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Abstract: SLC15A4/PHT1 is an endolysosome-resident carrier of oligopeptides and histidine recently
come into view as a key path marker of immune/autoimmune/inflammatory pathways in immune
cells. Yet, its emerging role in inflammatory processes directly targeting the gastrointestinal epithelial
layer, as in the multifactorial pathophysiology of inflammatory bowel disease (IBD), is poorly investi-
gated. Here, the first identification of SLC15A4/PHT1 gene products in human colonic epithelium
of ulcerative colitis (UC) patients is reported, showing protein primarily localized in intracellular
vesicle-like compartments. Qualitative and quantitative immunohistochemical analyses of colon
biopsies revealed overexpression of SLC15A4/PHT1 protein product in the epithelial layer of UC
patients. Results were successfully mirrored in vitro, in spontaneously differentiated enterocyte-like
monolayers of Caco-2 cells specifically exposed to DSS (dextran sodium sulphate) to mimic IBD
inflammatory onsets. SLC15A4/PHT1 expression and cellular localization were characterized con-
firming its (dys)regulation traits in inflamed vs. healthy epithelia, strongly hinting the hypothesis of
SLC15A4/PHT1 increased function associated with epithelial inflammation in IBD patients.

Keywords: SLC15A4/PHT1; inflammation; enterocytes; IBD; ulcerative colitis

1. Introduction

Research on therapies for inflammatory diseases such as intestinal bowel disease (IBD)
typically investigates cytokines and/or cell surface receptors that directly control down-
stream immune responses or signaling molecules. Examples are studies on antibody drugs
against IL-6 and TNF-α which have successful anti-inflammatory effects in IBD patients.
Nevertheless, it is established that targeting a single molecule is only partially effective and
additional administration of multiple drugs directed to various targets is usually required
to efficiently control the disease. In this respect, processes involving proteins of endosomes,
lysosomes, and related intracellular vesicles are being increasingly investigated to find out
new potential therapeutic routes for treating inflammatory diseases [1]. Endolysosomes
are subcellular organelles central in regulating membrane repair, autophagy, cell death, en-
docytosis, and other aspects of cellular homeostasis [2,3]. Many features of endolysosomes,
including internal pH, levels of amino acids, ions content and transport processes across
membranes are finely tuned to optimize signaling events: dysregulation of these properties
causes disturbance of their functions including signal transduction [4]. The solute carrier
family 15 member A4 (SLC15A4), also known as peptide/histidine transporter 1 (PHT1),
is an endolysosome-resident transporter which transports histidine, oligopeptides with
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certain specificity for histidine-containing dipeptides, and NOD1 ligands as L-Ala-γ-D-Glu-
meso-diaminopimelic acid (tri-DAP), from inside the lysosome outwardly to the cytosol
exploiting proton gradients [5,6].

SLC15A4 gene is specifically expressed in immune cells such as B cells and plasma-
cytoid dendritic cells [7,8] playing a critical role in autoimmune and other inflammatory
diseases: genome-wide analyses as well as data from murine models indicate that it is
closely associated with processes causing type 2 diabetes [9], systemic lupus erythemato-
sus (SLE) [10] and IBD [6,7,11]. In fact, SLC15A4/PHT1 is critical for TLR7- and TLR9-
dependent production of cytokines including type I interferons (IFN-I) and IL-6 [6,12,13].
In addition, SLC15A4/PHT1 colocalizes with mechanistic targets of rapamycin (mTOR) in
LAMP1+ compartments and is also important for the regulation of mTORC1 activity, that
is required not only for TLR7- and TLR9-mediated signaling but for IFN-regulatory factors
(IRFs) activation also [7]. SLC15A4/PHT1 mediates TLR7/TLR9-dependent signaling
through several mechanisms. One mechanism involves its transporter activity [7]. As a
carrier, SLC15A4/PHT1 is acknowledged for transport activity of histidine from the en-
dolysosome into the cytosol, and thus SLC15A4/PHT1 deficiency causes histidine accumu-
lation in the endolysosomal compartment. Histidine is the only amino acid possessing an
imidazole ring and has unique acid–base properties (pKa ~6), and so it is highly effective in
controlling pH; in this respect, the accumulation of histidine in endolysosomes prevents the
vesicular acidification by buffering action [7]. De-acidification of endolysosomes interferes
with activation of the mTORC1 signaling axis; hence, SLC15A4/PHT1 is crucial to control
endolysosomes pH in TLR7/TLR9 and IFN-I circuits [7]. Another mechanism through
which SLC15A4/PHT1 mediates TLR7/TLR9-dependent signaling is its scaffolding func-
tion with respect to IRF5 [14]. This function is exerted by association with the adaptor
protein TASL (“TLR adaptor interacting with SLC15A4 on the lysosome”), encoded by the
SLE-associated gene, CXorf21 [15,16]. Deletion of SLC15A4/PHT1 or TASL specifically
impairs the activation of the IRF pathway without affecting NF-κB and MAPK signaling,
that indicates that ligand recognition and TLR engagement in the endolysosome occur
normally. Furthermore, TASL contains a conserved motif (namely pLxIS) that mediates
the recruitment and activation of IRF5. This finding shows that TASL is an innate immune
mediator for TLR7, TLR8, and TLR9 signaling, revealing a clear mechanistic analogy with
the IRF3 adaptors STING, MAVS, and TRIF. The identification of TASL as a component
linking endolysosomal TLRs to the IRF5 transcription factor via SLC15A4/PHT1 provides
a mechanistic explanation for the involvement of these proteins in inflammatory disease
processes. Finally, a novel function of SLC15A4/PHT1 has been further revealed in the
maintenance of mitochondrial integrity required to maintain autophagy [11].

In mouse models, the loss of SLC15A4 gene products significantly ameliorates the
symptoms of several diseases, presumably by affecting multiple signaling pathways me-
diated by TLR7/TLR9, IRFs, and mTORC1. For example, in mouse models of SLE, loss
of SLC15A4/PHT1 suppresses the IFN-I secretion and production of pathogenic anti-
dsDNA and anti-snRNP autoantibodies. Katewa et al. also demonstrated that lack of
SLC15A4/PHT1 protects mice from developing spontaneous lupus nephritis and from
lupus disease development after IFN-α administration [10]. In an acute psoriasiform der-
matitis model, SCL15A4 feeble mice (mice with one base-pair mutation in the SCL15A4
gene that renders the transport activity inactive) are resistant to TLR-7 agonist imiquimod
inducing weight loss and epidermal skin thickening [16]. Finally, SLC15A4/PHT1 pro-
tein is also a potential therapeutic target in patients with colitis. SLC15A4/PHT1-deficient
mice show alleviation of DSS-induced colitis [6]. In mucosal immune cells, as dendritic
cells and macrophages, SLC15A4 presumably promotes gut inflammation by mediating
NOD1- and TLR9-dependent inflammatory responses [6]; therefore, it is conceivable that
SLC15A4/PHT1 loss efficiently ameliorates gut inflammation by diminishing both TLR9-
mediated and NOD1-mediated signaling.

To date, the role of the SLC15A4/PHT1 gene in cellular physiology is not fully char-
acterized and the functional importance of this transporter is being more deeply investi-
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gated only recently. The major information presented to date in the literature highlight
the evidence that the SLC15A4/PHT1 protein pivotally and widely affects inflamma-
tory and metabolic signaling at the endolysosome level, and that functional loss of it
inhibits multiple inflammatory signals in various inflammatory cellular settings. Sev-
eral studies describe the association of SLC15A4/PHT1 “gain-of-function” with the im-
mune/autoimmune/inflammatory processes, also concerning GI (gastrointestinal) inflam-
matory diseases; nevertheless, the relevant knowledge is mainly limited to immune cells,
still lacking established information regarding intestinal cells and tissue districts. In this
work, we aimed to characterize the physiological and pathophysiological expression fea-
tures of the SLC15A4/PHT1 gene products in the intestinal epithelial monolayer in the
context of responses to stimuli and processes eliciting inflammation of the GI epithelial bar-
rier, and to identify SLC15A4/PHT1 expression and functional significance in the context
of inflammatory alterations related to the human IBD etiological framework.

2. Results
2.1. DSS Effects on Inflammation Genes Expression in Caco-2 Monolayers

The transcriptional expression of IL-1β, IL-6, NF-kB1, and IRF5 inflammation genes
and CASP3 (apoptosis) were determined using qPCR in Caco-2 monolayers after DSS ad-
ministration. Analysis of IL-1β mRNA showed that DSS exposure determined a significant
dose-dependent downregulation compared to untreated control monolayers (p < 0.001)
(Figure 1). On the other hand, DSS treatments resulted in a significant dose-dependent
increase in the expression of IL-6 and NF-kB1 mRNAs compared to untreated cells. CASP3
mRNA was found significantly increased by treatments in a DSS dose-dependent manner.
IRF5 mRNA levels were not significantly affected by DSS treatments.
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100%), which became statistically significant following DSS 4% (156.6% ± 13.0; p < 0.05). 

 

Figure 1. mRNA expression analysis of inflammation and apoptosis-related genes in differentiated
Caco-2 monolayers after DSS treatments. mRNA expression analysis by qPCR on total RNA extracted
from Caco-2 cell monolayers treated with DSS 2% and 4% for 48 h. Amounts of target IL-1β, IL-6,
NF-kB1, IRF5, and CASP3 mRNAs are expressed as 2−∆Ct mean values obtained from 2 rounds of
real-time PCR assays for each of 3 independent biological replicates (see Materials and Methods for
details) and normalized with respect to the GAPDH gene (housekeeping), then expressed as percent
with respect to the untreated control (ctrl = 100%). Statistical analysis by one-way ANOVA with
Dunnett correction for multiple comparisons (* p < 0.05; ** p < 0.01; *** p < 0.001).
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2.2. SLC15A4/PHT1 mRNA Expression Variations Triggered by DSS Challenge

Levels of SLC15A4/PHT1 mRNA were evaluated in mature Caco-2 monolayers chal-
lenged with 2% or 4% DSS (Figure 2). qPCR analysis revealed that mRNA levels showed an
overall DSS dose-dependent up-regulation trend compared to untreated cells (ctrl = 100%),
which became statistically significant following DSS 4% (156.6% ± 13.0; p < 0.05).
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Figure 2. Expression analysis of SCL15A4/PHT1 mRNA in differentiated Caco-2 monolayers after
DSS treatments. Expression analysis by qPCR of SCL15A4 mRNA in Caco-2 cell monolayers treated
with DSS 2% and 4% for 48 h. Amounts of target mRNA are expressed as 2−∆Ct mean values obtained
from 2 rounds of real-time PCR assays for each of 3 independent biological replicates (see Materials
and Methods for details) and normalized with respect to the GAPDH gene (housekeeping), then
expressed as percent with respect to the untreated control (ctrl = 100%). Statistical analysis by one-way
ANOVA with Dunnett correction for multiple comparisons (* p < 0.05).

2.3. DSS Proinflammatory Trigger Affects SLC15A4/PHT1 Intracellular Localization in
Enterocyte-Like Caco-2 Monolayer

The cell-specific localization of the SLC15A4/PHT1 protein was established in ma-
ture Caco-2 monolayers differentiated at 21 dps, under control conditions, and after
DSS exposure. Fluorescent immunocytochemistry demonstrated that Caco-2 untreated
monolayers displayed an almost homogeneous intracellular distribution of cytoplasmic
SLC15A4/PHT1 localization (Figure 3), and few immunoreactive vesicular formations with
high SLC15A4/PHT1 content primarily localized in the perinuclear compartment could
be observed (Figures 3 and 4). Remarkably, 2% DSS treatment resulted in cytoplasmic
immunoreactivity that remained relatively intact with respect to the untreated monolayer
(Figure 3) but clusters of cells displayed highly increased presence of immunoreactive
vesicles localized in perinuclear domains, at a much greater extent than untreated mono-
layer (Figures 3 and 4). After 4% DSS exposure, further enhancement of SLC15A4/PHT1
cytoplasmic immunoreactivity has been observed with respect to control and 2% DSS-
treated cells (Figure 3). Immunoreactive vesicles were always abundantly observed but
clearly distributed in all the cytoplasm and more intensely labeled compared to the other
experimental conditions (Figure 4).

Quantitative analysis of fluorescence intensity was performed and further confirmed
that SLC15A4/PHT1 immunoreactivity was significantly increased in 4% DSS-treated
monolayers (331.2% ± 15.6) respect to 2% DSS-treated (86.5% ± 5.6; p < 0.0001) and control
monolayer (100% ± 3.8; p < 0.0001) (Figure 4).
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Figure 3. Distribution and localization of anti-human SLC15A4/PHT1 immunoreactivity in
enterocyte-like Caco-2 monolayers treated with DSS for 48h. Representative pictures of
SCL15A4/PHT1 immunoreactive Caco-2 cells in absence (Ctrl) or presence of 2% or 4% DSS in
culture medium. Negative control (Neg Ctrl) represents cell samples incubated in the absence of the
primary antibody. Goat anti-rabbit FITC conjugated and DAPI were used for fluorescence detection
of cells (green) and nuclei (blue). Scale bar: 20 µm. Magnification: 63X (oil immersion). Images
examined with LSM 710 Zeiss confocal laser microscope equipped with the Zen2012 Black Edition
program (Zeiss, Dresden, Germany).
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Figure 4. Distribution and localization of anti-human SLC15A4/PHT1 immunoreactivity in
enterocyte-like Caco-2 monolayers treated with DSS for 48 h. In untreated cells (Ctrl), the SLC15A4
immunoreactivity is distributed homogeneously within the cytoplasm. After DSS administration, im-
munoreactivity shows different patterns in treated monolayers depending on dose: variable size vesi-
cles of SLC15A4/PHT1 positive inclusions become more dominant according to DSS concentration.
Z-stack representation (Z rep.) demonstrates the intracellular localization of immunoreactivity. Scale
bar: 10 µm. Magnification: 63X oil immersion. In histogram: quantitative analysis of SLC15A4/PHT1
fluorescence intensity (see Materials and Methods for detail). Data are presented as mean ± SEM of
5 measures from each of 3 independent biological replicates. Mean values are reported as percent vs.
untreated control (100%). Statistical analysis: one-way ANOVA with Dunnett correction for multiple
comparisons (**** p < 0.0001).

2.4. SLC15A4/PHT1 Expression in IBD Ulcerative Colitis (UC) Patients

Firstly, the biopsy specimens of UC patients were reviewed for evidence of micro-
scopic features of the UC disease. Figure 5 shows evidence from UC patients which are
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representative of a group of n = 20. In UC patients, epithelium showed mucosal distortion
with surface irregularity and alterations in crypt size, spacing, orientation (i.e., loss of
parallelism), and shape. The increased distance and the separation of the crypts from
the underlying Muscolaris mucosae have been also detected. Moreover, a reduction in the
number of Goblet cells can be observed, which appear hyperplastic. Histological studies
revealed that, in patients with active UC, SLC15A4/PHT1 immunoreactivity was strongly
and specifically localized in the absorptive epithelium (Figure 5A) and distributed in small
intracellular vesicles near the brush border of the enterocytes (Figure 5B). Sporadic im-
munoreactive patches can be observed in immune cells of the lamina propria (Figure 5A,B)
and in Goblet cells (Figure 5C).
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Figure 5. Study of the SLC15A4/PHT1 protein in human colon biopsies from UC patients. (A) Lo-
calization of SLC15A4/PHT1 by immunohistochemistry in the colon of UC patients. It is possible
to note architectural alterations of colonic mucosa, including shortening of crypts, variations in the
size and shapes of crypts, and Goblet cell hyperplasia. Regions in squares have been magnified in
the pictures below; (B) SLC15A4/PHT1 immunoreactivity is localized in small intracellular vesicles
near enterocytes brush border, along the mucosal surface (red arrows). Positive inclusions are rarely
observed in immune cells of the lamina propria (green arrows); (C) positive intracellular formations
are localized also in Goblet cells; (D) histological section of a UC patient with severe alteration of
colonic mucosa. Epithelium surface displays a considerably high SLC15A4/PHT1 expression in
vesicles near enterocytes brush border. Scale bar: 100 µm (A); 50 µm (B–D).

SLC15A4/PHT1 immunoreactivity was found higher in inflamed colon epithelium
of UC patients than in healthy controls (Figure 6). Biopsy specimens of healthy control
patients showed a normal mucosa in which the crypts are uniformly spaced, arranged
perpendicular to the Muscularis mucosae, and the crypt bases are in contact with the upper
edge of the Muscularis mucosae. Moreover, Goblet cells appear regular in number and
morphology. In healthy epithelium, SLC15A4/PHT1 immunoreactivity is very low with
respect to UC patients; in fact, it is detected only in limited regions of the mucosal surface,
within the enterocyte cytoplasm near the brush border (Figure 6). Quantitatively, the
SLC15A4/PHT1 expression/nuclei ratio confirmed that SLC15A4/PHT1 expression is
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significantly increased in UC patients (0.20 ± 0.03) compared to healthy control (0.08 ± 0.01;
p < 0.01; see graph in Figure 6).
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Figure 6. Study of the SLC15A4/PHT1 protein in human colon biopsies from UC patients and healthy
controls. Detection of SLC15A4/PHT1 by IHC is strongly reduced in healthy controls (negative
control) with respect to UC patients. Immunoreactivity is localized in small intracellular vesicles near
enterocytes brush border, along the mucosal surface (red arrows). In the graph below: quantitative
analysis of SCL15A4/PHT1 levels in colon of active UC patients and healthy control patients (i.e.,
without intestinal inflammation). Quantification of staining intensity per nuclei count was performed
with ImageJ software. Data are expressed as mean ± SEM (n = 20 for UC and Healthy control).
Statistical analysis by two-tailed unpaired Student’s t-test (** p < 0.01).

From the corresponding histological sections of active UC patients and healthy controls
included in the study, total RNA was extracted in order to analyze the expression levels
of SLC15A4/PHT1 mRNA. qPCR analysis revealed that the expression levels of the gene
are significantly upregulated in UC patients compared to control patients (370% ± 150 vs.
100% ± 23; p < 0.05; see Figure 7).



Int. J. Mol. Sci. 2022, 23, 13170 10 of 15Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 12 of 18 
 

 

 

Figure 7. Expression analysis of SCL15A4/PHT1 mRNA in patients with UC and healthy controls. 

mRNA expression analysis by qPCR on total RNA extracted from histological sections of UC and 

control patients. Amounts of target mRNA were calculated as 2−ΔCt mean values obtained from 2 

rounds of real-time PCR assays for each of the patients enrolled (see Materials and Methods for 

details) and normalized with respect to the 18S rRNA gene (housekeeping). Values were expressed 

as percent with respect to the healthy control patients (ctrl = 100%). Statistical analysis by two-tailed 

unpaired Student’s t-test (* p < 0.05). 

3. Discussion 

SLC15A4/PHT1 (solute carrier family 15 member 4; peptide histidine transporter 1) 

is an endo-lysosomal carrier involved in TLR7-9/NOD1 signaling pathways in immune 

cells and intestinal epithelial cells. In humans, it has been investigated with respect to 

autoimmune syndromes, including IBD. Although in this pathophysiological context 

some mechanisms and pathways involving SLC15A4/PHT1 in immune cells have been 

described, knowledge of its gene products in cells of the gastrointestinal tract is still poor. 

Here, we investigated SLC15A4/PHT1 gene products in vitro in differentiated enterocyte-

like Caco-2 monolayers, as a model of the intestinal epithelial layer, responding to proin-

flammatory DSS (dextran sodium sulphate). Compromised epithelium/barrier function is 

a feature of inflammatory intestinal disease and may be critical to both initial pathogenesis 

and reactivation of chronic intestinal disorders [17]. In this view, DSS is a chemical agent 

specifically mirroring inflammatory processes of IBD in vivo in mouse models of ulcera-

tive colitis, which has been widely used to induce epithelial barrier disruptive inflamma-

tion in vivo and in vitro [18,19], although many mechanisms associated with DSS-induced 

colitis are still to be clarified. 

We challenged differentiated enterocyte-like Caco-2 monolayers in order to elicit a 

framework of inflammation within which assessing SLC15A4/PHT1 modulation and lo-

calization i.e., its (dys) regulation in inflamed vs. healthy epithelial layer. As contemplated 

in the Introduction, SLC15A4/PHT1 involves TLR7 and MTORC1 which run also on 

NfKB-independent inflammation routes. In our in vitro intestinal cell model, we analyzed 

NfKB1, IL-6, and IL-1 mRNAs for checking the “ab initio” responsiveness in terms of in-

flammation activation. In this framework, NF-kB1 and IL-6mRNA levels significantly in-

creased by all treatments in a DSS dose-dependent manner (see Figure 1), together with 

CASP3 mRNA, indicating that activations of inflammation and apoptosis pathways con-

cur in Caco-2 monolayers challenged with DSS, as reported by other studies [20,21]. In 

our in vitro model, mRNA expression variations of the SLC15A4/PHT1 gene have been 

detected. The SLC15A4/PHT1 mRNA increases in DSS dose-dependent manner (see Fig-

ure 2). These results are, remarkably, in agreement with the immunofluorescence analysis 

in which anti-human SLC15A4/PHT1 immunoreactivity increases in DSS-treated mono-

layers depending on dose (Figures 3 and 4). Moreover, SLC15A4/PHT1 immunoreactivity 

Figure 7. Expression analysis of SCL15A4/PHT1 mRNA in patients with UC and healthy controls.
mRNA expression analysis by qPCR on total RNA extracted from histological sections of UC and
control patients. Amounts of target mRNA were calculated as 2−∆Ct mean values obtained from
2 rounds of real-time PCR assays for each of the patients enrolled (see Materials and Methods for
details) and normalized with respect to the 18S rRNA gene (housekeeping). Values were expressed
as percent with respect to the healthy control patients (ctrl = 100%). Statistical analysis by two-tailed
unpaired Student’s t-test (* p < 0.05).

3. Discussion

SLC15A4/PHT1 (solute carrier family 15 member 4; peptide histidine transporter 1)
is an endo-lysosomal carrier involved in TLR7-9/NOD1 signaling pathways in immune
cells and intestinal epithelial cells. In humans, it has been investigated with respect to
autoimmune syndromes, including IBD. Although in this pathophysiological context some
mechanisms and pathways involving SLC15A4/PHT1 in immune cells have been described,
knowledge of its gene products in cells of the gastrointestinal tract is still poor. Here, we
investigated SLC15A4/PHT1 gene products in vitro in differentiated enterocyte-like Caco-2
monolayers, as a model of the intestinal epithelial layer, responding to proinflammatory
DSS (dextran sodium sulphate). Compromised epithelium/barrier function is a feature
of inflammatory intestinal disease and may be critical to both initial pathogenesis and
reactivation of chronic intestinal disorders [17]. In this view, DSS is a chemical agent
specifically mirroring inflammatory processes of IBD in vivo in mouse models of ulcerative
colitis, which has been widely used to induce epithelial barrier disruptive inflammation
in vivo and in vitro [18,19], although many mechanisms associated with DSS-induced
colitis are still to be clarified.

We challenged differentiated enterocyte-like Caco-2 monolayers in order to elicit a frame-
work of inflammation within which assessing SLC15A4/PHT1 modulation and localization
i.e., its (dys) regulation in inflamed vs. healthy epithelial layer. As contemplated in the Intro-
duction, SLC15A4/PHT1 involves TLR7 and MTORC1 which run also on NfKB-independent
inflammation routes. In our in vitro intestinal cell model, we analyzed NfKB1, IL-6, and IL-1
mRNAs for checking the “ab initio” responsiveness in terms of inflammation activation. In
this framework, NF-kB1 and IL-6mRNA levels significantly increased by all treatments in
a DSS dose-dependent manner (see Figure 1), together with CASP3 mRNA, indicating that
activations of inflammation and apoptosis pathways concur in Caco-2 monolayers challenged
with DSS, as reported by other studies [20,21]. In our in vitro model, mRNA expression
variations of the SLC15A4/PHT1 gene have been detected. The SLC15A4/PHT1 mRNA
increases in DSS dose-dependent manner (see Figure 2). These results are, remarkably, in
agreement with the immunofluorescence analysis in which anti-human SLC15A4/PHT1
immunoreactivity increases in DSS-treated monolayers depending on dose (Figures 3 and 4).
Moreover, SLC15A4/PHT1 immunoreactivity increases in DSS dose-dependent manner fea-
sibly according to DSS-induced morphological derangement of monolayers, although this
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qualitative association deserves further quantitative/molecular assessment. From the overall
data emerges that, in parallel to NF-kB1, IL-6, and CASP3 mRNA expression, DSS treat-
ments coherently increase the amount of the SLC15A4/PHT1 gene products in enterocyte-like
monolayers; so, the in vitro model hints a potentially amplified function of SLC15A4/PHT1
associated to inflammation triggering in enterocyte-like cells.

In parallel, investigations have been moved to the human clinical setting. In light
of studies that have linked SLC15A4/PHT1 to inflammatory diseases [10,16] and IBD [6],
here it has been investigated for the first time the expression of SLC15A4/PHT1 protein
in colon histological sections of IBD patients with ulcerative colitis (UC), finding its major
localization in epithelial cells. Then, of great importance was the evidence of subcellu-
lar localization of SLC15A4/PHT1. In previous studies, the cellular localization of the
transporter was studied by immunofluorescence only in epithelial cell lines demonstrating
that this protein was expressed in early endosomes [12]. In human colon biopsies from
UC patients, SLC15A4/PHT1 immunoreactivity was localized in absorptive enterocytes
(near brush border) putatively in intracellular vesicular formations in agreement with
its endo/lysosome localization, and rarely in secretory cells (Goblet cells) besides in im-
mune cells of lamina propria (Figure 5). Histological analysis revealed that anti-human
SLC15A4/PHT1 immunoreactivity has been found abundant along the entire inflamed
epithelial layer of UC patients with respect to healthy control patients, in which it is only
faintly detected (Figure 6). The intense SLC15A4/PHT1 labeling in colon biopsies of UC
patients hints at confirmation of the assessment of SLC15A4/PHT1 as a marker of intestinal
monolayer’s response to inflammation, as strongly corroborated by the results of in vitro
studies presented. It is worth noting that the DSS Caco-2 monolayer model is shown to
be valuably predictive, in light of the findings in vivo in human patients. According to
histochemistry data, qPCR analysis revealed that the expression of SLC15A4/PHT1 mRNA
increases in UC patients with respect to healthy controls (Figure 7); this evidence is in accor-
dance with Lee et al. which preliminarily described the up-regulation of SLC15A4/PHT1
mRNA in inflamed areas of the colon in UC and Chron’s disease patients [12]. Taken
together, the mRNA/protein up-regulations are found according to a hypothesis of gain of
SLC15A4/PHT1 function associated with GI inflammation pathways and, particularly, to
IBD; dysregulation, i.e., increased expression of SLC15A4/PHT1 is revealed as deeply asso-
ciated to inflammation in patients’ intestinal epithelium, allowing to point SLC15A4/PHT1
gene as a novel marker to be exploited in studying IBD manifestation.

4. Materials and Methods
4.1. Reagents and Materials

All chemicals, reagents, and kits were purchased at cell culture/molecular biology
grade. Plasticware were invariably purchased sterilized, disposable, and treated for cell
culture. Fetal bovine serum (FBS), Dulbecco’s phosphate buffer saline (D-PBS), Eagle’s min-
imum essential medium (MEM), penicillin/streptomycin solutions, trypsin, L-glutamine,
and non-essential amino acids were purchased from Corning-Fisher Scientific (Rodano, MI,
Italy). 4’,6-Diamidino-2-Phenylindole (DAPI; Cat.: 28718-90-3), Triton X-100, paraformalde-
hyde (PFA; Cat. 30525-89-4), bovine serum albumin (BSA), dextran sulfate sodium salt
from Leuconostoc spp. (DSS Mr 5000; Cat.: 9011-18-1) were obtained from Sigma-Aldrich
(Milano, Italy).

4.2. Cell Culture and Treatments

Human epithelial Caco-2 cells (ATCC n. HTB-37™) were grown at 37 ◦C, in a hu-
midified atmosphere (5% CO2 in air), in MEM supplemented with 10% (v/v) FBS, 2 mM
L-glutamine, 100 µg/mL penicillin-streptomycin and 1% (v/v) non-essential amino acid
mix solution. The culture medium was replaced every third day and propagation occurred
routinely every 4–5 days post-seeding (dps). For the experimental treatments, cells be-
tween passage 3 and passage 10 of propagation were used, after continuous growth for
21 dps in standard culture conditions, in order to obtain a spontaneously differentiated
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enterocyte-like intestinal epithelial monolayer according to standard Caco-2 cell differen-
tiation protocols [22,23]. At 21 dps, monolayers grown in 12-well plates (Corning-Fisher
Scientific, Rodano, MI, Italy; seeding density 0.5 × 105 cells per well) were incubated for
48 h in the presence of 2% or 4% (w/v) DSS (final concentrations in the culture medium);
100X DSS solutions in D-PBS were filtered through 0.22 µm pore sterile filters before use.

4.3. Immunocytochemistry (ICC)

Briefly, 1.5 × 105 Caco-2 cells were seeded and grown on autoclaved, UV-sterilized
glass coverslips for 21 dps, then fixed with 4% (w/v) paraformaldehyde (PFA) after the
experimental treatments as described above. Cells were washed with D-PBS (3 times
for 10 min), permeabilized with 0.25% (v/v) saponin in D-PBS for 10 min at room tem-
perature, and blocked against unspecific binding with 5% (w/v) bovine serum albumin
(BSA) and 0.1% (v/v) Triton X-100 in D-PBS for 30 min at room temperature. Afterwards,
the cells were incubated with the anti-SLC15A4 primary antibody (Cat. n. #PA5-42513,
ThermoFisher;1:200 dilution) overnight at 4 ◦C. After washing, the cells were incubated
with the anti-rabbit IgG F (ab‘)2 fragment-FITC secondary antibody (Cat. n. F1262, Sigma-
Aldrich; 1:500 dilution) for 1 h at 37 ◦C. A technical negative control was performed by
omitting primary antibody and replacing it with D-PBS. Following ICC protocol, nuclei
were counterstained by incubating cells for 5 min with DAPI (0.1 mg/mL in D-PBS, lex
340 nm, lem 488 nm). Coverslips were finally mounted with 1:1 glycerol/D-PBS on glass
slides and examined with an LSM 710 Zeiss confocal laser microscope equipped with
the Zen2012 Black Edition program (Zeiss, Dresden, Germany). The quantification of
immunofluorescence in acquired pictures was carried out using the ImageJ open-source
program (https://imagej.net/ImageJ (accessed on 27 December 2021). In each image, ten
digital areas were selected in appropriate regions and corresponding fluorescence intensity
was calculated as integrated density (i.e., area value multiplied by mean gray value). For
each of the three biological replicates, the average values of fluorescence intensity were
expressed as a percentage with respect to the untreated control cells (100%).

4.4. Immunohistochemistry (IHC) on Biopsy Sections from IBD Ulcerative Colitis Patients

Ulcerative colitis (UC) patients and healthy controls (HC) were retrospectively enrolled
at the Division of Gastroenterology and Digestive Endoscopy of the National Institute of
Gastroenterology “S. de Bellis”, Castellana Grotte, Bari, Italy. Written informed consent
was obtained from all study participants. The study was carried out according to the
principles of the Declaration of Helsinki and was approved by the local Institutional Ethics
Review Boards.

Formalin-fixed and paraffin-embedded tissue blocks were obtained from 40 patients
divided into two groups:

• Healthy Control group (n = 20 patients) including intestinal surgical resections from
patients without ulcerative colitis

• Ulcerative colitis group (n = 20 patients, mean age 61 years, range 33–80) including
total or subtotal proctocolectomies from patients with long-standing ulcerative colitis
refractory to medical therapies.

Sections stained with hematoxylin and eosin were reviewed by a pathologist to con-
firm the adequacy of the sample and to evaluate the morphologic and or pathological
characteristics of the samples.

For IHC detection, 4 µm sections were cut and mounted on Apex Bond IHC slides
(Leica Biosystems, Buffalo Grove, IL, USA). Tissue sections were incubated with human
anti-SLC15A4 polyclonal antibody (Cat n. PA5-42513 Invitrogen, Waltham, MA, USA,
1:100 dilution) for 30 min at room temperature. Antigen retrieval was performed by BOND
Epitope Retrieval Solution 2 using EDTA pH 9. The Bond Polymer Refine Detection Kit
(Leica Biosystems, Buffalo Grove, IL, USA) was used as a visualization and chromogen
reagent according to the manufacturer’s instructions. The samples were recorded as
negative when the number of stained cells was less than 5%.

https://imagej.net/ImageJ
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4.5. RNA Extraction

RNA extractions from cell cultures were performed using the All-Prep DNA/RNA/
Protein mini kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions.
Briefly, cells grown in multi-well plates were washed twice with D-PBS and then lysed with
the kit lysis buffer by scraping directly on the plate surface. At the end of the RNA/protein
extraction protocols, RNA aliquots were stored in RNase-free conditions at −80 ◦C until
use. RNA concentrations were calculated by spectrophotometry, and the λ260/λ280 ratios
were calculated to evaluate RNA purity; all the RNA extractions were qualitatively tested
by electrophoresis of RNA samples on 1% (w/v) agarose gels. Total RNA extraction from
FFPE histological sections of 5 µm thickness was performed with the miRNeasy FFPE
Kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol including the
treatment of sections with Deparaffinization Solution (Qiagen, Hilden, Germany). Total
RNA was then eluted in ribonuclease-free water. The RNA concentration was determined
with the NanoDrop ND-2000 Spectrophotometer (Nanodrop Technologies, Wilmington,
DE, USA).

4.6. Primer Design, Reverse Transcription and Real Time PCR (qPCR) Assays

The mRNA reference sequences of the investigated genes were collected from the
GenBank database (https://www.ncbi.nlm.nih.gov/gene) and were used to select oligonu-
cleotide sequences as primer pairs for consequent real-time PCR (qPCR) assays. By mRNA-
to-genomic sequence alignment, the gene-specific forward and reverse primers were de-
signed on different exons (intron spanning) to avoid amplification of genomic DNA. The
AmplifX software version 2.0.7 (free download at https://inp.univ-amu.fr/en/amplifx-
manage-test-and-design-your-primers-for-pcr) was used to test PCR size, GC content, end
stability, self/cross-dimer formation, and melting temperature for the selected primer pairs.
Details of the gene-specific oligonucleotide sequences are reported in Table 1. Reverse
transcription on the extracted RNAs was performed on 500 ng total RNA for each sample,
using the iScript Select cDNA Synthesis Kit (Bio-Rad, Segrate, MI, Italy) according to
the manufacturer’s instructions, with random primers in the reaction mix. Before qPCR
analysis, primer pairs were tested for efficiency, according to the amplification efficiency pa-
rameters for genes of interest and internal controls proposed by Schmittgen and Livak [19].
qPCR assays were performed using the iTaq Universal SYBR Green Supermix (Bio-Rad)
with the CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad). In the qPCR analysis,
gene expression relative quantification was performed by analyzing the threshold values
(CT) with the comparative CT method (also referred to as the 2−∆CT or 2−∆∆CT method),
and qPCR data shown were the 2−∆CT values, which are considered as proportional to the
amount of detected target mRNA. For each target gene and internal control (housekeeping),
∆CT values (∆CT = target gene CT − housekeeping gene CT) were obtained from 2 different
rounds of qPCR for each of the three biological replicates. Statistical analysis was performed
after the 2−∆CT transformation [24].

Table 1. Features of primer sequences for qPCR expression analysis. For each gene, the NCBI
accession numbers of the mRNA reference sequence (RefSeq mRNA) used for primer design are
reported. For each primer, the 5’-3’ nucleotide sequence and melting temperature (Tm) are reported.
For each mRNA detection, the expected amplicon length is reported (PCR size) in base pairs (bp).

GENE RefSeq mRNA
Acc. No.

Sense Primer 5’-3’
(Tm)

Antisense Primer 5’-3’
(Tm)

PCR Size
(bp)

NFKB1b NM_003998.4 AATGCCTTCCGGCTGAGTC
(59◦)

AGGCTGCCTGGATCACTTCA
(60◦) 140

IL1b NM_000576.3 CCTTCATCTTTGAAGAAGAACC
(51◦)

GAGGTGGAGAGCTTTCAG
(51◦) 158

https://www.ncbi.nlm.nih.gov/gene
https://inp.univ-amu.fr/en/amplifx-manage-test-and-design-your-primers-for-pcr
https://inp.univ-amu.fr/en/amplifx-manage-test-and-design-your-primers-for-pcr
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Table 1. Cont.

GENE RefSeq mRNA
Acc. No.

Sense Primer 5’-3’
(Tm)

Antisense Primer 5’-3’
(Tm)

PCR Size
(bp)

IL6 NM_000600.5 GATGCTTCCAATCTGGATTC
(51◦)

CAGGAACTGGATCAGGAC
(51◦) 164

IRF5 NM_001347928.2 CTCAATGAGCTCATCCTGTTC
(53◦)

CTGAGAACATCTCCAGCAGC
(55◦) 169

CASP3 NM_001354777.2 CTGGACTGTGGCATTGAGAC
(59 ◦C)

CAAAGCGACTGGATGAACC
(57 ◦C) 157

SLC15A4/PHT1 NM_145648.4 TGAAGGCATTGGAGTCTTT
(51◦)

TGGAAATACACTGTCCAGTAA
(51◦) 168

GAPDH NM_002046.7 AAACCTGCCAAGTATGATGA
(51 ◦C)

TACTCCTTGGAGGCCATGT
(54 ◦C) 217

4.7. Statistical Analysis

Unless otherwise stated, all data were expressed as the means ± standard error of
the mean (S.E.M.). Data means derive from two independent assays for each of the three
biological replicates. Statistical analysis by two-tailed unpaired Student’s t-test or one-way
ANOVA followed by Dunnett’s multiple comparison test was performed using GraphPad
Prism 9.4.0; p-value ≤ 0.05 were considered significantly different.

5. Conclusions

Based on the experimental evidence, an inflammatory context in which the increase of
SLC15A4/PHT1 protein product is favored, suggesting a “gain of function” associated with
inflammatory and/or autoimmune onset (already hypothesized for SLC15A4/PHT1 in
immune cells) has been here putatively evidenced in intestinal cells. The identification and
localization of SLC15A4/PHT1 protein were established in colon biopsy specimens from
IBD patients with UC and control healthy patients. In UC patients, SLC15A4/PHT1 protein
gains expression reaching highly increased levels. Taken together, the research results
demonstrate that dysregulation (i.e., increase) of SLC15A4/PHT1 gene products in the
human intestinal epithelial layer is in the framework of GI inflammation, and, particularly,
of IBD, leading the way for the assessment of SLC15A4/PHT1 as a marker of inflammation
for UC patients.
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