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Abstract  Multiple machine learning techniques 
were employed to identify key long non-coding RNA 
(lncRNA) biomarkers associated with cuproptosis 
in Diffuse Large B-Cell Lymphoma (DLBCL). Data 
from the TCGA and GEO databases facilitated the 
identification of 126 significant cuproptosis-related 

lncRNAs. Various feature selection methods, such as 
Univariate Filtering, Lasso, Boruta, and Random For-
est, were integrated with a Transformer-based model 
to develop a robust prognostic tool. This model, 
validated through fivefold cross-validation, demon-
strated high accuracy and robustness in predicting 
risk scores. MALAT1 was pinpointed using permuta-
tion feature importance from machine learning meth-
ods and was further validated in DLBCL cell lines, 
confirming its substantial role in cell proliferation. 
Knockdown experiments on MALAT1 led to reduced 
cell proliferation, underscoring its potential as a 
therapeutic target. This integrated approach not only 
enhances the precision of biomarker identification but 
also provides a robust prognostic model for DLBCL, 
demonstrating the utility of these lncRNAs in person-
alized treatment strategies. This study highlights the 
critical role of combining diverse machine learning 
methods to advance DLBCL research and develop 
targeted cancer therapies.

Wenhao Ouyang and Zijia Lai contributed equally to this 
work.

Highlight   
1. A novel subtyping of diffuse large B-cell lymphoma 
(DLBCL) based on cuproptosis-related lncRNA expression 
was established, providing new insights into tumor 
heterogeneity.
2. A robust DLBCL prognostic model was constructed 
using multiple machine learning algorithms.
3. Experimental evidence confirmed that MALAT1 
significantly promotes proliferation in DLBCL cell lines, 
supporting its role as a potential therapeutic target.
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Introduction

Diffuse Large B-Cell Lymphoma (DLBCL) is the 
most prevalent type of non-Hodgkin lymphoma in 
adults, accounting for 30–40% of all case (Tong et al. 
2022). This malignancy exhibits considerable hetero-
geneity, leading to varied pathological features and 
clinical outcomes, which complicates treatment and 
affects prognosis (Chapuy et  al. 2018; Harrington 
et  al. 2021; Schmitz et  al. 2018). Despite advance-
ments in targeted therapy and immunotherapy (Zele-
netz, et al. 2023; Shadman et al. 2022), many patients 
still encounter resistance or relapse, highlighting the 
need for enhanced therapeutic strategies.

Cuproptosis, a recently defined form of regulated 
cell death, is mechanistically distinct from estab-
lished pathways such as apoptosis and necroptosis. 
Although autophagy is often activated under cellular 
stress, it primarily serves as a survival mechanism, 
not a classical mode of cell death (Zhang et al. 2024). 
Recent studies have characterized cuproptosis as a 
unique cell death modality, driven by intracellular 
copper accumulation (Chen et al. 2022). Mechanisti-
cally, copper binds directly to lipoylated proteins in 
the tricarboxylic acid (TCA) cycle, inducing protein 
aggregation, loss of iron–sulfur cluster proteins, and 
consequent proteotoxic stress and cell death (Zhang 
et al. 2024; Li et al. 2022). This pathway underscores 
a direct link between copper homeostasis, mitochon-
drial metabolism, and cell fate, attracting increasing 
attention for its potential role in cancer biology.

Meanwhile, long non-coding RNAs (lncRNAs) are 
increasingly recognized for their regulatory functions 
in cancer, influencing processes such as cell prolif-
eration, apoptosis, and therapy resistance (Lin et  al. 
2019). However, the specific roles of lncRNAs in 
DLBCL and their potential involvement in regulating 
cuproptosis are largely unexplored.

To date, most studies on cuproptosis-related bio-
markers have focused on protein-coding genes, with 
the roles of non-coding RNAs—particularly lncR-
NAs—remaining underexplored (Yang et  al. 2022). 
LncRNAs have emerged as crucial regulators of 
gene expression and cancer pathogenesis, influencing 

apoptosis, proliferation, and therapeutic responses. 
Their high tissue-specific expression and stability in 
body fluids also render them promising biomarker 
candidates (Luo et al. 2022; Zhou et al. 2017). In the 
context of DLBCL, less comprehensive studies have 
systematically identified cuproptosis-related lncRNAs 
with prognostic value. Thus, this study exclusively 
focuses on lncRNAs, aiming to discover novel, non-
coding RNA-based biomarkers that could contribute 
to more accurate molecular classification and individ-
ualized therapeutic strategies for DLBCL.

This study employed an integrated approach 
using multiple machine learning algorithms to 
enhance the identification and prediction of cuprop-
tosis-related lncRNAs in DLBCL. By combining 
various feature selection techniques—including 
Univariate Filtering, Lasso, Boruta, and Random 
Forest—with advanced deep learning models like 
Transformers and ensemble methods such as Bag-
ging, we aim to develop a robust and accurate 
prognostic model. This multi-algorithm approach 
not only improves the precision of identifying key 
biomarkers but also provides a powerful tool for 
predicting patient outcomes and tailoring personal-
ized treatment strategies. Integrating these diverse 
machine learning methods marks a significant 
advancement in the field, offering new insights and 
practical applications in DLBCL management.

Materials and methods

Patient cohorts in this study

RNA expression data and clinical information 
related to DLBCL were obtained from The Cancer 
Genome Atlas (TCGA) and included 29 lymphoma 
samples. Additional data, comprising 414 samples 
from GSE10846, 200 samples from GSE11318, 69 
samples from GSE23501, and 119 samples from 
GSE53786, were downloaded from The Gene 
Expression Omnibus (GEO) database. Patient infor-
mation is summarized in Table  1. After merging 
the cohorts, the ComBat algorithm was used for 
batch effect normalization (Leek et  al. 2012; Ouy-
ang et  al. 2024). The endpoint focused on overall 
survival. The training sets included 443 cases from 
TCGA and GSE10846, while the external valida-
tion sets comprised 388 cases from GSE11318, 
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GSE23501, and GSE53786. These datasets were 
used exclusively for external validation to assess the 
generalizability and robustness of our model across 
independent patient populations.

Identification of cuproptosis‑related lncRNAs

Cuproptosis-related genes, including NFE2L2, 
NLRP3, ATP7B, ATP7A, SLC31A1, FDX1, LIAS, 
LIPT1, LIPT2, DLD, DLAT, PDHA1, PDHB, MTF1, 
GLS, CDKN2A, DBT, GCSH, and DLST, were iden-
tified based on the current study and databases perti-
nent to copper metabolism and cell death pathways. 
Subsequently, 1134 lncRNAs were extracted follow-
ing the guidelines and protocols outlined in the GEN-
CODE project (Frankish et al. 2023).

Using the Pearson correlation method, the inter-
play between cuproptosis-related genes and lncR-
NAs in DLBCL samples was analyzed with stringent 
threshold values of |R|> 0.4 and a p-value < 0.001 to 
ensure significant correlation strength and statistical 
relevance (Cao et al. 2020). Through this process, 126 
cuproptosis-related lncRNAs that showed significant 
correlation with cuproptosis genes were identified. 
To effectively illustrate the complex relationships 
between these genes and their associated lncRNAs, 
sankey diagrams were constructed, providing a clear 
and comprehensive overview of potential interactions 
and regulatory networks.  Based on the expression 
profiles of the cuproptosis-related lncRNAs, non-
negative matrix factorization (NMF) clustering was 
applied to identify distinct molecular subtypes within 

the DLBCL cohort. The optimal number of clusters 
was determined using cophenetic correlation and sil-
houette width to ensure robust subtype classification. 
This unsupervised learning approach enabled the 
delineation of novel cuproptosis-associated molecular 
subtypes. 

Feature selection for lncRNAs

GeneSelectR (Zhakparov, et al. 2024) was employed to 
identify key lncRNAs, utilizing a range of built-in fea-
ture selection methods including RandomForest, Lasso, 
Boruta, and Univariate Filtering (Breiman 2001; Yu 
et  al. 2025; Kursa and Rudnicki 2010; Ouyang et  al. 
2022). RandomForest, an ensemble method, evaluates 
feature importance through impurity reduction across 
decision trees and captures non-linear gene interac-
tions; Lasso regression, which applies L1 regulariza-
tion, is ideal for shrinking irrelevant coefficients to zero 
in sparse high-dimensional genomic data; Boruta, a 
Random Forest-based wrapper, statistically compares 
features against permuted “shadow” counterparts to 
filter noise-resistant markers; and Univariate Filtering, 
which ranks genes rapidly via individual association 
metrics. This multi-strategy workflow combines uni-
variate pre-screening with model-driven refinement. 
Permutation feature importance assesses the signifi-
cance of each gene by measuring changes in model per-
formance when gene values are randomly shuffled, pro-
viding a more accurate measure of a gene’s importance 
by accounting for interactions between genes and the 
overall model complexity.

Table 1   Clinical characteristics of DLBCL patient cohorts

Cohort TCGA-DLBL GSE10846 GSE11318 GSE23501 GSE53786

Number of patients 29 420 203 69 119
Age (Mean ± SD) 56.5 ± 15.3 61.1 ± 15.4 62.1 ± 14.4 62.5 ± 15.8 61.5 ± 14.8
OS time (Mean ± SD) (years) 4.41 ± 4.55 3.17 ± 3.12 4.21 ± 4.22 2.48 ± 1.98 3.02 ± 3.49
OS status

  Alive 21 249 88 56 75
  Dead 8 165 112 13 44
  NA - 6 3 - -

Gender
  Male 13 224 112 50 66
  Female 16 172 91 19 45
  NA - 24 - - 8
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Multi‑algorithm estimation of TME composition and 
immune scoring

TME composition was inferred using various algo-
rithms integrated within IOBR (Zeng et  al. 2021), 
including CIBERSORT (Newman et  al. 2015), 
TIMER (Li et  al. 2016), xCell (Aran et  al. 2017), 
MCPcounter (Becht et al. 2016), EPIC (Racle, et al. 
2017), and quanTIseq (Finotello et al. 2019), to esti-
mate the proportions of different cell types within the 
TME. Immune scoring was performed to evaluate 
the immune status of the samples using ESTIMATE 
(Yoshihara et  al. 2013) and IPS (Charoentong et  al. 
2017).

Transformer‑based model construction

Initially, in the data processing stage, features were 
standardized using StandardScaler to eliminate issues 
caused by differences in feature magnitudes and 
to ensure uniform scaling across all features. The 
standardized data were subsequently converted into 
PyTorch tensors for model training and inference.

A Transformer-based model was developed to 
predict sample risk scores. The model comprises 
embedding layers, multiple Transformer encoder lay-
ers, fully connected layers, and regularization lay-
ers. Specifically, the embedding layer maps the input 
features X to a 128-dimensional space, denoted by 
E = Embedding(X) . Each Transformer encoder layer 
consists of multi-head self-attention mechanisms and 
feed-forward neural networks. In our model, eight 
attention heads are utilized, each attention mechanism 
being computed as follows:

where Q, K, and V  represent the query, key, and 
value matrices, respectively, and dk is the dimension-
ality of the keys. The multi-head attention mechanism 
extends this computation:

where each head is defined as:

(1)Attention(Q,K,V) = softmax
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The feed-forward network in each encoder layer 
consists of two linear transformations with a ReLU 
activation between them, represented as:

Six such encoder layers were stacked to form a 
deep feature extraction structure.

Following the encoder layers, the outputs were fur-
ther processed by the fully connected layers. Initially, 
the data passed through a 64-dimensional linear layer 
for preliminary feature extraction, followed by a drop-
out layer to prevent overfitting, and finally, through 
an output layer to generate the risk score. To improve 
the model’s stability and generalization ability, Layer 
Norm and a 30% dropout were included, and the 
Bagging ensemble method was employed. Bagging 
enhances performance by training multiple base mod-
els and averaging their outputs, thus reducing depend-
ency on a single training set and mitigating the risk of 
overfitting. In this study, ten base models were trained 
and their results averaged.

Model training and validation were conducted using 
fivefold cross-validation. The dataset was randomly 
split into five subsets, using each subset once as the 
validation set while the remaining subsets served as 
the training set. This process was repeated five times to 
ensure that all the data points were used for both train-
ing and validation. Cross-validation helps reduce vari-
ability in model performance due to data partitioning 
and maximizes data utilization, aiding in identifying 
whether the model is overfitting or underfitting.

During training, the AdamW (Loshchilov and 
Hutter 2017) optimizer and OneCycleLR (Smith 
and Topin 2019) learning rate scheduler were uti-
lized. The AdamW optimizer combines adaptive 
learning rates with weight decay, promoting faster 
convergence and stability, while the OneCycleLR 
scheduler dynamically adjusts the learning rate 
to facilitate rapid convergence in the early stages 
and fine-tuning later. Additionally, early stopping 
was implemented to halt training if the validation 
loss did not decrease within a specified number of 
epochs, thereby preventing overfitting.

After completing the training for each fold, the 
model parameters were saved, and various evalua-
tion metrics for the validation set were recorded. By 
comparing the performance of different folds, the 
model with the highest concordance index (c-index) 

(4)FFN(x) = ReLU
(

xW1 + b1
)

W2 + b2
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was selected as the final risk-scoring model. To 
ensure optimal model performance, hyperparam-
eters were optimized, including the embedding 
dimension (128), number of heads in multi-head 
self-attention (8), number of encoder layers (6), 
dropout rate (0.3), number of base models (10), 
learning rate (0.001), weight decay (1e- 5), num-
ber of training epochs (100), and early stopping 
patience (10).

The performance of the model was comprehen-
sively evaluated using metrics such as accuracy, preci-
sion, recall, F1 score, area under the receiver operating 
characteristic curve (AUC), and concordance index 
(C-index), ensuring its robustness and effectiveness.

After completing the cross-validation, the model 
with the highest c-index was selected to calculate the 
risk scores for all samples. The risk score for each 
sample was calculated through forward propagation by 
inputting the features of all samples into the selected 
best model. Forward propagation efficiently computes 
the model predictions for each sample, ensuring the 
accuracy and speed of the calculation process.

DLBCL cell lines culture

This investigation utilized various cell lines, includ-
ing DLBCL models and a benchmark lymphoblas-
toid cell line sourced from ATCC. The lympho-
blastoid cell line (B-LCL) and DLBCL cell lines 
(SU-DHL- 4, OCI-LY10, and DB) were cultured in 
RPMI- 1640 medium (Gibco, USA), supplemented 
with 10% fetal bovine serum (FBS) and 1% penicil-
lin–streptomycin (Gibco, USA). These cells were 
maintained under a controlled environment at 37 °C 
with 5% CO2 humidity, ensuring their exponential 
phase growth through frequent media renewals and 
cell passaging.

RNA isolation, cDNA synthesis, and qPCR analysis

RNA was isolated from the cell lines B-LCL, SU-
DHL- 4, OCI-LY10, and DB utilizing TRIzol reagent 
from Thermo Fisher Scientific, USA. A NanoDrop 
spectrophotometer was employed to ascertain RNA 
quality and quantity. cDNA synthesis was executed 
using the HiScript III First Strand cDNA Synthesis 
Kit (Vazyme, Nanjing, China), adhering strictly to 
the kit’s guidelines. qPCR analysis was conducted on 

a QuantStudio TMDx system (Applied Biosystems, 
USA) using ChamQ Universal SYBR qPCR Master 
Mix (Vazyme, Nanjing, China). The cycling condi-
tions were an initial activation at 95 °C for 30 s, fol-
lowed by 40 cycles of 95 °C for 5 s and 60 °C for 30 s. 
Relative lncRNA expression was calculated using the 
2−ΔΔCT method, normalized to a β-actin gene. Primers 
for each gene were summarized in Table S1.

siRNA transfection targeting MALAT1

The OCI-LY10 and DB cell lines underwent trans-
fection with siRNA specifically targeting MALAT1, 
employing Lipofectamine 3000 from Thermo Fisher 
Scientific, USA, following the provided protocol. 
Cells were plated in 6-well plates at 2 × 105 cells per 
well and cultured overnight. Both siRNA and Lipo-
fectamine 3000 were separately mixed with Opti-
MEM Reduced Serum Medium and incubated at 
room temperature for 5  min, followed by a 20-min 
incubation to form transfection complexes. These 
were then introduced to the cells and maintained at 
37 °C in a 5% CO2 atmosphere. Post 48 h, cells were 
collected to assess MALAT1 knockdown efficacy, 
with specific siRNA sequences detailed in Table S2. 
To ensure specificity, two distinct siRNA sequences 
for MALAT1 (si-MALAT1#1 and si-MALAT1#2) 
were employed alongside a scrambled siRNA serving 
as a negative control. All procedures were conducted 
in biological triplicates.

CCK‑8 assay

Cell proliferation post-siRNA transfection was quan-
tified using the Cell Counting Kit- 8 (CCK- 8) from 
Dojindo Laboratories, Japan. Cells were re-plated in 
96-well plates at 5 × 103 cells per well after 48 h of 
transfection. The assay was performed at intervals of 
24, 48, and 72 h by adding 10 µL of CCK- 8 solution 
to each well and incubating at 37 °C for 2  h before 
measuring the absorbance at 450 nm. Viability per-
centages were compared against controls, with all 
measurements repeated in triplicate to ensure experi-
mental validity.

Analytical tools and package versions

All statistical computations and the construction of mod-
els were executed using R (v4.2.2) and Python (v3.9). 
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The development of machine learning algorithms was 
facilitated by employing the scikit-learn (v1.3.0) and 
PyTorch (v2.0.1). Analyses of immune deconvolution 
and the tumor microenvironment were performed utiliz-
ing the IOBR package (v0.99.9) in R (Table S3).

Computational resources

The computational model was trained utilizing a 
robust high-performance computing setup, which 
included an NVIDIA RTX 2080 Ti GPU with 11 
GB of VRAM and a system memory of 128 GB. The 
entire training process, spanning 100 epochs, was 
completed in roughly 30 minutes.

Results

Patient cohorts

All cohorts of 831 DLBCL patients was analyzed, 
consisting of 29 from the TCGA dataset and 414 
from the GSE10846 dataset as training groups; and 
200 from GSE11318, 119 from GSE53786, and 69 
from GSE23501 as validation groups (Supplemen-
tary Fig.  1A). The ‘ComBat’ function from the 
‘sva’ package was employed to address batch effects 
among these groups, with pre- and post-correction 
states indicating successful normalization (Supple-
mentary Fig. 1B & C).

Identification of novel molecular subtypes via 
non‑negative matrix factorization clustering

We analyzed 1,134 lncRNAs along with 17 genes 
linked to cuproptosis. Co-expression analysis high-
lighted 126 lncRNAs significantly correlated with 
genes involved in cuproptosis (Fig. 1A, Table S4).

To elucidate the roles and interrelations of these 
lncRNAs in DLBCL, Non-negative Matrix Factori-
zation (Wang and Zhang 2012) (NMF) was utilized 
for cluster analysis. After thorough validation, a 
model with two clusters was found to be most effec-
tive. The clustering consensus matrix revealed dis-
tinct sample separation into two primary groups, 
as evidenced by deeper color intensities indicating 
stronger agreement. The cophenetic correlation 
coefficient peaked at approximately 0.989 with a 
factorization rank of 2, signifying a highly stable 
and consistent clustering framework (Fig.  1B and 
C). The supporting low residual sum of squares and 
the near-perfect silhouette score further validated 
the efficacy of the two-cluster model.

To corroborate the clinical relevance of the NMF 
clustering outcomes, Principal Component Analy-
sis (PCA) and survival studies were conducted. The 
PCA exhibited distinct gene expression separations 
between the clusters (Fig.  1D), and the survival 
analysis indicated significant prognostic differences 
between them (Fig.  1E). These combined results 
support the rationality and clinical significance of 
classifying cuproptosis-related lncRNAs in DLBCL 
into two distinct clusters, laying a robust foundation 
for future biomarker identification and tailored ther-
apeutic approaches.

Tumor Microenvironment (TME) and immune 
checkpoints analysis

In recent years, research has demonstrated that 
DLBCL is influenced not only by the autonomous 
proliferation of tumor cells but also by signals from 
the TME. To explore this further, TME-related anal-
yses were conducted within our two-cluster clas-
sification using the IOBR package, which employs 
eight deconvolution methods to decode the TME and 
conduct a comprehensive analysis simultaneously, 
including CIBERSORT, TIMER, xCell, MCPcounter, 
ESITMATE, EPIC, IPS, and quanTIseq (Supplemen-
tary Fig. 2).

Despite variations in TME composition inference 
across different algorithms, significant differences 
in certain immune cell populations were identified 
between clusters (Fig. 2A). Notably, differences were 
observed in several cell types, including naive B cells, 
plasma cells, activated CD4 memory T cells, gamma 
delta T cells, and resting NK cells. For example, 

Fig. 1   NMF clustering for constructing DLBCL cuproptosis-
related lncRNA subtypes. A The Sankey diagram illustrates 
the lncRNAs related to cuproptosis. B Consensus matrix dis-
playing the clustering of samples into two distinct groups 
based on the NMF results. C NMF rank survey evaluating 
various factorization ranks using cophenetic, dispersion, evar, 
residuals, rss, silhouette, and sparseness measures to determine 
the optimal rank. D 3D Principal Component Analysis (PCA) 
plot showing the separation of patients into two clusters (C1 
in blue and C2 in yellow). (E) Kaplan–Meier survival curves 
comparing the overall survival between the two clusters (C1 
and C2), with a significant difference (p < 0.001)

◂
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cluster 1 exhibited a higher presence of activated CD4 
memory T cells and gamma delta T cells, indicative 
of a more active immune response. In contrast, cluster 
2 displayed higher levels of naive B cells and resting 
NK cells, suggesting a less active or more suppressive 
immune environment. These findings remained con-
sistent across multiple deconvolution methods such as 
CIBERSORT, EPIC, and xCell. For patients in cluster 
1, therapies that enhance the immune response may 
be advantageous. Conversely, for patients in cluster 2, 
strategies that mobilize specific immune cells may aid 
in overcoming the suppressive TME.

Immunotherapy has become a significant treat-
ment modality over the past decade, especially for 
relapsed and refractory DLBCL. Building on our 
TME analysis, the expression levels of common 
immune checkpoints were examined in these two 
clusters. Given the critical role of immune check-
points in regulating immune responses, the expres-
sion of key checkpoints such as PD- 1, PD-L1, 
CTLA- 4, and others was analyzed within the two 
clusters (Fig.  2B). The varied expression of these 
checkpoints provides insights into the potential 
responsiveness of each cluster to immunotherapy. 
For instance, Cluster 1, with its more active immune 
profile, might exhibit higher expression levels of 
certain checkpoints, suggesting a potential for a bet-
ter response to checkpoint inhibitors. Conversely, 
Cluster 2, with its more suppressive immune envi-
ronment, might show different checkpoint profiles, 
indicating alternative immunotherapeutic strategies. 
By correlating immune checkpoint expression with 
clinical outcomes, we aimed to identify biomark-
ers that can predict the response to immunotherapy 
and guide treatment decisions. This approach could 
improve the precision of immunotherapy, ensuring 
that patients receive the most effective treatment 
based on their specific TME and immune check-
point characteristics.

Multi‑algorithm feature selection strategy

To further identify significant gene features among 
the 126 lncRNAs, four complementary feature selec-
tion techniques were employed: Univariate feature 
selection, Lasso, Boruta, and Random Forest. Each 
method identified a different number of key lncRNAs: 
Univariate feature selection identified 30 lncRNAs, 
Lasso identified 50 lncRNAs, Boruta identified 77 
lncRNAs, and Random Forest identified 29 lncRNAs 
(Table S5). For example, Univariate feature selection 
highlighted POLR2 J4, LINC00324, and LINC00482 
(Fig.  3A); Lasso highlighted SNHG17, THAP7-
AS1, and SH3BP5-AS1 (Fig.  3B); Boruta identified 
ITGB2-AS1, DBH-AS1, GAS5, and TMEM44-AS1 
(Fig. 3C); and Random Forest identified PGM5-AS1, 
LINC00092, and FGD5-AS1 (Fig. 3D).

The UpSet plots demonstrated both intersections 
and unique attributes pinpointed by each method, 
with one diagram revealing the overlap and distinct 
traits based on inbuilt importance scores (Fig.  3E), 
and another illustrating the intersections derived from 
permutation importance scores (Fig.  3F). Consider-
ing the advantages of each technique and aiming for 
a comprehensive feature set, the intersecting genes 
recognized by both inbuilt and permutation assess-
ments across all four machine learning methods were 
selected. By integrating these intersecting attributes, 
the intention was to harness the consensus of diverse 
methods, guaranteeing the relevance and significance 
of the chosen genes for our analytical endeavors. Per-
formance evaluation of these feature selection meth-
ods was conducted using several metrics: CV Score, 
F1 Score, Recall, Precision, and Accuracy (Fig.  4, 
Table  S6). Boruta exhibited strong performance in 
CV Score and Recall, indicating its robustness and 
high sensitivity. Lasso demonstrated the highest Pre-
cision, reflecting its accuracy in positive predictions. 
Random Forest excelled in Accuracy and F1 Score, 
suggesting its overall reliability and balance in pre-
cision and recall. Heatmaps (Supplementary Fig.  3) 
further illustrate the similarity and robustness of 
these methods. The built-in overlap coefficient heat-
map showed high consistency between the methods, 
particularly between Lasso and Boruta. However, 
the permutation overlap coefficient heatmap exhib-
ited lower consistency, highlighting the sensitivity of 
these methods to data perturbations.

Fig. 2   Differential immune cell and immune checkpoint 
expression between two subtypes. A Heatmap showing the 
differential expression of various immune cell types between 
the two subtypes (C1 in blue and C2 in yellow) using multiple 
immune algorithms (CIBERSORT, EPIC, MCPcounter, Quan-
tiseq, Timer, xCell, ESTIMATE). B Box plots comparing the 
expression levels of immune checkpoint genes between the two 
subtypes (C1 and C2), indicating significant differences across 
several genes

◂
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Transformer‑based model for score prediction

A Bagging Ensemble model utilizing Transformer 
architecture was deployed to enhance predictive analysis 
accuracy (Fig. 5A). Initially, the dataset was prepared by 
loading, preprocessing, and standardizing features and 

labels using StandardScaler, which ensured uniform-
ity and enhanced model performance. The Transformer 
architecture included an embedding layer, a multi-layer 
Transformer encoder, fully connected layers, and a Sig-
moid activation function (Fig.  5B). This configuration 
enabled the model to capture complex dependencies and 
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generate binary classification results. During the training 
phase, a bagging strategy was utilized to capitalize on 
the strengths of ensemble learning. The ensemble com-
prised ten Transformer model instances, each trained 
on distinct bootstrap samples of the training dataset. 
Predictions from these base models were aggregated to 
produce the final output, thus minimizing variance and 
enhancing both generalization and hyperparameter opti-
mization as outlined in Table S7.

To ensure robustness, fivefold cross-validation was 
employed and early stopping was implemented based 
on validation loss to avert overfitting. The top-per-
forming model, chosen based on the highest c-index, 
attained an accuracy of 0.93, precision of 0.76, recall 
of 0.76, F1 score of 0.76, AUC of 0.93, and c-index 
of 0.93. The predictive efficacy of this model proved 
substantially superior to that of the conventional Cox 
regression risk model (Table  S8, Supplementary 
Fig. 4A-C).

Model performance evaluation

Employing the optimal model, risk scores were 
generated for both the training and external valida-
tion sets, offering a quantitative assessment of risk 
for each sample. In the training sets, ROC analy-
sis revealed AUC values of 0.790, 0.829, and 0.822 
for 1-year, 3-year, and 5-year survival predictions, 
respectively (Fig.  6A), displaying superior predic-
tive performance compared to the traditional Cox 
regression risk model (Supplementary Fig.  4D). 
The substantial AUC values indicate the model’s 

effectiveness in discriminating between high-risk and 
low-risk individuals. This assertion is corroborated 
by the Kaplan–Meier survival curves, which exhib-
ited a significant survival disparity between the high- 
and low-risk groups (p < 0.0001, Fig. 6B).

In the external validation sets, ROC analysis yielded 
AUC values of 0.662, 0.678, and 0.688 for 1-year, 
3-year, and 5-year survival predictions, respectively 
(Fig. 6C), indicating moderate predictive performance. 
The decline in AUC values within the validation 
cohort, as opposed to the training cohort, is anticipated 
given that the external validation data are novel to the 
model and pose a stringent test of its generalizability. 
Despite these moderate AUC values, Kaplan–Meier 
analysis continued to show a significant survival dif-
ference between the high- and low-risk groups (p < 
0.0001, Fig.  6D), verifying that the model main-
tains effective patient stratification capability outside 
the training dataset. This validation is essential, as 
it affirms the model’s robustness and its prospective 
applicability across diverse patient populations.

Independent risk analysis using forest plots dem-
onstrated that the risk score was a highly significant 
survival predictor in both cohorts. In the training 
cohort, the risk score exhibited a hazard ratio of 9.423 
(95% CI: 5.836–15.213, p < 0.001), underscoring a 
potent correlation with survival outcomes (Fig.  6E). 
In the validation cohort, the risk score continued to 
be a significant predictor, with a hazard ratio of 8.750 
(95% CI: 5.413–14.143, p < 0.001), reaffirming its 
predictive power (Fig. 6F). Age proved to be another 
significant predictor, whereas gender did not, suggest-
ing that the risk score effectively encapsulates the key 
factors impacting survival.

The Transformer-based Bagging Ensemble model 
demonstrated strong predictive capabilities, with con-
sistent performance across different evaluations. The 
prominent role of the risk score as a significant predic-
tor in both training and validation cohorts emphasizes 
its essential function in forecasting survival. These find-
ings highlight the model’s generalizability and potential 
clinical utility in precisely stratifying patients by risk, 
thereby facilitating personalized treatment planning.

Expression analysis of key prognostic lncRNAs in 
DLBCL cell lines

To elucidate the molecular mechanisms underlying 
DLBCL, quantitative PCR (qPCR) was employed to 

Fig. 3   Feature importance analysis using various machine 
learning methods. A Inbuilt and permutation feature impor-
tance for the Boruta method. The left panel shows inbuilt fea-
ture importance, while the right panel shows permutation fea-
ture importance. B Inbuilt and permutation feature importance 
for the Lasso method. The left panel shows inbuilt feature 
importance, while the right panel shows permutation feature 
importance. C Inbuilt and permutation feature importance for 
the RandomForest method. The left panel shows inbuilt feature 
importance, while the right panel shows permutation feature 
importance. D Inbuilt and permutation feature importance for 
the Univariate method. The left panel shows inbuilt feature 
importance, while the right panel shows permutation feature 
importance. E Upset plot displaying the intersections of signif-
icant features among different methods, with the total number 
of significant features identified by each method shown on the 
bars. F Upset plot displaying the intersections of top features 
among different methods, with the total number of top features 
identified by each method shown on the bars
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assess the expression patterns of pivotal lncRNAs 
across various DLBCL cell lines including B-LCL, 
SU-DHL- 4, OCI-LY10, and DB. These lncRNAs 
were identified using their importance scores derived 
from machine learning algorithms, with a particular 
focus on MALAT1, which was highly ranked based 
on permutation importance. Our analysis indicated 
that MALAT1 expression was significantly elevated 

in the DLBCL cell lines compared to the control 
lymphoblastoid cell line (Fig. 7A).

MALAT1 promotes DLBCL cell proliferation

In cell lines exhibiting high levels of MALAT1, spe-
cifically OCI-LY10 and DB, MALAT1 knockdown 
was executed. The knockdown of siMALAT1 achieved 

Fig. 4   Performance metrics of different machine learning methods. Bar plot showing the different cross-validation (CV) mean 
scores among F1 score, recall values, precision values, accuracy values for Boruta, Lasso, RandomForest, and Univariate methods

Fig. 5   Transformer-based model for predicting scores. A 
Overview of transformer-based model workflow for predicting 
scores using lncRNA data. The lncRNA matrix was subjected 
to five-fold cross-validation, with each fold alternately used for 
training and testing. The trained transformer model was then 
applied, followed by bagging ensemble techniques to gener-

ate risk scores through an iterative training and validation pro-
cess. B Detailed architecture of transformer model used in this 
study. The model includes an input embedding layer, multiple 
transformer blocks with LayerNorm, AvgPool, and dropout 
layers, followed by linear layers (fc1 and fc2) and a sigmoid 
output layer
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substantial efficiency in both OCI-LY10 and DB cell 
lines (Fig.  7B and C). Subsequent assessments of 
MALAT1’s role in DLBCL were conducted through 
CCK- 8 assays. These assays demonstrated that cell 
proliferation in the MALAT1 knockdown groups was 
diminished compared to the control groups in both 
OCI-LY10 and DB cell lines (Fig. 7D and E). This evi-
dence underscores MALAT1’s significant function in 
enhancing DLBCL cell proliferation and highlights its 
potential as a therapeutic target in DLBCL treatment 
strategies.

Discussion

This research explored the prognostic value of 
cuproptosis-related lncRNAs in DLBCL, aiming to 
construct a dependable prognostic framework. By 
harnessing these lncRNAs through sophisticated 
feature selection techniques, we established a Trans-
former-based prognostic model, augmented by the 
Bagging ensemble approach, which proficiently fore-
casts patient outcomes. The efficacy of this innova-
tive risk model in segregating patients into distinct 
prognostic categories highlights the promise of these 
lncRNAs as biomarkers for DLBCL.

Cuproptosis, or copper-induced cell death, 
emphasizes the pivotal role of copper metabolism, 
mitochondrial dynamics, and protein alterations in 
cancer development. Initially proposed by Tsvet-
kov et  al. (Tsvetkov et  al. 2022), this concept has 
inspired bioinformatic investigations to identify 
markers of cuproptosis by analyzing genes associ-
ated with this process. The link between copper 
levels and cancer is well-established, as tumors 
generally require more copper than normal tissues. 
Specifically, cancers such as melanoma, breast can-
cer, and leukemia, especially those exhibiting stem 
cell-like traits or resistance to treatment (Liu et  al. 
2024; Zheng et al. 2022; Lu et al. 2024; Ning et al. 
2023), are characterized by heightened mitochon-
drial metabolism and increased aerobic respiration.

Advancements in molecular and genetic sequenc-
ing technologies have markedly refined the clas-
sification of lymphomas, enhancing personalized 
treatment plans (Jaffe 2019). The identification 
of DLBCL driver genes and pathways has deep-
ened our understanding of its biological behavior, 
facilitating better risk stratification and prognostic 

accuracy, and paving the way for tailored therapeu-
tic approaches. Schmitz et al. (Schmitz et al. 2018) 
identified four genetic subtypes of DLBCL, each 
associated with distinct prognostic implications. 
Wright et  al. (Wright, et  al. 2020) further divided 
DLBCL into seven genetic subtypes, introducing 
the LymphGen molecular classification algorithm, 
which elucidates the heterogeneity of DLBCL and 
its variable responses to immune therapy. Lacy et al. 
(Lacy et al. 2020) investigated the genetic mutation 
profiles in DLBCL patients, uncovering distinct 
prognostic impacts for each subtype and underscor-
ing the influence of genetic mutations on prognosis. 
These contributions have refined the molecular cat-
egorization of DLBCL, steering new directions for 
precision therapy.

Despite the advantages of NGS and related tech-
nologies, several limitations hinder their broader 
clinical implementation. Firstly, the high cost of NGS 
technology may restrict its extensive clinical use (Yin 
et al. 2021). Secondly, the complexity of data analy-
sis necessitates specialized bioinformatics expertise 
and technical support. Thirdly, variations in stand-
ardization across different research institutions can 
affect the reproducibility and consistency of results. 
Additionally, molecular classification methods that 
rely predominantly on specific gene mutations or 
expressions might not adequately represent the full 
heterogeneity and dynamic nature of tumors. Finally, 
although molecular classification provides crucial 
insights for therapy, further empirical research and 
clinical trials are essential to validate these methods 
for routine clinical use and to ensure they accurately 
reflect patient prognoses.

In this study, we proposed a novel molecular clas-
sification for DLBCL based on cuproptosis-related 
lncRNAs. From the dataset, we extracted 1,134 
lncRNAs and 17 genes associated with cuproptosis, 
identifying 126 significantly co-expressed lncRNAs 
through co-expression analysis. Employing the NMF 
algorithm for clustering analysis, we established two 
optimal models that demonstrated strong consist-
ency and distinct classification structures among 
the samples. Subsequent PCA and survival analysis 
indicated marked differences in gene expression and 
prognosis between the two identified molecular sub-
types. This study not only introduces a new molecu-
lar classification for DLBCL but also underscores the 
profound clinical implications of these classifications 
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in prognostication, laying a solid groundwork for 
future biomarker research and personalized treatment 
approaches.

Our multi-machine learning strategy effectively 
pinpointed critical lncRNAs that predict DLBCL 
molecular subtypes and prognoses. By integrating 
Univariate feature selection, Lasso, Boruta, and Ran-
dom Forest, we achieved a thorough selection of sig-
nificant features. This robust approach revealed both 
overlapping and unique lncRNAs, enhancing the 
precision of our predictive models. The transformer-
based bagging ensemble model, constructed from 
these selected features, exhibited exceptional effi-
cacy in predicting DLBCL outcomes, highlighting 
the utility of our multi-algorithm strategy in refining 
molecular classification and prognosis prediction. 
This ensemble model demonstrated high performance 
across both internal and external validation cohorts. 
During fivefold cross-validation, the model main-
tained moderate performance on independent external 
datasets, suggesting its generalizability across differ-
ent patient groups. These findings affirm the model’s 
potential clinical value for DLBCL risk stratification.

Then, we focused on MALAT1 (Skeparnias et al. 
2024), an lncRNA with significant prognostic impli-
cations in DLBCL. MALAT1 has been implicated in 
various cellular processes including cell proliferation, 
migration, and drug resistance (Wang et  al. 2019). 
Recent research has highlighted its role in regulat-
ing cell death pathways, particularly copper-induced 
cell death (Tan et  al. 2019). MALAT1 has been 
shown to modulate cell survival and proliferation in 

several cancers. For example, in lung cancer (Bhat 
et  al. 2024), MALAT1 was found to promote tumor 
growth and resistance to chemotherapy by affecting 
cellular stress responses and apoptosis pathways. In 
breast cancer (Kim et al. 2018), it has been linked to 
metastasis and poor prognosis through its influence 
on cell cycle regulation and epithelial-mesenchymal 
transition.

Despite the lack of research into the role of 
MALAT1 in copper-induced apoptosis in cells, its 
potential influence cannot be underestimated. Copper is 
a known promoter of oxidative stress and apoptosis in 
oncogenic cells, possibly impacting these mechanisms 
through the modulation of copper metabolism or the 
oxidative stress response. This underscores the impor-
tance of dissecting the function of MALAT1 in this 
framework to elucidate its therapeutic relevance and its 
role in the pathophysiology of DLBCL.

Although traditionally classified as a housekeep-
ing lncRNA due to its pervasive expression across 
various tissues, recent evidence suggests MALAT1’s 
active participation in the regulation of several can-
cers, including lymphomas. In our study, MALAT1 
consistently emerged as a prominent feature in vari-
ous machine learning models, indicating a deliberate 
and significant selection rather than random chance. 
Furthermore, its elevation in DLBCL cell lines, cou-
pled with its demonstrated influence on cell prolifera-
tion via siRNA-mediated silencing, underscores its 
integral role in cell proliferation.Our findings contest 
the notion that the prominence of MALAT1 in our 
models is simply an artifact of its inherent expres-
sion stability. Rather, the applied machine learning 
techniques appear to have effectively distinguished 
its specific pathogenic relevance through consist-
ent expression disparities and its verified functional 
impact in DLBCL. This accentuates the utility of 
computational methods in not only pinpointing bio-
markers of statistical relevance but also in confirming 
their pathobiological importance.

Within the spectrum of lncRNAs evaluated, 
MALAT1 was identified as a key element consistently 
across diverse machine learning techniques, with val-
idations at both the expression and functional strata. 
Recognized as an oncogenic lncRNA, MALAT1 
is involved in several types of cancers, including 
those of the lung, breast, and blood (Amodio et  al. 
2018). Specifically, in DLBCL, our findings dem-
onstrate MALAT1’s facilitation of cell proliferation, 

Fig. 6   Evaluation of predictive performance of the riskscore 
model. A ROC curve for the risk score model predicting 
1-year, 3-year, and 5-year survival with AUC values of 0.79, 
0.829, and 0.822, respectively. B Kaplan–Meier survival 
curves comparing high and low risk score groups, with a sig-
nificant difference in survival (p < 0.0001). The numbers at 
risk at different time points are shown in the plot below. C 
ROC curve for the risk score model in a different dataset, pre-
dicting 1-year, 3-year, and 5-year survival, with AUC values 
of 0.662, 0.678, and 0.688, respectively. D Kaplan–Meier sur-
vival curves comparing high and low risk score groups in the 
different datasets, with a significant difference in survival (p < 
0.0001). The numbers at risk at different time points are shown 
in the plot below. E Forest plot showing the hazard ratios and 
p-values for gender, age, and risk score in the primary dataset. 
The risk score is a significant predictor of survival. F Forest 
plot showing the hazard ratios and p-values for gender, age, 
and risk score in the different datasets. The risk score remains 
a significant predictor of survival
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indicating its probable influence on tumoral advance-
ment. With emerging interest in cuproptosis, it’s con-
ceivable that MALAT1 might interact with pathways 
involved in cuproptosis, potentially via lncRNA-
miRNA-mRNA interactions or by impacting copper 
homeostasis and oxidative stress. Future investiga-
tions are essential to substantiate these propositions 
and to further elucidate the roles of MALAT1 and 
other lncRNAs related to cuproptosis in the pathology 
and therapeutic resistance of DLBCL.

Our investigation establishes a comprehensive 
framework for the identification of lncRNA biomark-
ers linked to cuproptosis in DLBCL, though several 
limitations persist. The cohorts used for validation 

were retrospective and publicly available, highlight-
ing the imperative for prospective clinical trials. 
While MALAT1’s functional role was corroborated, 
the involvement of other lncRNAs awaits further 
experimental validation. Our model relied exclu-
sively on transcriptomic data, potentially restricting 
the biological depth of the findings. Future studies 
integrating multi-omic data, including genomic, epi-
genomic, and proteomic layers, could enhance the 
granularity of DLBCL’s heterogeneity and augment 
the predictive accuracy of these models. Addition-
ally, the observed decrease in AUC values in exter-
nal cohorts suggests potential batch effects, differ-
ences in platforms, and variability among patients. 

Fig. 7   Expression and proliferation analysis of MALAT1 in 
DLBCL cell lines. A MALAT1 expression levels in various 
cell lines, including B-LCL, SU-DHL- 4, OCI-LY10, and DB, 
measured by qPCR. B Knockdown efficiency of siMALAT1 in 
OCI-LY10 cells, showing a significant reduction in MALAT1 
expression with two siMALAT1 constructs (si-MALAT1 #1 
and si-MALAT1 #2) compared with the negative control (NC). 
C Knockdown efficiency of siMALAT1 in DB cells, demon-
strating a marked decrease in MALAT1 expression with si-

MALAT1 #1 and si-MALAT1 #2 compared with NC. D Cell 
proliferation assessed by CCK- 8 assay in OCI-LY10 cells 
following MALAT1 knockdown with si-MALAT1 #1 and 
si-MALAT1 #2. The absorbance at 450 nm was measured at 
0, 24, 48, 72, and 96 h post-transfection. E Cell proliferation 
assessed by CCK- 8 assay in DB cells following MALAT1 
knockdown with si-MALAT1 #1 and si-MALAT1 #2. The 
absorbance at 450 nm was measured at 0, 24, 48, 72, and 96 h 
post-transfection. **p < 0.01, ***p < 0.001
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Although ComBat normalization was employed to 
mitigate these issues, its influence on feature selec-
tion must be acknowledged. Nonetheless, batch cor-
rection remains crucial for preserving consistency 
across studies and facilitating meaningful external 
validations.

In conclusion, our study capitalizes on multi-
ple machine learning methodologies to refine the 
molecular profiling and prognostic accuracy of 
DLBCL. Through the integration of various algo-
rithmic approaches and the deployment of a sophis-
ticated Transformer-based model, we significantly 
enhanced the stratification of risk. This multifaceted 
machine learning strategy is pivotal in advancing 
our comprehension of DLBCL and in guiding the 
development of targeted treatment modalities.
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