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Abstract

The demand for nonhuman primates will undoubtedly in-
crease to meet biomedical needs in this current age of bio-
defense. The availability of funding has increased the
research on select agents and has created a requirement to
validate results in relevant primate models. This review pro-
vides a description of current and potential biological
threats that are likely to require nonhuman primates for the
development of vaccines and therapeutics. Primates have
been an invaluable resource in the dissection of viral disease
pathogenesis as well as in testing vaccine efficacy. DNA
vaccine approaches have been studied successfully for
Ebola, Lassa, and anthrax in nonhuman primate models.
Nonhuman primate research with monkeypox has provided
insight into the role of cytokines in limiting disease severity.
Biodefense research that has focused on select agents of
bacterial origin has also benefited from nonhuman primate
studies. Rhesus macaques have traditionally been the model
of choice for anthrax research and have yielded successful
findings in vaccine development. In plague research, Afri-
can green monkeys have contributed to vaccine develop-
ment. However, the disadvantages of current vaccines will
undoubtedly require the generation of new vaccines, thus
increasing the need for nonhuman primate research. Unfor-
tunately, the current biosafety level (BSL)-3 and BSL-4
facilities equipped to perform this research are limited,
which may ultimately impede progress in this era of
biodefense.
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Introduction

An increased demand for nonhuman primates will un-
doubtedly characterize the new era in which bioter-
rorism has become a reality. The US Food and Drug

Administration (FDA1) has established new guidelines for

testing vaccines and therapeutics of select agents—those
pathogens that the government has determined are potential
biological weapons. Because the actual risk of infection via
a bioterrorist attack is not known, and because naturally
occurring infections are quite rare, it is neither ethical nor
practical to perform the usual phase 1, 2, and 3 trials. The
ability to determine efficacy would be prohibitively expen-
sive because most bioterror agents occur very rarely in na-
ture and our ability to determine efficacy would take years.
For this reason, FDA has ruled that stockpiles of vaccines
and therapeutics can be generated if the treatment has been
determined to be effective in two different animal models.
Certainly at least one of the animal models should be a
nonhuman primate. Below is a description of the select
agents and other emerging pathogens that are likely to re-
quire the use of nonhuman primates.

Viral Pathogens

Filoviruses

Filoviruses are negative sense single-segmented RNA vi-
ruses. The most well known of the filoviruses is Ebola virus
(EBOV1). Ebola was first discovered in Central Africa in
l976, and was named after a river in the Democratic Re-
public of the Congo (formerly Zaire). The outbreak began
with the infection of individuals from a cotton factory, and
it spread to relatives of those index cases (Feldmann et al.
2003). Ultimately, the total number of infected individuals
was 284, with 151 deaths (Pattyn 1978). A second epidemic
developed that year, and the case fatality rate was 88%.

EBOV emerged in the United States in l989. The virus
was detected in cynomolgus monkeys (Macaca fascicu-
laris) that had been imported from the Philippines into a
primate facility in Reston, Virginia (Jahrling et al. 1990).
The virus appeared to spread through large droplets and/or
small-particle aerosols. To date, the route of transmission
has remained a unique feature that is associated with only
this strain of Ebola, known as Ebola-Reston virus. It has not
been associated with human disease, although it is classified
as a biosafety level (BSL1)-4 agent.

Since the original description of EBOV, the virus has
re-emerged several times in central Africa. It became a real
threat to public health when it re-emerged in l995 in Kikwit,
Democratic Republic of the Congo. The current outbreak in
the Congo has affected many great apes (Walsh et al. 2003).
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EBOV and its relative Marburg virus (MARV1) have been
actively used in weapon development programs, and they
pose a potential bioterrorism threat (Alibek and Handelman
1999).

Nonhuman primates are the preferred animal model for
the study of human filovirus infection because those ani-
mals are fatally infected with EBOV and MARV. Numerous
species have been used, including baboons, African green
monkeys, rhesus and cynomolgus macaques; and the pa-
thology is similar to the infections observed in humans. It
will be difficult to conduct vaccine clinical trials in humans
for any EBOV vaccines because of the sporadic nature of
the outbreaks and the potential ethical difficulty in obtaining
approvals. The relatively rare appearance of EBOV does not
favor normal development of a commercially viable vac-
cine. However, this view changes with the newer, existing
threats of bioterrorism. If a vaccine became available, it
would most likely be given to medical personnel and first
responders, similar to those identified at risk from a small-
pox attack. It has become clear that rodent models are not
necessarily predictive for efficacy of antivirals and other
therapeutics, so the gold standard will remain the nonhuman
primate trials (Feldmann et al. 2003; Jahrling et al. 1996). In
fact, in a vaccine efficacy study in nonhuman primates, it
was demonstrated that vaccine strategies successful in ro-
dents were not able to protect primates from a 1000-plaque
forming unit challenge of virus (Geisbert et al. 2002).

Arenaviruses

Arenaviruses are bisegmented single-stranded RNA viruses.
Each segment is ambisense, and contains two convergent
arranged genes separated by an intergenic hairpin loop.
Among the several hemorrhagic fevers that are caused by
arenaviruses are Lassa arenavirus (LAV1), Argentinian
hemorrhagic fever (Junin virus), Bolivian hemorrhagic
fever (Machupo virus), Venezuelan hemorrhagic fever
(Guanarito virus), and Sabia virus. Lymphocytic chorio-
meningitis virus is the prototype of the family.

LAV is one of the most highly pathogenic arenaviruses.
Named after the town of Lassa, in West Africa, the natural
reservoir of this virus is the rodent species Mastomy natal-
ensis. LAV has infected hundreds of thousands of people
each year in West Africa. The yearly death toll totals ap-
proximately 10,000 (McCormick 1987). Symptoms of in-
fection include fever and edema, with hemorrhage in fatal
cases (Cummins et al. 1992). In some areas of Sierra Leone,
the disease accounts for 30% of medical in-hospital deaths,
30% of deafness, and 70% of spontaneous abortion. Trans-
mission from rodents to humans is believed to be by inha-
lation. Nosocomial spread of LAV also takes place in
hospitals. Monkeys immunized with a less virulent related
virus of Lassa, Mopeia, were protected (Fisher-Hoch et al.
1989) from Lassa infection. However, there is currently no
approved vaccine for Lassa.

Junin virus has been identified in several rodent species

including Calomys musculinus. In north central Argentina,
there is 12% seropositivity in humans. After an incubation
period of 1 to 2 wk, nonspecific symptoms appear and are
followed 1 wk later with more serve cardiovascular, renal,
and neurological involvement. A live, attenuated Junin virus
vaccine, Candid-1, has proven safe and effective in guinea
pig and nonhuman primate trials (McKee et al. 1992, 1993).
Clinical trials in human males have shown efficacy (Maiz-
tegui et al. 1998).

The reservoir of Machupo virus is Calomys callosus.
Both rhesus monkeys and African green monkeys demon-
strate clinical signs consistent with the human disease
(McLeod et al. 1976, 1978; Wagner et al. 1977). Guanarito
virus is carried by Zygodontomys brevicauda (Fulhorst et al.
1997, 1999). Sabia was isolated in Brazil from a fatal hu-
man case. No nonhuman primate models of Guanarito or
Sabia have been described to date (Whitton 2002).

Bunyaviruses

Bunyaviruses are trisegmented negative sense RNA viruses.
Hantaviruses are the causative agents of hemorrhagic fever
with renal syndrome in Eurasia. Recently a novel hantavirus
(Sin Nombre virus) was identified as the cause of hantavirus
pulmonary syndrome, a potentially lethal condition first
identified in 1993 in the southwestern United States. Han-
taviruses have been found to be widespread thoughout
North and South America (Snell 2003). Andes virus was the
first known hantavirus to show human-to-human spread; all
of the other hantaviruses are rodent borne (Vitek et al.
1996). Because Andes virus has not been well studied, the
probability of this agent being used as a biological weapon
is unknown. Recently, nonhuman primates were used in
attempts to understand the pathogenesis of the virus and the
mechanisms of protection (McElroy et al. 2002). It was
demonstrated that cynomologous macaques, although not
manifesting clinical disease, did manifest lymphocyte de-
crease during infection (McElroy et al. 2002). In addition, it
was determined that antibodies generated in rhesus ma-
caques against the Andes G1 and G2 protected Syrian ham-
sters from lethal challenge, which provided insight into
potential postexposure treatment (Custer et al. 2003).

Crimean-Congo hemorrhagic fever was first observed in
the Crimea in l944 and l945. Using human volunteers, it
was determined that the agent is filterable and that the dis-
ease in humans is associated with tick bites. Congo virus
was first isolated in Africa from the blood sample of a
patient in l956. In l967, of 12 cases, five were identified as
laboratory infection. The virus was later classified as a
Nairovirus in the Bunyaviridae family. It can be transmitted
nosocomially, and is a potential bioterrorist threat due to the
lack of vaccines or therapeutics against the agent (Gear et al.
1982).

Rift Valley fever was first identified in Egypt in 1977.
Its range has continued to expand, and the most recent out-
break was recorded on the Arabian Peninsula (CDC 2000).
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Rhesus macaques and humans develop viremia and liver
damage with elevated liver enzymes. Rhesus monkeys and
humans can suffer more serious disease with hemorrhagic
phenomena (Morrill and Peters 2003).

Paramyxoviruses

Paramyxoviruses are single-stranded negative sense RNA
viruses. Nipah virus was first isolated in l999, when the
virus crossed the species barrier from bats to pigs. The virus
caused encephalitis in infected humans, with up to 40%
mortality (Lam and Chua 2002). Currently, no prophylaxis
or vaccine exists for Nipah. However, the antiviral ribavirin,
which was used as an empirical therapy in infected patients,
has been reported to be effective, although it has yet to be
fully evaluated in animal experiments (Chong et al. 2001).
There is a hamster animal model, in which animals die of
acute encephalitis following Nipah virus infection (Guil-
laume et al. 2004; Wong et al. 2003). The model has shown
that passive transfer of antibody from immunized animals
protects them from a lethal Nipah virus challenge. In hu-
mans, both relapsing and late-onset cases of infection have
been observed (Lim et al. 2003; Tan et al. 2002; Wong et al.
2001). In the situations described above, the immunobiol-
ogy of the infection is unknown. None of these late patholo-
gies have been observed in the hamster model (Guillaume et
al. 2004). In Bangladesh, there is a current outbreak of
Nipah (H. Feldmann, Canadian Center for Human and Ani-
mal Health, Winnipeg, Manitoba, personal communication,
2004), which has been shown to have nosocomial transmis-
sibility (Tan and Tan 2001).

Nipah is a potential agent for bioterrorism based on
several of its characteristics. (1) It can be produced in large
quantities in cell culture, an important criterion for weap-
onization; (2) it has the potential for aerosol infection (Lam
and Chua 2002); (3) outbreaks cause widespread panic and
fear because of high mortality; (4) the highly virulent virus
spreads easily among pigs and is easily transmitted to hu-
mans; (5) there is considerable social disruption and tre-
mendous economic loss to an important pig-rearing
industry; and (6) in addition to causing acute infection, it
can cause clinical relapse months and years after infection.

Other Emerging Viruses

Severe Acute Respiratory Syndrome (SARS1)

With the emergence of SARS in 2003, the world has a very
good model for the effect an outbreak of an unknown virus
has on global health, international travel, and the economy
of one or more regions. The SARS outbreak resulted in
8,098 cases, involving 774 deaths. Fear of the disease was
great in many communities, especially among healthcare
workers; and the billions of dollars lost in the airline and

tourism industries have resulted in bankruptcies of airlines
and other businesses (Lingappa et al. 2004).

Although it is currently not listed as a select agent,
recent cases of laboratory-acquired SARS may convince the
US government that it certainly has potential as a biological
weapon. Its mortality rate and ability to survive on surfaces
long after other lipid-enveloped viruses become inactive
make it a very good candidate to become a select agent in
the near future. Currently a total of 12 candidate vaccines
have been developed for SARS, and all of them require
validation in nonhuman primates. The initial reports of
SARS infection in cynomolgus macaques are proving to be
controversial, and other animal models demonstrate vari-
able clinical features at best. Current models appear to
address viral replication in the absence of clinical reproduc-
ibility (Bisht et al. 2004; Fouchier et al. 2003; Martina et al.
2003).

Monkeypox

The first human moneypox cases in the United States were
reported in May and June 2003 (CDC 2003a,b; Reed et al.
2004). Most of the individuals were believed to have ac-
quired the infection from prairie dogs (Cynomys spp.) that
became ill after contact with various exotic African rodents
shipped from Ghana to the United States in 2003. Before
2003, monkeypox had been a health concern for human
populations in equatorial Africa (Arita et al. 1985; Jezek et
al. 1987, 1988). Research into the natural biology of mon-
keypox has been limited both because the disease is rare in
humans and because no descriptions of naturally acquired
animal infections exist (Guarner et al. 2004). Nonhuman
primate research has provided valuable insight into the role
of interferon in limiting disease severity (Cosgriff et al.
1989; Morrill et al. 1990, 1991). Further understanding of
the pathogenesis of this disease as well as determination of
the efficacy of vaccinations would benefit from expanded
nonhuman primate research.

Flaviviruses

Flaviviruses are positive sense, single-stranded RNA vi-
ruses. Although not a select agent or a bioterrorism threat,
dengue virus is now endemic in much of South America and
Asia, and vaccine and therapies vie for nonhuman primates
resources. Although studies have been performed inten-
sively for more than 50 yr on the development of a vaccine,
there is still no commercial vaccine available against den-
gue disease. The lack of a suitable animal disease model has
been detrimental to the development of a tetravalent
live, attenuated dengue vaccine (Saluzzo 2003). Two can-
didate live, attenuated dengue vaccines currently exist. Chi-
meric and DNA vaccines also are in various stages of
development.

The West Nile virus emerged in eastern North America
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in l999. It was a major concern even in modern arbovirol-
ogy, not only because of its disease potential but also be-
cause it alerted the world that pathogens may turn up
anywhere and at any time. Because West Nile virus is
known to cause viremia in humans, blood transfusion is a
potential risk. The first cases of transfusion transmission
were documented in 2002 (Komar 2003). A number of can-
didate vaccines are in various stages of development, and
similar dengue viruses will eventually require access to non-
human primate resources.

Bacterial Pathogens

Bacillus anthracis

B. anthracis, the agent of anthrax, is a gram-positive bac-
terial pathogen that infects both humans and animals. Natu-
ral human infections occur when individuals handle
materials from infected animals or inhale spores associated
with animal products (Hanna 1998). Infection can occur in
three forms: cutaneous, inhalation, and gastrointestinal. If
left untreated, all forms of the disease can result in death
(Meselson et al. 1994). The most fatal form of the disease,
inhalation anthrax, presents with sore throat, mild fever,
muscle aches, and malaise. The mortality rate is approxi-
mately 50%, even with care that includes the use of antibi-
otics (Inglesby et al. 2002). The recent use of this agent as
a biological weapon has increased the importance of re-
search focused on postexposure treatment (Inglesby et al.
1999, 2002).

The rapid onset of death in inhalation anthrax is due to
septicemia and toxemia (Dixon et al. 1999). The bacterium
secretes three proteins: edema factor, lethal factor, and pro-
tective antigen (PA1) (Elliott et al. 2000; Miller et al. 1999;
Mourez et al. 2003; Wesche et al. 1998). Lethal toxin and
edema toxin exert their effect when they bind the receptor-
binding component (PA) of the A-B type toxin (Pezard et al.
1991). In fact, vaccination strategies have targeted PA in
immune responses to prevent coupling of the effector toxin
to the receptor-binding component (Welkos et al. 2001). PA
has also been the focus of therapeutic recombinant antibod-
ies that may eventually be used to treat cases of late-stage
anthrax intoxication (Maynard et al. 2002).

Historically, the nonhuman primate model for inhalation
anthrax has been the rhesus macaque (Friedlander et al.
1993; Fritz et al. 1995; Gleiser et al. 1963; Ivins et al. 1998;
Lincoln et al. 1964). However, the increasing difficulty in
obtaining animals for research has led to the need to develop
another model that can sufficiently mimic human infection.
Attempts have been made to establish rabbit models and
other small animals for inhalation anthrax (Welkos et al.
2001; Zaucha et al. 1998), but nonhuman primate models
continue to be needed for vaccine efficacy testing and other
therapeutic testing. For instance, a survey of the efficacy of
the anthrax vaccine adsorbed anthrax vaccine among guinea
pigs, rabbits, and rhesus macaques resulted in variable pro-

tection when challenged with B. anthracis from diverse geo-
graphical origins (Fellows et al. 2001). Recent studies have
shown that cynomologus macaques exhibit pathology simi-
lar to that seen in humans and rhesus monkeys (Vasconcelos
et al. 2003).

Francisella tularensis

The gram-negative coccobacillus F. tularensis is the caus-
ative agent of tularemia. The former Soviet Union was
widely reported to have developed F. tularensis as weap-
onry (Alibek and Handelman 1999). The organism was first
isolated in 1911 in Tulare County, California, during an
outbreak of a plague-like disease (Ellis et al. 2002). The
natural reservoir includes small mammals such as ground
squirrels, hares, voles, muskrats, water rats, rabbits, and
other rodents (Grunow et al. 2000). This agent is spread to
humans from infected reservoirs and other small vertebrates
through direct contact or transmission from an arthropod
vector. Tularemia is manifested in various ways, including
ulcers at the site of inoculation, pharyngitis, lymphadenop-
athy, and pneumonia (Ellis et al. 2002). Immediate treat-
ment with appropriate antibiotics can reduce the possibility
of life-threatening pneumonia.

A live, attenuated vaccine was initially developed by the
former Soviet Union in 1942 (Sjostedt et al. 1996) and
subsequently transferred to the United States in 1956. Re-
searchers identified two variants (blue and gray colony
types) in the Soviet’s vaccine strain. Immunization of
guinea pigs with the blue variant resulted in increased re-
sistance to lethal challenge (Eigelsbach and Downs 1961).
Ultimately, the current live vaccine strain (LVS1) was de-
rived from this variant, and its efficacy was tested in human
volunteers (Saslaw et al. 1961). Because the basis of the
LVS attenuation has not been determined, as well as lack of
data regarding the characterization of the immune response,
the vaccine is not currently available in the Unites States.
Future vaccine development would benefit from the estab-
lishment of a nonhuman primate model.

During the initial phase of F. tularensis infection, a
transient bacteremia occurs with dissemination of the patho-
gen throughout the host within the reticuloendothelial tis-
sues. The presence of a capsule aids in establishing early
bacteremia by shielding the organism from complement-
mediated lysis (Sandstrom et al. 1988). In addition, phase
variation appears to play a role in sustaining the viability of
the organism within macrophages. Variation in LPS, spe-
cifically the O antigen and lipid A, reduces nitric oxide
production and permits bacterial growth within macro-
phages (Cowley et al. 1996). A final known virulence de-
terminant is an ABC transporter encoded on the valA gene,
which is essential for macrophage growth (Cowley et al.
1996).

Despite the identification of several virulence factors,
little is known about the overall pathogenicity or genetic
make-up of F. tularensis. Animal models have been re-
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stricted almost exclusively to murine models (Chen et al.
2003; Eigelsbach et al. 1975; Golovliov et al. 1995;
Kudelina and Olsufiev 1980). These resources have been
successful in dissecting early cytokine responses to tulare-
mia. Nevertheless, nonhuman primate models may be
needed to investigate pathogenesis (Alibek and Handelman
1999).

Yersinia pestis

Y. pestis is a gram-negative bacillus that causes a disease
historically referred to as “the plague.” It is primarily a
zoonotic disease transmitted through the bite of an infected
flea, and less commonly through the handling and consump-
tion of infected animal tissue (Brubaker 1991). The agent
causes several forms of the disease, namely bubonic, sep-
ticemic, and pneumonic plague. Bubonic plague is charac-
terized by swollen tender lymph glands, fever, headache,
and chills, and occurs when the bacteria are transmitted by
an arthropod vector or when Y. pestis contaminated material
enters the body through a break in the skin (Hull et al. 1987;
von Reyn et al. 1977). Septicemic plague, which results
when bacteria multiply in the blood, may be a complication
of bubonic or pneumonic plague (Hull et al. 1987). In ad-
dition to the symptoms seen with bubonic plague, septice-
mic patients also present with abdominal pain, shock, and
hemorrhaging into skin and internal organs (Hull et al.
1987). Finally, pneumonic plague is the contagious form of
the disease that is spread through aerosolized bacteria (Doll
et al. 1994; Meyer 1961). It is characterized by rapidly
developing pneumonia, shortness of breath, cough and chest
pain. Infected individuals must be treated within 24 hr to
prevent a fatal outcome.

The highly pathogenic nature of Y. pestis is the result of
multiple virulence factors. A major factor that prevents up-
take of bacteria by immune scavenger cells is the F1 cap-
sular antigen (Cornelis et al. 1998; Parkhill et al. 2001). Y.
pestis cell wall components, V and W antigen, are lipopro-
tein complexes that play a role in preventing phagocytosis.
The serum resistance observed in plague infections is the
result of the short polysaccharide of Y. pestis, which pre-
vents attachment of complement terminal attack complex
(Persson et al. 1995). In addition, murine toxin has been
shown to induce shock and respiratory distress in mice that
is reminiscent of the human disease (Montie 1981).

Two vaccines are currently available. One vaccine is an
attenuated strain of Y. pestis, and the other is a killed vac-
cine originally developed in the United States in the early
1940s (Meyer 1970; Williams et al. 1980). The vaccine is
usually given only to those at risk for encountering a highly
pathogenic strain, such as military troops and researchers.
Despite the availability of a vaccine, there is interest in
developing an improved vaccine because of major disad-
vantages with current vaccines. Previously, only a sparse
number of studies have used African green monkeys and
vervets in vaccine and pathogenesis studies of the plague

(Chen et al. 1976, 1977; Davis et al. 1996). As new vaccine
candidates are identified, the need for a nonhuman primate
model will certainly increase.

Nonhuman Primate Resources

Nonhuman primates remain the best predictor of success for
vaccines and therapies in humans. There is general agree-
ment that the national primate centers could not undertake
significant new research endeavors in any area, including
biodefense, without significant expansion and investment.
They all are currently working at capacity. Development of
smaller nonhuman primates could be one way to enhance
resources. Nevertheless, the nonhuman primate resources
must be expanded and funded to satisfy the research needs
in biodefense.

Summary

The need for nonhuman primates is expected to grow enor-
mously as vaccines and therapies against biological weap-
ons and emerging diseases are developed. Smaller primates
such as the marmoset may become very important for these
studies, because space is very limited for primates in BSL-3
and -4 facilities. Unfortunately, although the amount of
funding for biodefense-related research provided through
regional centers of excellence and other funding sources at
the National Institute of Allergy and Infectious Diseases has
exponentially increased the interest in select agent research,
only a small fraction has been provided to primate re-
sources, and it is inadequate to deal with all of the vaccines
and therapies being developed. Yet the development of non-
human primate models continues to be critical to ensure that
the true utility of infectious disease research will be of value
to a population at risk of bioterrorism and infectious
diseases.
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