history traits (Berryman, 2002; Stearns, 1976), which may have a potential adaptive
value in fluctuating environments, such as the HCS. In turn, as an outcome of the
main biogeographic break that exists in this area (30◦S) (Camus, 2001; Haye et al., 2019),
geographically separated populations may also develop local adaptations (Haye et al., 2014;
Haye et al., 2019). In addition, marine invertebrate species with the ability to disperse
(i.e., free planktonic larvae) have also demonstrated plasticity (Hollander, 2008), and in
response to selective pressures from the environment, may show morphological and
physiological changes (Haye et al., 2019; Hollander & Butlin, 2010).

Environmental factors, such as temperature and food availability, directly affect
metabolism, oxygen consumption, molting cycles, growth, and survival of all phases
of the lifecycle of ectothermic marine invertebrates (Le Moullac & Haffner, 2000; Madeira
et al., 2018; Woods et al., 2003). Therefore, marine ectotherms tend to present differences
in their life history and physiological traits linked to the environmental conditions of their
habitat. For example, in the case of some crustaceans from temperate regions, the decapods
Saserma meridies (Anger, Torres & Nettelmann, 2007), Romaleon setosus (Fischer & Thatje,
2016), and Crangon crangon (Urzúa & Anger, 2013;Urzúa et al., 2012) presented changes in
their fecundity, as well as variations in the size, dry weight, and biochemical composition of
their offspring depending on temperature and/or planktonic food availability predominant
in the environment.

In general, when fisheries research carry out ecology studies on marine invertebrates,
they often overlookmorphometric aspects (bodymass) and biochemical components (such
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as lipid, protein, glucose, and energy contents) of juvenile individuals in their recruitment
and management models (Smith & Addison, 2003; Thiel et al., 2012; Wehrtmann & Acuña,
2011). In this context, in crustaceans of commercial importance, the ‘‘bioenergetic
condition’’ (considered as the body biomass, the biochemical components and lipid/protein
ratios) of juveniles may reflect their health status and/or nutritional condition, and
subsequently influence the survival and growth rate of adult individuals (i.e., the carry-over
effect between ontogenetic phases), which are exploited by commercial fisheries (Smith &
Addison, 2003). Also, the lipid/protein ratio is important as inmarine animals it indicates the
state of health and/or nutritional quality of individuals and allows to discern the metabolic
substrate as a source of available energy (lipid form) for fundamental physiological
processes (survival, growth, and reproduction) (Aliyu-Paiko, Hashim & Shu-Chien, 2010).
Understanding the variations in morphometric and biochemical parameters of juveniles
at a large spatial scale throughout the HCS could thus have significant implications for
the management and conservation strategies of this fishery resource by helping to identify
sources of recruitment and/or nursery grounds (Brosset et al., 2021; Guzmán-Rivas et al.,
2021a). Considering that these parameters could also aid in tracing marine resources
back to their geographic origins, they could assist in the identification of populations
with superior energetic conditions (regarding the traceability concept, see: (Leal et al.,
2015; Ricardo et al., 2017; Ricardo et al., 2015)), which should be targeted in the future
exploitation of fisheries (FAO, 2019; Olsen & Borit, 2013).

This study focuses on the red squat lobster Pleuroncodes monodon H. Milne Edwards,
1837 (Decapoda: Munididae), which has a wide biogeographic distribution throughout
the HCS (from Isla Lobos de Afuera (∼7◦S) in Perú to Ancud (∼41◦S) in Chile) (Haig,
1955; Yannicelli et al., 2012). This squat lobster is a key species in the food chain (Lovrich
& Thiel, 2011), as well as an important fishery resource (Zilleruelo, Párraga & Bravo,
2020). Pleuroncodes monodon has a complex lifecycle, consisting of a pelagic larval phase
characterized by five zoeal stages (Fagetti & Campodonico, 1971) and a benthic juvenile and
adult phase (Espinoza et al., 2016; Thiel et al., 2012). It has an extended reproductive cycle,
with ovigerous females being present from February to December, and multiple spawning
periods (3–4) occurring during its annual cycle (Guzmán, Olavarría & Urzúa, 2016; Thiel
et al., 2012). In Chile, P. monodon is currently managed using a model that provides
fixed annual catches (Wehrtmann & Acuña, 2011) in two fishing units: the northern
fishing unit (NFU, from 26◦S to 30◦S) and the southern fishing unit (SFU, from 32◦S to
37◦S). Each fishing unit has an adjacent nursery area that is the source of recruits for the
exploited adult populations. In the NFU, the nursery area is off the coast of Coquimbo
(29◦S), and in the SFU it is off the coast of Concepción (36◦S) (Gallardo et al., 1994;
Roa et al., 1995; Zilleruelo, Párraga & Bravo, 2020). These nursery areas also differ in their
environmental factors, coastal geomorphological features, and oceanographic conditions
(for characteristics of nursery areas and differences between them: please see ‘‘sampling
areas’’ below). There is also a biogeographic break between them at 30◦S, which may
promote changes in the biochemical components of juvenile P. monodon from different
nursery areas off the Chilean coast.
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In this study, we focused only on juvenile females because they are relevant for structure
and population dynamics. These females will produce the offspring that recruit to adult
populations (Hamasaki & Kitada, 2008) and maintain the fishing stock (for details on
the concept of ‘‘’source’ & ’sink’’’ in population dynamics of marine crustaceans, see:
(Hansen, 2011; Lipcius et al., 1998). In an ecological context, a recent study indicated that
the fatty acid profile of P. monodon juveniles may vary according to their geographic
origin and/or breeding areas throughout the HCS (Guzmán-Rivas et al., 2021a), and that
these variations could directly influence the nutritional and/or bioenergetic condition
of individuals. This study also highlighted the fact that to help predict the ‘‘bioenergetic
condition’’ of subsequent exploitable populations, future research must analyze other
key parameters of juvenile individuals, including body mass (e.g., size, weight) and its
main biochemical components (e.g., lipids, proteins, glucose, and energy, among others).
Within an ecological-fisheries approach, this new information and/or data could also
aid in assigning catches to certain populations (i.e., fisheries traceability) and developing
sustainable exploitation strategies, especially in areas where this resource has larger sizes
and an enhanced bioenergetic condition.

We expected juvenile red squat lobsters to present variations in their body mass and
biochemical components across the latitudinal gradient in the HCS, due to differences
in key environmental factors (such as temperature and chlorophyll-a) and coastal
geomorphological features (i.e., the platform width and depth) of these two nursery areas.
Previous studies have identified temporal changes in the biochemical components for each
stage of ontogeny from the SFU: eggs (Guzmán et al., 2020), early larval stages (Espinoza
et al., 2016; Seguel et al., 2019), and adult individuals (Bascur et al., 2018; Bascur et al.,
2017; Guzmán, Olavarría & Urzúa, 2016). However, spatial variations in the biochemical
components of juvenile P. monodon (onset of benthic phase) from two important breeding
areas that are biogeographically separate in the HCS remain unknown. Hence, we analyzed
the ‘‘bioenergetic condition’’ (body mass, lipids, proteins, glucose, and energy) of new
juvenile females in the main nursery areas off the Chilean coast (NFU: Coquimbo 29◦S vs.
SFU: Concepción 36◦S). This study is not only key to evaluate the potential physiological
adaptations of juvenile P. monodon at different latitudes with contrasting environmental
conditions; it is also essential to generate sustainablemanagement policies with an ecological
approach. This is also especially relevant to trace the geographic origin of red squat lobsters
that may demonstrate a ’’better bioenergetic condition’’ throughout the HCS. In addition,
the ‘‘bioenergetic condition’’ of new juvenile females is particularly interesting for the focus
of this study because they store the energy necessary for their subsequent first reproduction
event and then transfer these energetic reserves to their first broods.

MATERIALS & METHODS
Sampling areas
Chile is part of the great marine ecosystem referred to as the HCS, from about 18◦S (off
the coast of Arica) up to about 45◦S (off the coast of Chiloe) (Montecino & Lange, 2009).
This area is commonly divided into two units: the northern unit and the southern unit.
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The northern unit is characterized by more stable environmental and oceanographic
conditions, lacking marked seasonality due to the presence of interannual El Niño-
Southern Oscillation (ENSO) cycles (Thiel et al., 2007). Contrastingly, the southern zone is
characterized by marked seasonality in environmental factors (e.g., biological productivity
and temperature) with a peak in primary production linked to high sea surface temperatures
(SSTs) in the summer (Escribano, Fernández & Aranís, 2003; Figueroa, 2002; Montecino &
Lange, 2009). The southern unit is also characterized by having much higher oxygen levels
at deep oceanic waters and less intense periods of hypoxia as opposed to the northern unit
(Escribano, Fernández & Aranís, 2003; Thiel et al., 2007).

Regarding the coastal geomorphological characteristics of both sampling areas, the
continental shelf in the NFU is relatively narrow (∼10 km wide) and the coastal area has
little influence from freshwater discharges and lacks big river outlets. On the other hand,
the continental shelf in the SFU is wide (∼70 km), deep (∼100 m) and the coasts are
characterized by large river mouths, high rainfall, and thus high amounts of incoming
fresh water flushing high contents of terrestrial organic matter into the sea (Figueroa, 2002;
Figueroa & Moffat, 2000).

Collection of juveniles
Juvenile red squat lobsters were sampled as part of the monitoring program for demersal
crustacean fisheries from the PontificiaUniversidadCatólica deValparaiso and the Instituto
de Fomento Pesquero, in collaboration with the fishing company Camanchaca Pesca Sur,
S.A. The samples were captured at depths of 80-100 m in May 2016, at the peak abundance
of new juveniles (‘‘individuals recently settled in the benthos’’, with a similar state of
immaturity) in the field, (Roa et al., 1995) off the coasts of Coquimbo (NFU: 29◦58′S
71◦38′W) and Concepción (SFU: 36◦22′S 73◦35′W) (Fig. 1) by the Altair I and Trauwun
trawling vessels from Camanchaca Pesca Sur, S.A. These nursery areas are very difficult to
access, characterized by steep slopes composed of sand and large rocks and are located near
long-exploited fishing grounds (Sobarzo & Djurfeldt, 2004; Zilleruelo, Párraga & Bravo,
2020). The samples were kept in containers with dry ice until reaching the Hydrobiological
Resources Laboratory of the Universidad Católica de la Santísima Concepción where they
were kept frozen at −80◦C (Guzmán-Rivas et al., 2021a).

Environmental factors
The environmental data on sea surface temperatures (SSTs, measured as ◦C) and
chlorophyll-a concentrations (Chl-a, measured as mg m−3) (Table 1) were obtained
from the Giovanni website (Earth data, see Acker & Leptoukh (2007)). For the analyses, we
used monthly averaged values of each factor (SST, Chl-a) recorded during the year 2016
for the two sampled areas off the coasts of Coquimbo (i.e., NFU) and Concepción (i.e.,
SFU). Also, the annual average value of each environmental factor was calculated for each
study area.
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Figure 1 Sampling point of juvenile females of red squat lobster off chilean coast. The figure shows
the sampling area in the northern fishing unit (NFU: 29◦58′S; 71◦38′W) and southern fishing unit (SFU:
36◦22′S; 73◦35′W) off the coast Coquimbo and Concepción respectively, Chile.

Full-size DOI: 10.7717/peerj.13393/fig-1
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Preparation of samples for analyses
Sex determination and state of immaturity
In the Hydrobiological Resources Laboratory, following Guzmán-Rivas et al. (2021a), the
sex of each new juvenile squat lobster was verified using a dissection microscope (SMZ-
178, Motic) to assess the morphological differences of the first pair of pleopods (i.e., thick
female pleopods vs. thin male pleopods) (Gutierrez & Zuñiga, 1977). In turn, the state of
immaturity of new juveniles was also determined using a dissection microscope (SMZ-178,
Motic) based on two attributes: (i) physiological, following Flores et al. (2020), here a small
gonad with a white coloration was described and (ii) functional, defined by Montenegro
(2008) as the absence of embryos under the abdomen. From a total of 83 individuals, only
new juvenile females were selected, resulting in n= 30 new juvenile females from the NFU
and n= 30 new juvenile females from the SFU. The following methodology and analyses
focused only on new juvenile females. New juvenile males were not considered in this study
because insufficient male samples were obtained from the field for analyses (n= 9; total =
∼90% female vs. ∼10% male).

Size and body mass
A caliper (±0.001 mm) was used to measure cephalothorax length (CL) of new juvenile
females. The CL was measured from the posterior margin of the cephalothorax to the
base of the rostral spine. Then, as described in detail by Guzmán-Rivas et al. (2021a), all
internal organs (i.e., viscera) and muscle were removed from each new juvenile female.
Due to the small size of the specimens, we mixed all of the internal organs and referred
to this as ‘‘viscera’’ (which was mainly composed of hepatopancreas (∼90%), stomach
and ovary (∼10%)) (Guzmán-Rivas et al., 2021b; Mantel, 1983; Subramoniam, 2017). The
storage and subsequent weighing of samples was carried out following the same protocol
as described by Guzmán-Rivas et al. (2021b). The viscera and muscle samples (20 mg of
dry weight (DW)) were then used to analyze the biochemical components (lipid, protein,
glucose, and energy contents).

Biochemical components
For the biochemical analysis, the methodologies that were recently described in detail by
Guzmán et al. (2020), Guzmán-Rivas et al. (2021a) and Lazo-Andrade et al. (2021) were
used.

Lipid content
For the lipid extraction, the dry weight (i.e., 20 mg) of each sample (viscera and muscle)
was mixed with dichloromethane: methanol (2:1) solvent, following the method described
byFolch, Lees & Sloane Stanley (1957), Cequier-Sánchez et al. (2008), and Saini et al. (2021).
Then, an ultrasonic bath (MRC, AC-120H) was used to incubate the samples. After that,
each sample was mixed with potassium chloride (0.88%) and homogenized in a vortex
(Select Vortexer, model SBS100-2). Each sample was centrifuged (Boeco, model S-8) and
the lower and/or organic phase was collected and dried in a sample concentrator (109A
YH-1, Glas-Col) to register their DW. Finally, the total amount of lipids in the samples was
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Table 1 Environmental data average (sea surface temperature, SST; chlorophyll-a, Chl-a) of sampling area in the northern fishing unit (NFU; 29◦58′S; 71◦38′O) and
southern fishing unit (SFU; 36◦22′S; 73◦35′O) off the coast Coquimbo and Concepción respectively, Chile.

Environmental
variable

Fishing
unit

Jan Feb Mar Apr May* Jun Jul Aug Sept Oct Nov Dec

SST (◦C) NFU 18.67± 0.2 18.24± 1.66 18.38± 0.82 16.41± 1.46 15.62± 0.25 13.79± 0.61 14.38± 0.51 13.52± 0.06 13.72± 0.24 14.19± 0.57 16.41± 1.55 17.2± 1.06

SFU 16.79± 1.29 15± 0.53 14.17± 0.11 14.18± 0.23 14.84± 0.08 13.72± 0.74 12.61± 0.28 12.79± 0.42 13.09± 0.25 13.44± 0.35 13.23± 1.2 14.76± 0.67

Chl-a (mg m3) NFU 1.15± 0.61 0.78± 0.31 0.97± 0.43 0.54± 0.17 0.73± 0.03 1.16± 0.44 0.56± 0.16 1.86± 0.96 1.13± 0.36 1.75± 1.25 1.14± 0.82 1.19± 0.29

SFU 1.81± 0.79 1.9± 0.77 2.62± 0.71 0.82± 0.19 0.78± 0.04 1.38± 0.93 0.87± 0.15 1.57± 0.56 2.19± 1.24 0.63± 0.12 4.23± 3.16 1.87± 0.52

Notes.
The event sampling month is indicated with an asterisk (May).
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calculated as the difference between the DW of the empty amber vials and their DW after
the lipid collection.

Protein content
The protein content was measured using the colorimetric method (Bradford, 1976) and
modified for microplates. For this, dry tissue samples were mixed and homogenized with
ultra-pure water and sonicated for 10 min. Then, an aliquot of the homogenate was
mixed with the Bradford reagent. Subsequently, this mixture was transferred into 96-well
microplates. Highly concentrated samples were diluted with a dilution solution reagent.
After 15 min. at room temperature, the absorbance of each sample was measured at a
wavelength of 595 nm. A calibration curve was built using the absorbance of different
protein concentrations (from 0.1 mg mL−1 to 1.5 mg mL−1) of bovine serum albumin
(BSA) diluted with the dilution solution. These measurements were used to determine the
DW of proteins within 20 mg.

Glucose content
The glucose content was determinedwith a kit (Spinreact) that implements the colorimetric
method (Tietz, 1995) modified for microplates. In brief, a dry sample was rehydrated and
mixed with ultra-pure water. Then, a small aliquot was mixed with a working reagent.
In addition, a glucose standard was prepared with a working reagent and an organic
compound glucose. The samples were incubated for 20 min. at room temperature. The
absorbance was then measured at a wavelength of 490 nm. The absorbance was measured
relative to a blank sample that contained only the working reagent. The net glucose content
for each 20 mg tissue sample was then obtained by dividing the absorbance of the sample
by the absorbance of the standard.

Energy content
The energy content of each samplewasmeasured in Joules (J) and estimatedusing the energy
bioequivalents of the analyzed biochemical components, with the following conversion
coefficients: 1 mg lipids = 39.54 J, 1 mg proteins = 23.69 J, and 1 mg glucose = 17.15 J
(Guzmán et al., 2020; Lazo-Andrade et al., 2021; Urzúa et al. 2012; Winberg, 1971). Total
energy was considered as the sum of the energy contributed by each of these biochemical
components.

Lipid/Protein ratio
From the previous estimations, the lipid/protein (L/P) ratios were calculated by dividing
the lipid content (mg g−1 DW) by the protein content (mg g−1 DW) of each sample. The
L/P ratio was used as a proxy for the nutritional condition of the juvenile females in relation
to the environmental conditions present in the nursery areas (NFU and SFU). Additionally,
to make a global comparison of the L/P ratio (used as an index of the nutritional condition)
in species of juvenile decapods from different geographical regions, values of this index
were obtained from the Web of Science database of bibliographic references.
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Statistical analysis
Statistical analyses were performed using parametric, non-parametric, and multivariate
methods (Sokal & Rohlf, 1995; Zuur, Leno & Smith, 2007), which were carried out in the
SigmaStat 4.0 (StatSoft), Brodgar 2.7.5 with R-mgcv package (Highland Statistics Ltd.) and
PRIMER 6 & PERMANOVA + software. For environmental factor analyses, a generalized
additive model (GAM) with a Gaussian distribution was used to explain the nature of
the smoothing function (S) of each environmental factor (SST, Chl-a) in the two nursey
areas and/or localities (NFU and SFU) throughout the year. Also, a parametric test (paired
t -test) was run to measure the differences for each environmental parameter between
nursery areas over the annual period of study. In turn, to evaluate differences in the
bioenergetic condition (DW, lipid, protein, glucose, and energy contents) of new juvenile
females between nursery areas a t -test was carried out. Prior to the t -test analyses of
the bioenergetic condition, assumptions of homogeneity (Levene’s test) and normality
(Shapiro–Wilk test) tests were performed using a significance level of 0.05. We considered
natural logarithm transformation for DW data and square root transformation for L/P
ratio data (viscera and muscle) to meet with the previously described assumptions; and
when the assumptions were not met, the non-parametric test (Mann–Whitney rank sum
test (U)) was used. Altogether, variations in the ‘‘bioenergetic condition’’ of the viscera and
muscle of new juvenile females related to the ’’locality factor’’ (NFU vs. SFU) were assessed
with a permutational multivariate analysis of variance (PERMANOVA) with a Euclidean
distance matrix and square root transformation. Lastly, a principal coordinate analysis
(PCoA) was performed to graphically display the differences found in the PERMANOVA.

RESULTS
Environmental parameters
Throughout the annual period of study, the SFU showed lower average SSTs than the NFU
(14.05± 0.77 ◦C vs. 15.97± 1.07 ◦C; SFU and NFU, respectively) (t1,11= 4.928; P < 0.001;
Table 1). Both localities were characterized by a notorious peak in the austral warm season
(i.e., December and January) (Figs. 2A and 2B; GAM, S function). On the other hand,
the Chl-a levels in both localities remained relatively stable throughout the year (SFU:
1.69 ± 1.26 mg m3 vs. NFU: 1.25 ± 0.82 mg m3) (t 1,11 = −1.879; P = 0.087; Table 1),
with only slight variations in their concentrations (Figs. 2C and 2D; GAM, S function).

Size and Body mass
The size (measured as CL) of new juvenile females was similar in the two sampled nursery
areas (SFU: 19.2± 1.45mm vs.NFU: 19.9± 1.45mm) (t1,58= 1.880; P = 0.065). However,
the new juvenile females from the SFU showed a higher body mass (quantified as DW)
than those from the NFU (SFU: 532.4 ± 97.2 mg vs. NFU: 461.7 ± 75.94 mg; Fig. 3) (t1,58
= −3.126; P < 0.01).

Lipid content
The lipid content in the viscera of new juvenile females varied significantly between the
two nursery areas (t1,58 = −6.037; P < 0.001). The viscera of the new juvenile females
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Figure 2 Generalized additive model of environmental parameters (sea surface temperature and
chlorophyll-a). The figure shows monthly variation of sea surface temperature (SST) (A and D) and
chlorophyll-a (Chl-a) (B and C) from northern fishing unit (NFU; 29◦58′S; 71◦38′O) and southern fishing
unit (SFU; 36◦22′S; 73◦35′O) off the coast Coquimbo and Concepción respectively, Chile. Continuous
line: estimated smoothing function; Segmented line: 95% confidence intervals; dots represent mean values
for each month. Months= 12; January to December.

Full-size DOI: 10.7717/peerj.13393/fig-2

from the SFU (3.11 ± 0.65 mg g−1 DW) had a higher lipid content than those from the
NFU (2.1 ± 0.65 mg g−1 DW) (Fig. 4A). In contrast, the lipid content in the muscle of
new juvenile females did not statistically vary between the nursery areas (Mann–Whitney
U1,58 = 435.5; P = 0.835), with similar average values between the two localities (SFU:
1.64 ± 0.29 mg g−1 DW vs. NFU: 1.29 ± 0.42 mg g−1 DW) (Fig. 4B).

Protein content
The protein content in the viscera of new juvenile females also varied significantly between
the nursery areas (Mann–Whitney U1,58 = 292; P = 0.02). A high protein content was
detected in new juvenile females from the SFU (1.15± 0.24mg g−1 DW) compared to those
from the NFU (0.99 ± 0.21 mg g−1 DW) (Fig. 5A). A similar tendency was also observed
for protein contents quantified in the muscle, with significant differences between nursery
areas (Mann–Whitney U1,58= 258.5; P < 0.01), and again, a higher protein content in the
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Figure 3 Differences in bodymass of juvenile females of the red squat lobster. The figure shows differ-
ences in dry weight (mg ind−1) of juvenile females of the red squat lobster (Pleuroncodes monodon) from
the northern fishing unit (NFU) and the southern fishing unit (SFU) off the coast Coquimbo and Concep-
ción respectively, Chile. The figure shows average values and standard deviations. Different lowercase let-
ters indicate significant differences.

Full-size DOI: 10.7717/peerj.13393/fig-3

new juvenile females from the SFU (2.4 ± 0.71 mg g−1 DW) than in those from the NFU
(1.79 ± 0.69 mg g−1 DW) (Fig. 5B).

Glucose content
The glucose content quantified in the viscera of new juvenile females showed a similar
tendency as observed above, with significant variations between locations (Mann–Whitney
U1,58= 136.5; P < 0.01). Higher average values were found in new juvenile females from
the SFU (0.09 ± 0.02 mg g−1 DW) than in those from the NFU (0.05 ± 0.02 mg g−1 DW)
(Fig. 6A). Significant differences were also recorded for the muscle in the two locations
(Mann–Whitney U1,58 = 255; P < 0.01), and again, the new juvenile females from the SFU
(0.07 ± 0.03 mg g−1 DW) had a higher amount of glucose compared to those from the
NFU (0.05 ± 0.02 mg g−1 DW) (Fig. 6B).

Energy content
The energy content estimated from the evaluated viscera andmuscle of new juvenile females
showed significant differences between the two nursery areas (viscera: t1,58 = −6.476;
P < 0.001; muscle: t1,58 = −5.712; P < 0.001). For the viscera, new juvenile females from
the SFU (151.9 ± 27.4 J mg−1 DW) showed a higher energy content compared to those
from the NFU (107.1± 26.12 J mg−1 DW) (Fig. 7A). Similarly, the muscle of new juvenile
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Figure 4 Differences in the lipid content of juvenile females of the red squat lobster. The figure shows
biochemical differences in the lipid content of the viscera (mg g−1 DW) (A) and muscle (mg g−1 DW) (B)
in juvenile females of the red squat lobster (Pleuroncodes monodon) from northern fishing unit (NFU) and
southern fishing unit (SFU) off the coast Coquimbo and Concepción respectively, Chile. The figure shows
average values and standard deviations. Different lowercase letters indicate significant differences.

Full-size DOI: 10.7717/peerj.13393/fig-4
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Figure 5 Differences in the protein content of the juvenile females of red squat lobster. The figure
shows biochemical differences in the protein content of the viscera (mg g−1 DW) (A) and muscle (mg g−1

DW) (B) in juvenile females of the red squat lobster (Pleuroncodes monodon) from northern fishing unit
(NFU) and southern fishing unit (SFU) off the coast Coquimbo and Concepción respectively, Chile. The
figure shows average values and standard deviations. Different lowercase letters indicate significant differ-
ences.

Full-size DOI: 10.7717/peerj.13393/fig-5
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Figure 6 Differences in the glucose content of the juvenile females of red squat lobster. The figure
shows biochemical differences in the glucose content of the viscera (mg g−1 DW) (A) and muscle (mg g−1

DW) (B) in juvenile females of the red squat lobster (Pleuroncodes monodon) from northern fishing unit
(NFU) and southern fishing unit (SFU) off the coast Coquimbo and Concepción respectively, Chile. The
figure shows average values and standard deviations. Different lowercase letters indicate significant differ-
ences.

Full-size DOI: 10.7717/peerj.13393/fig-6
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Figure 7 Differences in the energy content of the juvenile females of red squat lobster. The figure
shows differences in the energy content of the viscera (J mg−1 DW) (A) and muscle (J mg−1 DW) (B) in
juvenile females of the red squat lobster (Pleuroncodes monodon) from northern fishing unit (NFU) and
southern fishing unit (SFU) off the coast Coquimbo and Concepción respectively, Chile. The figure shows
average values and standard deviations. Different lowercase letters indicate significant differences.

Full-size DOI: 10.7717/peerj.13393/fig-7
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females from the SFU (122.8 ± 19.57 J mg−1 DW) presented a higher energy content than
those from the NFU (90.43 ± 24.11 J mg−1 DW) (Fig. 7B).

Lipid/protein ratio
The L/P ratio of the viscera of new juvenile females varied significantly between the two
nursery areas (t1,58 = −2.971; P < 0.005), with higher L/P values detected in juvenile
females from the SFU (2.8 ± 0.78) compared to those from the NFU (2.23 ± 0.82)
(Fig. 8A). On the other hand, the L/P ratio of the muscle of juvenile females did not vary
significantly between the localities (t1,58 = −0.372; P = 0.711), and showed quite similar
average values (SFU: 0.75 ± 0.28 vs. NFU: 0.72 ± 0.27) (Fig. 8B).

Multivariate analysis of bioenergetic condition
The permutational multivariate analysis of variance (PERMANOVA) of the bioenergetic
condition of the viscera of new juvenile females showed statistically significant differences
between the two nursery areas (F1,58 = 30.47; P-pseudo = 0.001). The PC1 axis of the
principal coordinate analysis (PCoA) explained 83.7% of the variation, while the PC2 axis
explained only 13.3% of the data variation (Fig. 9A). In this case, the differences measured
in the bioenergetic condition of new juvenile females could be explained by the lipid
content in the viscera. On the other hand, the PERMANOVA of the muscles’ bioenergetic
condition also showed significant differences between the two localities (F1,58 = 15.01;
P-pseudo = 0.001). The PC1 axis of the principal coordinate analysis (PCoA) explained
78.3% of the variation, while the PC2 axis explained only 19.6% of the data variation
(Fig. 9B). Here, the differences in the bioenergetic condition of new juvenile females could
be explained by the protein content in the muscle.

DISCUSSION
In our study, we found variations in the body mass (dry weight) and biochemical
components (lipids, proteins, glucose, and energy) of new juvenile P. monodon females
in two nursery areas (NFU and SFU). We suggest that these differences may reflect
potential adaptive physiological responses of P. monodon juveniles to local environmental
factors (mainly water temperature) (Anger, Torres & Nettelmann, 2007) and biogeographic
features (i.e., coastal geomorphological characteristics) (Ansari, Farshchi & Faniband,
2010; Calvo et al., 2018; Camus, 2001; Haye et al., 2019), which differ between these two
nursery areas and/or locations (29◦S vs. 36◦S). The physiological capacity of juvenile red
squat lobsters to adapt to the local environment may result in a more flexible, dynamic,
and successful recruiting of juvenile individuals to adult populations (Floreto, Bayer
& Brown, 2000). In particular, identifying variations in bioenergetic condition (as an
integrated concept: measured as the body mass and biochemical components) of juvenile
female red squat lobsters at different latitudes and/or localities of the HCS may help
to predict and estimate the abundance of adult populations (i.e., exploitable biomass),
which are exploited by commercial fisheries in the HCS. Moreover, for sustainable fishing
certification processes of crustaceans (Naylor et al., 2021;Nyiawung, Raj & Foley, 2021), the
detection and description of site-specific attributes, such as biochemical components (used
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Figure 8 Differences in the Lipid/Protein (L/P) ratio of the juvenile females of red squat lobster.
The figure shows L/P ratios of the viscera (A) and muscle (B) of juvenile females of the red squat lobster
(Pleuroncodes monodon) from northern fishing unit (NFU) and southern fishing unit (SFU) off the coast
Coquimbo and Concepción respectively, Chile. The figure shows average values and standard deviations.
Different lowercase letters indicate significant differences.

Full-size DOI: 10.7717/peerj.13393/fig-8
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Figure 9 Principal coordinates analysis (PCoA) of biochemical profile of the juvenile females of red
squat lobster. The figure shows the biochemical profile (i. e., lipid, protein and glucose) of the viscera (A)
and muscle (B) of the red squat lobster (Pleuroncodes monodon) from the northern fishing unit (NFU) and
the southern fishing unit (SFU) off the coast Coquimbo and Concepción respectively, Chile.

Full-size DOI: 10.7717/peerj.13393/fig-9

as biological tracers: (Fonseca et al., 2022; Shilla & Routh, 2017) of red squat lobster stocks
will aid in tracing this fishery resource back to its geographic origin or source population.
Furthermore, identifying which stock is of higher quality in terms of its bioenergetic
condition could greatly benefit the sustainable management of these fisheries in the HCS
(Smith & Addison, 2003).

Many commercial decapod species of marine temperate regions (e.g., Crangon crangon,
Romaleon setosum, (Fischer et al., 2009; Urzúa & Anger, 2013), including the red squat
lobster P. monodon, have a wide geographical distribution range across the climatic
gradient, which is frequently characterized by fluctuating and contrasting environmental
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conditions, both spatially (between latitudes) and temporally (between seasons) (Montecino
& Lange, 2009; Thiel et al., 2007). Hence, they have evolved to respond physiologically to
environmental changes and selective pressures, which can be considered as biochemical
adaptive responses to different environmental conditions (Calvo et al., 2013; Floreto, Bayer
& Brown, 2000; Hochachka & Somero, 2002). For instance, in marine ectotherms at higher
or warmer temperatures their development time is shorter, with faster growth rates and
metabolism, while body weights are lower and contain less lipids and proteins, when
compared to specimens that develop at lower or colder temperatures (Fischer & Thatje,
2016; Tropea, Stumpf & López, 2015; Wang & Stickle, 1988). Body mass, in particular, is
one of the most important traits of an organism in terms of physiology and fitness traits
(Rosa & Nunes, 2003a) and a positive correlation between latitude and body mass has been
well documented (Anger & Hirche, 1990; Rosa & Nunes, 2003b; Rotllant et al., 2014). In
our study, juvenile females from the SFU (a higher latitude) showed a higher total body
mass than those from the NFU (at lower latitudes). Hence, the general trend to increase
body size as latitude increases (Rotllant et al., 2014) holds true for the juvenile females
of P. monodon studied herein. This tendency has also been reported for other decapod
crustacean species from high latitudes and/or temperate regions (e.g., Uca uruguayensis,
(Rosa & Nunes, 2003b); Plesionika edwardsii, (Gonzalez et al., 2016).

The viscera (or all of the hepatopancreas) are also essential among crustaceans due to
the energy storage capacity of these organs in the form of lipids (Chang & O’connor, 1983;
Han et al., 2015). Also, the viscera provide the nutrients necessary for reproduction (e.g.,
gonad development and egg production) and can metabolize and assimilate a diversity
of essential nutrients for the entire organism (Daly, Eckert & Long, 2020; Garcia-Guerrero,
Villarreal & Racotta, 2003). In contrast, the analyzed muscle tissues of new juvenile females
in both locations presented higher protein contents than the viscera because the muscle is
themain protein storage organ (Haye et al., 2010;Haye et al., 2014). In juvenile P. monodon
females, a higher lipid content in the viscera, available as bioenergetic fuel, is fundamental
to support the high energy cost of their first reproductive event (characterized by egg laying
and incubation), which occurs during the austral winter, with cold water-temperatures and
low food availability in the environment (Guzmán-Rivas et al., 2021b; Guzmán, Olavarría
& Urzúa, 2016; Seguel et al., 2019; Thiel et al., 2012).

Juvenile females of P. monodon from the SFU presented a higher energy content, and
also a consistently higher L/P ratio than those from the NFU. This greater accumulation of
energy reserves in the form of lipids in the juvenile females from the SFU is mainly related
to the higher lipid content present in their tissue, most likely due to a physiological capacity
to store greater amounts of lipids at low temperatures (Green et al., 2014; Urzúa & Anger,
2013). A similar physiological response has been described for other juvenile decapod
crustaceans from high and subpolar latitudes (for details see Table 2), climatic regions
characterized by a marked seasonality of planktonic food and cold-water temperatures. In
an ecophysiological context, these predominant environmental conditions may promote a
higher accumulation of energy reserves in marine invertebrates, helping them to face low
temperatures and periods of food shortage during a prolonged winter, which frequently
occurs at these latitudes (Fischer et al., 2009; Weiss et al., 2012). Also, the upwelling of
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Table 2 Lipid/protein (L/P) ratio of decapod crustacean species living in different regions of the world.

Specie L/P ratio Tissue analyzed Distribution range Reference

Pleuroncodes monodon 1.2–1.56 Viscera + muscle Humboldt Current System
(7◦S—37◦S)

Present study

Maja brachydactyla ∼0.45 Whole body Atlantic coast
(55◦N –44◦N)

Andrés et al. (2008)

Sesarma meridies ∼0.31 Whole body Freshwater, Jamaica
(18◦N –17◦N)

Anger, Torres & Nettelmann (2007)

Farfantepenaeus paulensis ∼0.15 Whole body Southwest
Atlantic waters, shelf waters, estuarine
(14◦S–18◦S)

Lemos, Phan & Alvarez (2001)

Metapenaeus affinis ∼0.23* Whole body Indo-Pacific: from Persian Gulf and
Arabian Sea to South China Sea and Hawaii
(31◦N–18◦S)

Ansari, Farshchi & Faniband (2010)

Cherax quadricarinatus ∼0.21 Whole body Freshwater, Australia, Papua New Guinea
(7◦S–27◦S)

Calvo et al. (2018)

Homarus americanus 0.08–0.12* Whole body North Atlantic coast
(60◦N–33◦N)

Floreto, Bayer & Brown (2000)

Jasus edwardsii 0.06–0.13* Whole body Indo-West Pacific: Australia, New
Zealand and Chatham Island
(31◦S –51◦S)

Ward & Carter (2009)

Maja brachydactyla 0.03–0.07* Body without carapace East coast of the Atlantic ocean (55◦N–44◦N) Domingues et al. (2012)
Cherax quadricarinatus 0.41–0.85*

0.13 –0.42*
Hepatopancreas
Pleon

Freshwater, Australia, Papua New Guinea
(7◦S–27◦S)

Calvo et al. (2013)

Neocaridina heteropoda heteropoda 0.12–0.19* Whole body Freshwater, China, Taiwan, Vietnam (46◦N–10◦N) Tropea, Stumpf & López (2015)
Callinectes sapidus 0.19–0.2* Whole body Northwest Atlantic Ocean

(47◦N–36◦S)
Wang & Stickle (1988)

Nephrops norvegicus ∼3.4*

∼0.13*

∼0.52*

Hepatopancreas
Muscle
Ovary

Eastern Atlantic coast, Mediterranean Sea coast
(69◦N–30◦N)

Rosa & Nunes, (2003a)
Rosa & Nunes, (2003b)

Parapenaeus longirostris ∼4.45*

∼0.14*

∼0.49*

Hepatopancreas
Muscle
Ovary

Atlantic Ocean
(66◦N–17◦S)

Rosa & Nunes, (2003a)
Rosa & Nunes, (2003b)

Aristeus antennatus ∼4.68*

∼0.13*

∼0.54*

Hepatopancreas
Muscle
Ovary

Eastern Atlantic, Mediterranean sea
(43◦N–46◦S)

Rosa & Nunes, (2003a)
Rosa & Nunes, (2003b)

Maja squinado 0.62* Whole body Northwest Atlantic, Mediterranean sea
(58◦N–19◦S)

Rotllant et al. (2014)

Hyas araneus ∼5 Whole body Intertidal, Atlantic Ocean, North Sea
(78◦N–38◦N)

Anger & Hirche (1990)

Notes.
*Values calculated from the lipid and protein data presented in each article (for details see reference).
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nutrient rich cold waters along the southern latitude may increase productivity (Montecino
& Lange, 2009; Thiel et al., 2007), which fuels the marine food web and, in combination
with lower temperatures, leads to a greater accumulation of nutrients and an improved
bioenergetic condition of marine organisms along the southern coast of Chile (Woods et
al., 2003). In this way, knowing these biochemical tracers (i.e., lipids, protein, glucose and
ratios) along a latitudinal gradient can allow to trace the place of origin of individuals
(Leal et al., 2015;Olsen & Borit, 2013; Ricardo et al., 2015), and identify recruitment and/or
nursery areas as a source of new individuals for the adult population (Hansen, 2011; Lipcius
et al., 1998), as well as identifying which fishing unit has the best biochemical conditions
(for example, a high lipid/protein ratio).

In the context of species interactions in the food web realm, hake (Merluccius gayi), the
South American sea lion (Otaria flavescens), and squid (Dosidicus gigas) are described as the
main predators of P. monodon (Cubillos, Rebolledo & Hernandez, 2003; Sarmiento-Devia et
al., 2020). Although these predators show a certain degree of mobility, their trophic habits
and lifestyles are closely linked to specific feeding areas and/or locations (Payá & Ehrhardt,
2005; Sarmiento-Devia et al., 2020; Sepúlveda, Carrasco & Quiñones, 2021), where they
consume prey with a high energy content, such as the red squat lobster (Sarmiento-Devia
et al., 2020; Wehrtmann & Acuña, 2011). Hence, the spatial variations in the bioenergetic
condition of P. monodon may modify the energy transfer to higher trophic levels (Lovrich
& Thiel, 2011) and impact the nutritional status of these predators, which, in turn, are also
important fishery resources (M. gayi and D. gigas) in the HCS (Alarcón-Muñoz, Cubillos
& Gatica, 2008; Neira & Arancibia, 2013). Additionally, considering the current impact
of overfishing, data on the nutritional condition of fishery resources and their trophic
relation with other species that support important fishery activities is highly relevant in the
process of certification and regulation of fishing activities in the context of traceability and
management in an ecological approach (FAO, 2019).

Due to the current overexploitation of the red squat lobster in the HCS, identifying how
the bioenergetic condition of juvenile P. monodon females may vary between nursery areas
of different latitudes is essential to generate sustainable-oriented management policies in
fisheries with an ecological approach designed specifically for each fishing unit. Finally,
recognizing the latitudinal variations in body biomass and the biochemical components
of P. monodon juveniles and their applicability as biological tracers in the HCS is highly
relevant to trace the geographic origin of the red squat lobsters that present a ’’better
bioenergetic condition’’, all of which could greatly aid in fishery certification processes and
sustainable exploitation.

CONCLUSIONS
The differences we found in the bioenergetic condition (body mass, lipids, proteins,
glucose, and energy) of juvenile females of the red squat lobster (Pleuroncodes monodon)
from two nursery areas (NFU: 29◦S vs. SFU: 36◦ S) in the HCS most likely reflect the
potential physiological adaptative responses related to local habitat, which specimens
have developed to face contrasting environmental factors (mainly water temperature)
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and coastal geomorphological characteristics of these two nursery areas. In turn, under
the current overexploitation of this fishery resource in the HCS, understanding how
the bioenergetic condition of juvenile P. monodon females may vary in nursery areas at
different latitudes could help create fishery management policies designed specifically for
each fishing unit. Moreover, determining the latitudinal variations of the bioenergetic
condition of P. monodon juveniles, and using this information as biological tracers in
marine ecosystems, is essential to identify the geographic origin of red squat lobsters with a
‘‘better bioenergetic condition’’ in the HCS, which could greatly benefit sustainable fishing
certification processes.
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