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Abstract

INTRODUCTION: Although many cognitive measures have been developed to assess

cognitive decline due to Alzheimer’s disease (AD), there is little consensus on opti-

mal measures, leading to varied assessments across research cohorts and clinical trials

making it difficult to pool cognitivemeasures across studies.

METHODS:Weused a two-stage approach to harmonize cognitive data across cohorts

and derive a cross-cohort score of cognitive impairment due to AD. First, we pool

and harmonize cognitive data from international cohorts of varying size and ethnic

diversity. Next, we derived cognitive composites that leverage maximal data from the

harmonized dataset.

RESULTS: We show that our cognitive composites are robust across cohorts and

achieve greater or comparable sensitivity to AD-related cognitive decline compared

to theMini-Mental State Examination and Preclinical Alzheimer Cognitive Composite.
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Finally, we used an independent cohort validating both our harmonization approach

and composite measures.

DISCUSSION:Our easy to implement and readily available pipeline offers an approach

for researchers to harmonize their cognitive data with large publicly available cohorts,

providing a simple way to pool data for the development or validation of findings

related to cognitive decline due to AD.

1 INTRODUCTION

The development of sensitive measures to track the cognitive decline

associated with Alzheimer’s disease (AD) is important for observa-

tional and interventional studies.1 With the introduction of large

longitudinal studies, multi-domain cognitive test batteries that may

minimally overlap between different studies have proliferated.2–6

Given the high dimensionality in testing batteries, researchers often

combine multiple test items into cognitive composites to pre-

dict diagnostic outcomes in preclinical AD and track longitudinal

change.7–14 Composites cover either a single domain (e.g., memory15

or executive function16) or global cognition7,8,10,17 but may be

limited in their application due to non-overlapping cognitive test-

ing batteries. Therefore, researchers may need to substitute tests

in composite construction,10,11 impeding the ability to harmonize

cohorts.

Data harmonization is a field of integrative data analysis that allows

researchers to pool data across multiple studies when there is imper-

fect overlap between data acquired in studies.18 The harmonized data

places variables on the samescale topermit pooling across a largenum-

berof studies.19 Unlikemeta-analysis,whichonly allows researchers to

combine summary statistics, harmonization allows researchers to pool

raw data for model development and hypothesis testing, mitigating

sampling biases and power constraints.18 Several approaches exist for

data harmonization including variable standardization, latent variable

models, and imputation approaches.19,20

Here, we use an imputation approach to harmonize item-level

neuropsychological data, predicting missing data for any individual

based on patterns of overlapping data. Several imputation approaches

can be applied in psychological research21,22 with parametric meth-

ods popular for deriving missing variables.23–27 However, parametric

approaches are limited by the nature of themissing data20 with cohort

variation having a marked effect on cognitive trajectories.28 Paramet-

ric approaches may hence not be ideal in harmonizing missing data24

and non-parametric imputation approaches offer a promising method

when sampling characteristics differ across cohorts.

Our study had three goals. First, we introduce a computationally

efficient tool to non-parametrically harmonize cognitive data across

cohorts at the test and subtest level. Next, we use this harmonized

data to derive a cross-cohort cognitive composite, testing its sensitivity

and robustness to cross-sectional and longitudinal amyloid beta (Aβ)-
related change. Finally, we benchmark the sensitivity of the composite

to prodromal and preclinical change against the widely used Mini-

Mental State Examination (MMSE) or Preclinical Alzheimer Cognitive

Composite (PACC).Ourwork presents a simple approach to harmonize

diverse neuropsychological data and generate a robust and sensitive

AD cognitive composite.

2 MATERIALS AND METHODS

2.1 Study participants

2.1.1 Cohorts

Cognitive data was harmonized across four cohorts with positron

emission tomography (PET) imaging and longitudinal neuropsycho-

logical data (assessed every 1 to 2 years). Individuals were included

independent of PET imaging or number of assessments. A fifth inde-

pendent validation sample was used to validate the harmonization

approach.

1. The Alzheimer’s Disease Neuroimaging Initiative (ADNI;

adni.loni.usc.edu). ADNI data used in this analysis were col-

lected from 2005 to late 2019 and included cognitively normal

(CN), mild cognitive impairment (MCI), and AD individuals (n =

2513).

2. National University of Singapore (NUS) memory clinic sample

includes individuals with no cognitive impairment (NCI), cognitive

impairment no dementia (CIND) mild, CIND moderate, vascular

dementia (VaD), and AD dementia.29 To consolidate the stage of

clinical impairment to be consistentwith other cohortswe assigned

NCI individuals as CN, CIND individuals as MCI, and VaD and AD

individuals as AD (n= 636).

3. Neuroimaging of Inflammation in Memory and Related Other Dis-

orders (NIMROD), a study performed in Cambridge, UK, that

recruited patients from specialist secondary and tertiary care ser-

vices in the east of England and the Join Dementia Research

registry. CN controls were also recruited regionally from volunteer

registries.30 Individuals are defined as CN, MCI, or AD at baseline

(n= 89).

4. Berkeley AgingCohort Study (BACS), a cohort of elderly individuals

who had psychometrically normal cognition at baseline, residing in

the community in the San Francisco Bay area (n= 188).31

5. The Australian Imaging, Biomarker & Lifestyle Flagship Study of

Ageing (AIBL) served as the validation cohort. The AIBL sample
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used in this analysis was collected from 2006 to 2021 and was

composed of CN individuals and MCI or AD patients (n = 1820;3

Table 1).

2.1.2 Consent statement

All subjects provided informed consent and relevant ethics approval

was acquired for each cohort.

2.2 Harmonization

2.2.1 Cognitive testing batteries

All four harmonization cohorts included comprehensive batteries of

tests that interrogatedmultiple domains of cognition for up to 13 years

of follow-up. For each neuropsychological visit we decomposed tests

into subtest-level neuropsychological variables that revealed greater

similarity. For example, decomposing the Addenbrooke’s Cognitive

Examination Revised from the NIMROD study allowed for harmoniza-

tion of clock-drawing and fluency tasks, which were given as stan-

dalone tasks in ADNI. For test and subtests that were similar across

testing regimes, and where prior evidence highlighted high correlation

between variables (e.g., comparing the California/Hopkins/Rey Audi-

tory Verbal Learning Tests [C/H/RAVLT] to each other), we scaled and

aligned these to represent the same test or subtest variable (Table

S1 in supporting information). After alignment, the resultant cognitive

scores covered 125 variables, with varying degrees of overlap among

the four harmonization cohorts. We followed the same alignment and

scaling procedure for the 3920 neuropsychological visits in the AIBL

Validation sample (Figure 1).

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

using traditional sources, including Google Scholar, meet-

ing abstracts, andpresentations. Several approaches exist

to harmonize differentially sampled cognitive data across

cohorts. These publications are appropriately cited.

2. Interpretation: We developed a simple approach to har-

monize data across international aging and dementia

research cohorts of varying sizes. We show that these

harmonized data have highly consistent covariance pat-

terns suggesting the data can be used to derive and

validate robust cross cohort cognitive composites. We

introduce a simple cognitive composite that is highly sen-

sitive to amyloid status throughout clinical syndromes.

3. Future directions: Our easy-to-implement pipeline

allows researchers to pool their data to confirm hypothe-

ses and validatemodels across cohorts. Once harmonized

the data can be used in the empirical derivation of cog-

nitive composites. Our approach can be extended to

incorporate additional data as it becomes available,

allowing for an expanded library of neuropsychological

variables and sample heterogeneity.

2.2.2 Imputation of missing neuropsychological
variables

Test harmonization across the cohorts used k-nearest neighbors

(k-NN), a non-parametric approach to impute missing values by

TABLE 1 Cohort characteristics and demographics. Demographic characteristics for participants in all four cohorts. Statistics derived using
one-way ANOVA. Asterisks (*) indicate baseline demographic (i.e., age, sex, education, MMSE) values significantly different to ADNI (P< 0.001).

Variable ADNI NUSa NIMROD BACS AIBL

Sample size 2513 636 89 188 1820

Diagnosis CN= 888

MCI= 1058

AD= 411

Missing= 156

CN= 29

MCI= 101

AD= 46

Missing= 450

CN= 38

MCI= 28

AD= 22

Missing= 0

CN= 188

MCI= 0

AD= 0

Missing= 0

CN= 1091

MCI= 395

AD= 316

Missing= 0

Total number of visits 10,622 2553 255 824 3920

Follow-up years, mean (SD) 2.78 (3.05) 3.48 (1.43) 2.04 (1.40) 4.2 (3.25) 2.24 (2.87)

Age, mean (SD) 73.14 (7.35) 75.64 (7.29)* 72.15 (8.07) 75.78 (5.834)* 71.81 (7.05)*

Female, male sex 1006/1149 101/86 37/52 108/80 964/856*

Education, mean (SD) 15.87 (3.23) 7.6 (4.7)* 13.46 (2.88)* 16.85 (1.97)* 12.81 (3.11)*b

MMSE, mean (SD) 27.22 (2.99) 21.13 (6.29)* 26.64 (3.66) 28.80 (1.27)* 26.81 (3.27)

Numberwith Aβ PET 1260 185 20 188 1820

Abbreviations: Aβ, amyloid beta; ADNI, Alzheimer’s Disease Neuroimaging Initiative; AIBL, Australian Imaging, Biomarker & Lifestyle Flagship Study of Age-

ing; ANOVA, analysis of variance; BACS, Berkeley Aging Cohort Study; CN, cognitively normal; MCI, mild cognitive impairment; MMSE, Mini-Mental State

Examination; NIMROD, Neuroimaging of Inflammation inMemory and RelatedOther Disorders study; NUS, National University of Singapore.
aEducation/sex only available for NUS subjects with Aβ imaging.; PET, positron emission tomography; SD, standard deviation.
bMidpoint of discretized education used for thosemissing exact education.
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F IGURE 1 Overlapping cognitive variables. Overlap between test and subtest level neuropsychological variables across the four
harmonization cohorts (top) and the AIBL Validation cohort (bottom). Regions shadedwhite are variables that were collected in a given cohort,
regions shaded black are variables that are not collected in a given cohort and are imputed using k-NN imputation. ADAS-Cog, Alzheimer’s Disease
Assessment Scale Cognitive subscale; ADNI, Alzheimer’s Disease Neuroimaging Initiative; AIBL, Australian Imaging, Biomarker & Lifestyle
Flagship Study of Ageing; BACS, Berkeley Aging Cohort Study; BNT, Boston Naming Test; CDR, Clinical Dementia Rating; DSPAN, Digit Span;
(H/C/R)VLT, Hopkins/California/Rey Verbal Learning Tests; INECO, Institute of Cognitive Neurology Frontal Screening; k-NN, k-nearest
neighbors; LM, Logical Memory;MINT,Multilingual Naming Test; MOCA,Montreal Cognitive Assessment; NIMROD, Neuroimaging of
Inflammation inMemory and RelatedOther Disorders study; NUS, National University of Singapore; RCFT, Rey Complex Figure Test;WAIS,
Wechsler Adult Intelligence Scale

determining the k most similar cases (i.e., neuropsychological visit for

any participant) and assigned missing values with the observed value

from the closest case (i.e., k = 1) or the weighted average of the k

closest cases. The result of the k-NN imputation is a complete set of

neuropsychological variables for each visit (SupplementaryMethods in

supporting information).

2.2.3 Cognitive composite derivation

The composition of the Cross-Cohort Alzheimer Cognitive Composite

(CC-ACC) builds on established methods used to create the PACC.10

To derive the CC-ACC, we used the variance-normalized mean of all

variables belonging to the three PACCdomains (i.e., memory, executive

function, and general cognition; Table S2 in supporting information).

The mean of the variance-normalized scores was taken to be the score

for that domain. These domain scores were then summed and stan-

dardized similar to the PACC derivation (Supplementary Methods).

Scores are combined so that a decrease is associated with worsening

cognition.

2.3 AD related cognitive decline

2.3.1 PET neuroimaging, Aβ positivity, and tau
stage

Of the 5246 individuals with neuropsychological testing, 3473 also

had baseline Aβ PET imaging (Table 1). PET data were analyzed

using cohort-specific pre-processing pipelines to measure amyloid in

the Centiloid (CL) scale and Aβ positivity assigned as a value of CL

>15.32 Because data from NUS had not been scaled to Centiloids, a

visual assessment was used to define amyloid positivity (Supplemen-

tary Methods). Within the Harmonization cohort 576 individuals with

Aβ PET (286 Aβ+) underwent 18F-Flortaucipir tau (FTP) PET imag-

ing (n[FTP/Aβ+FTP]: ADNI 444/232; NIMROD 15/15; BACS 117/39).

Data were summarized for three Braak staging regions I (entorhinal),

III/IV (inferolateral temporal), and V/VI (extra-temporal neocortical).

Individuals were assigned as either tau negative (T−) or assigned a

tau positive (T+) Braak stage (i.e., individuals are assigned one of four

potential tau categories; T−, T+Braak I, T+Braak III/IV, T+BraakV/VI)

based onpreviously published thresholds33 (SupplementaryMethods).

2.3.2 CC-ACC sensitivity to Aβ and tau pathology

To examine relationships between baseline Aβ and longitudinal

changes in CC-ACC, we use linear mixed effects (LME) models strati-

fied by clinical impairment (i.e., CN orMCI/AD).Within eachmodel the

response variable is the CC-ACC and fixed effect predictor variables

entered as either mean centered continuous variables (i.e., years from

baseline, age at baseline, education) or categorical variables (Aβ status,
sex, cohort). To examine the sensitivity of the CC-ACC to tau severity

we assigned Aβ-positive individuals a Braak tau stage and entered this
as a categorical variable of interest (SupplementaryMethods).

2.3.3 CC-ACC prediction of Aβ status in MCI

We compared both baseline and longitudinal CC-ACC scores to the

MMSE and PACC (ADNI and AIBL Validation cohorts) in classifica-

tion of baseline Aβ status for patients with MCI. We used logistic
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regression to fit baseline and annualized rate of change in cognitive

score as predictors with Aβ status as the target variable. To assess

how well each cognitive score discriminated Aβ status we compared

mean differences and effect sizes as well as the area under the curve

(AUC) of the receiver operating characteristic (ROC) curve. To deter-

mine whether the discriminability of CC-ACC and MMSE or PACC

differed we bootstrapped our sample 1000 times (with replacement)

forcing balanced numbers of Aβ-positive and -negative individuals in

each bootstrap. Within each bootstrap we ran the logistic regression

and assessed significant differences in AUC using a paired t test across

bootstraps.

2.3.4 CC-ACC as a clinically meaningful endpoint
for preclinical AD clinical trials

We compared the sensitivity of the CC-ACC to the PACC and MMSE

as a clinically meaningful endpoint for a hypothetical clinical trial tar-

geting CN Aβ-positive individuals. We assessed performance using

one-sample, two-tailed t tests on the annualized rate of cognitive score

decline for longitudinal follow-up of 1 to 7 years. Annualized rate of

cognitive score change was calculated using the linear least squares fit

of CC-ACC/PACC/MMSE and years from baseline. We compared the

sample size needed for an arm of a hypothetical clinical trial designed

to detect a 25% reduction in annual cognitive score change with a sig-

nificance of 0.05 and a power of 𝛼=0.8.Wedefined the null hypothesis

as the mean and standard deviation of the rate of change calculated

from the observed sample, for which the alternative hypothesis is a

25% reduction of themean of the observed sample.

2.4 Code and data availability

The MATLAB code and raw data to impute missing item-level vari-

ables then calculate the CC-ACC for any new data set are available

online (https://github.com/jjgiorgio/cognitive_harmonisation). Source

data may be requested from the respective cohorts or Dementias

PlatformUK.

3 RESULTS

3.1 Data harmonization

K-NN imputation resulted in a set of 125 real and imputed cognitive

variables.We observed a good agreement between hidden and ground

truth C/H/RAVLT total scores after serial imputation (NUS R2 = 0.75

root mean square error [RMSE] = 8.1; NIMROD R2 = 0.95, RMSE =

3.6; BACS R2 = 0.53, RMSE = 8; AIBL R2 = 0.95, RMSE = 3.4). We

also observed a high consistency between item-to-item correlations

(Figure 2) across cohorts with similar diagnostic categories to ADNI

(i.e., CN, MCI, and AD; Harmonization cohorts: ADNI vs. NUS = 96%;

ADNI vs. NIMROD = 95%; Validation cohort: ADNI vs. AIBL = 97%;

Figure S1 in supporting information). Comparing the entire ADNI sam-

ple with BACS the association between variable correlations is weaker

(R2 = 83.1%); however, re-calculating the correlation matrix in ADNI

for only individuals who are CN at baseline (i.e., to have a more sim-

ilar sample to the BACS cohort) significantly improved the cognitive

associations (R2 = 87.4%, Steiger’s Z = 19.4, P < 0.001). There was

variability in imputation performance across cohorts, with BACS being

the poorest, likely due to the smallest number of overlapping tests

in BACS (30 shared variables). However, we observed highly repro-

ducible loadingsof the real variables and the imputedADNI composites

across each cohort (Figure 2). Further, we observed negligible effects

on imputation quality based on missing not at random mechanisms

(Supplementary Results: Effect of Missing Not at Random, Figures S2

and S3 in supporting information) suggesting that it is the number of

overlapping variables rather than the proportion of missingness that

has the largest impact on imputation quality. Finally, we ran a para-

metric imputation pipeline (Multiple Imputation by Chained Equations

[MICE]) using the mice package in R.34 We observed the correlation

structure between variables was not preserved across cohorts using

MICE and the imputation quality of the ADNI composites was signifi-

cantly poorer than our k-NN approach. Together, this suggests that a

simple parametric imputation approach does not harmonize neuropsy-

chological variables across cohorts aswell as our non-parametric k-NN

imputation (Supplementary Results: Parametric Imputation, Figures

S4, S5, Table S3 in supporting information). For subsequent analyses

the real and imputed values derived from k-NN are used to derive the

CC-ACC as a harmonized cognitive composite.

3.2 CC-ACC association with global cognitive and
functional impairment

For a subsample of 2602 individuals from the Harmonization cohort

(baseline diagnosis CN = 926, MCI = 1086, AD = 433, missing =

157) with baseline and/or follow-up Clinical Dementia Rating (CDR)

we observed a strong association between the CC-ACC and the global

CDR across all years (Kendall’s tau [τ] all years: τ(10875) = −0.63, P

< 0.0001) and throughout each year of follow-up. We repeated these

analyses for a subsample of 1785 individuals from the AIBL Validation

cohort (baseline diagnosis CN = 1086, MCI = 391, AD = 308) observ-

ing a highly similar association between the baseline CC-ACC andCDR

(Kendall’s τ all years: τ(3920)=−0.60,P<0.0001) and throughout each

year of follow-up (Figure S6, Table S4 in supporting information).

3.3 CC-ACC sensitivity to Aβ-related change for
CN individuals

The LME model fitting CN individuals from the Harmonization sample

(n = 667) showed a significant main effect of Aβ status (F[1,2650] =

17.11, P< 0.001, β=−0.379 [−0.558,−0.199]) and a significant inter-

action between baseline Aβ status and time from baseline (F[1,2650]

= 20.722, P < 0.0001, β = −0.1197 [−0.171 –0.0681]; Figure 3a). We

https://github.com/jjgiorgio/cognitive_harmonisation
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F IGURE 2 Item-to-item correlationmatrices. The neuropsychological item to item correlationmatrices: a, entire ADNI sample correlation
matrix; b, NIMROD correlationmatrix; c, NUS correlationmatrix; d, BACS correlationmatrix; e, ADNI correlationmatrix for subsample whowere
cognitively normal at baseline; f, AIBL Validation cohort.We observed highly reproducible loadings of the real variables and the imputed ADNI
composites across each cohort, ADNI-Mem versus C/H/RAVLT total (reference ADNI: R2 = 89.3%; NUS: R2 = 90.5%; NIMROD: R2 = 94.6%; BACS:
R2 = 84.5%; AIBL: R2 = 92.6%) and ADNI-EF versus log(Trails B) (reference ADNI: R2 = 85.1%; NUS: R2 = 89.6%; NIMROD: R2 = 89.9%; BACS: R2

= 78.7%; AIBL, Trails B not collected). ADAS-Cog, Alzheimer’s Disease Assessment Scale Cognitive subscale; ADNI, Alzheimer’s Disease
Neuroimaging Initiative; AIBL, Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing; BACS, Berkeley Aging Cohort Study; BNT,
Boston Naming Test; CDR, Clinical Dementia Rating; DSPAN, Digit Span; (H/C/R)VLT, Hopkins/California/Rey Verbal Learning Tests; INECO,
Institute of Cognitive Neurology Frontal Screening; k-NN, k-nearest neighbors; LM, Logical Memory;MINT,Multilingual Naming Test; MOCA,
Montreal Cognitive Assessment; NIMROD, Neuroimaging of Inflammation inMemory and RelatedOther Disorders study; NUS, National
University of Singapore; RCFT, Rey Complex Figure Test;WAIS,Wechsler Adult Intelligence Scale
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F IGURE 3 Cognitively normal trajectories: a, Harmonization cohort, b, AIBL Validation cohort. Expected trajectories for an Aβ– (blue) and an
Aβ+ (red) 70-year-old womenwith an education of 14 years with no cognitive impairment (i.e., CN) at baseline. Clinically impaired trajectories: c,
Harmonization cohort, d, AIBL Validation cohort. Plots show the expected trajectories for an Aβ− (blue) and an Aβ+ (red) 70-year-old womanwith
an education of 14 years with cognitive impairment (i.e., MCI or AD) at baseline. e, Braak stage trajectories. Expected trajectories for an Aβ+
70-year-old womanwith an education of 14 years who is tau negative (green), tau Braak I positive (blue), tau Braak III/IV positive (red), and tau
Braak V/VI positive (black). Error bars represent standard deviation of the residual of the fit from the LME. Numbers below the plots show the
sample size at different years of follow-up. Discriminatory power of CC-ACC for baseline Aβ status forMCI patients. f, Harmonization cohort, g,
ADNI cohort, h, AIBL Validation Cohort. AUC of the receiver operating characteristic curve for a logistic regression predicting baseline Aβ. Blue
bars represent the AUC for either the baseline CC-ACC or the annualized rate of change of the CC-ACC at different durations of follow-up. Red
bars represent the AUC for either the baselineMMSE or the annualized rate of change of theMMSE at different durations of follow-up. Yellow
bars represent the AUC for either the baseline PACC or the annualized rate of change of the PACC at different durations of follow-up. Error bars
indicate the standard deviation of the AUC across bootstraps. Aβ, amyloid beta; AD, Alzheimer’s disease; ADNI, Alzheimer’s DiseaseNeuroimaging
Initiative; AIBL, Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing; AUC, area under the curve; CN, cognitively normal; CC-ACC,
Cross-Cohort Alzheimer Cognitive Composite; LME, linear mixed effects; MCI, mild cognitive impairment; MMSE,Mini-Mental State Examination;
PACC, Preclinical Alzheimer Cognitive Composite
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observed no potential cohort effects, with a non-significant three-

way interaction among cohort, Aβ status, and years from baseline

F(1,2645) = 1.228, P = 0.2677. CN individuals from the NUS cohort

were removed from this analysis as there are limited Aβ+ samples (n

= 4). Cohort-level variation is shown in Figure S7 in supporting infor-

mation. Repeating these analyses in the CN subsample of the AIBL

Validation cohort (n=1089) showed a significantmain effect of Aβ sta-
tus (F[1,2746]=50.66, P<0.0001, β=−0.4345 [−0.55,−0.314]) and a
significant interactionbetweenbaselineAβ status andyears frombase-

line (F[1,2746] = 62.191, P < 0.0001, β = −0.1505 [−0.1879, −0.113];

Figure3b). Comparing theharmonized samplewith theAIBLValidation

sample showed no significant three-way interaction among cohort, Aβ
status, and years from baseline (F[1,5398] = 1.782, P = 0.181). Thus,

the CC-ACC is sensitive to baseline Aβ status and Aβ-related cognitive
decline and is robust across cohorts.

3.4 CC-ACC sensitivity to Aβ-related change for
clinically impaired individuals

LME models fitting clinically impaired individuals from the Harmo-

nization sample (n = 956; baseline diagnosis: MCI = 683, AD = 273)

showed a significant main effect of Aβ status (F[1,4308] = 154.99, P

< 0.0001, β = −2.5014 [−2.895, −2.107]) and a significant interac-

tion between baseline Aβ status and years from baseline (F[1,4308] =

155.73, P < 0.0001, β = −0.56343 [−0.65195, −0.4749]; Figure 3c).

To test for a significant effect of cohort on the interaction of Aβ and
time from baseline we truncated the sample to include only up to 4

years frombaselinebecauseofdifferences inmaximumfollow-updura-

tion and included the interaction of cohort and education as confounds.

We observed no significant three-way interaction among cohort, Aβ
status, and years from baseline (F[2,3848] = 2.5, p = 0.082). Cohort-

level variation is shown in Figure S7. Similar results were seen in the

clinically impaired subsample of the AIBL Validation cohort (n = 681;

baseline diagnosis:MCI=390, AD=291)with a significantmain effect

of Aβ status (F[1,995] = 103.55, P < 0.0001, β = −2.2164 [−2.6438,

−1.789]) and a significant interaction between baseline Aβ status and
years from baseline (F[1,995] = 51.583, P < 0.0001, β = −0.64948

[−0.8269, −0.47203]; Figure 3d). Comparing the harmonized sample

with theAIBLValidation cohort showed no significant three-way inter-

action among cohort, Aβ status, and years from baseline (F[1,5303] =

0.9, P = 0.34). Thus, for clinically impaired individuals, the CC-ACC is

sensitive to baseline Aβ status as well as Aβ-related cognitive decline

and is robust across cohorts.

3.5 CC-ACC sensitivity to Aβ+ T−, Aβ+ T+
(Braak I, Braak III/IV, Braak V/VI) stage

Finally, we investigated if the CC-ACC differed for Aβ-positive individ-
uals based on the cortical burden of tau. First, we assigned Aβ-positive

individuals as either tau negative (T−; n = 85) or tau positive (T+;

n = 201; stages: T+: Braak I n = 109; Braak III/IV n = 75; Braak

V/VI n = 17). From the LME we observed a main effect of tau status

(F[3,533] = 58.8, P < 0.0001) and a significant interaction between

baseline tau status and time from baseline (F[3,533]= 6.8, P< 0.0005;

Figure 3e). Therefore, the CC-ACC is sensitive to a multimodal bio-

logical staging of AD based on Aβ status and the severity of tau

pathology.

3.6 CC-ACC sensitivity to Aβ status for MCI
patients

Comparing mean differences in baseline CC-ACC for Aβ-positive ver-
sus Aβ-negative MCI individuals (n = 688) we observe significantly

lower CC-ACC at baseline for Aβ-positive individuals. There was also a
significantly greater rate of CC-ACCdecline for Aβ-positive individuals
for 1 to 5 years of follow-up. Results inMCI patients (N=395) from the

AIBL Validation cohort were similar, with significantly lower CC-ACC

at baseline forAβ-positive individuals and a significantly greater rate of
CC-ACCdecline forAβ-positive individuals for 1 to 4 years of follow-up
(Table S5 in supporting information). Results of the logistic regressions

to discriminate Aβ status showed that the CC-ACC performs better

at classifying Aβ status than the MMSE at all time points for both the

Harmonization and AIBL Validation cohorts. In general, the CC-ACC

also outperformed the PACC across follow-up in the ADNI and AIBL

Validation samples (Figure 3f–h; Table S6 in supporting information).

Therefore, we show that the CC-ACC is of equal or greater sensitivity

to detect Aβ status than the MMSE and PACC at prodromal stages of

AD (i.e., MCI).

3.7 CC-ACC as a clinically meaningful endpoint
for preclinical AD clinical trials

Tocompare theutility of theCC-ACCtodetect cognitivedecline forAβ-
positive CN individuals to the current “standard” cognitive composites,

we compared the CC-ACC to the ADNI-PACC/MMSE and the AIBL-

PACC/MMSE for Aβ-positive CN individuals from ADNI and AIBL. We

observed similar performance in detecting cognitive decline between

the CC-ACC and the ADNI-PACC in the same group of individuals. Fur-

ther, we observed that the CC-ACC has marginally better statistical

power than the ADNI-PACC delivering a reduction in required sam-

ple sizes to detect change in all but one of our time windows (Table 2).

Highly similar results were seen in the AIBL CN sample with the CC-

ACC delivering a reduction in sample sizes in all but one window

(Table 2). Taken together we show that the CC-ACC achieves bench-

mark performance compared to the PACC in matched samples from

theHarmonization cohort and theAIBLValidation cohort. TheCC-ACC

performed substantially better than theMMSE in both samples across

follow-up durations.
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TABLE 2 Duration of follow-up to observe cognitive decline in CC-ACC versus PACC for cognitively normal Aβ+ individuals. Mean, standard
deviation, and statistics of the t test against zero using either the CC-ACC, PACC, orMMSE for varying follow up duration. n is the number of
cognitively normal Aβ+ individuals from each sample used to calculate the test statistics. Sample size is number of individuals required to observe
a hypothetical 25% decrease in cognitive decline using the CC-ACC, PACC, orMMSE. Italicized cells represent rates of decline that are
significantly less than zero (P< 0.05).

ADNIMMSE ADNI PACC ADNI CC-ACC
Years of

follow-up n Mean (std) T-stat<0 (P)
Sample

size Mean (std) T-stat<0 (P)
Sample

size Mean (std) T-stat<0 (P)
Sample

size

1 127 −0.091 (1.698) −0.605 (0.546) >2300 0.027 (0.983) 0.311 (0.756) NA 0.015 (0.750) 0.223 (0.824) NA

2 124 –0.153(1.278) –1.33(0.186) >2300 –0.081 (0.763) –1.187 (0.237) >2300 −0.090 (0.764) −1.309 (0.193) >2300

3 49 −0.242 (0.744) −2.278 (0.027) 1188 −0.241 (0.465) −3.636 (0.001) 468 −0.189 (0.400) −3.308 (0.002) 565

4 70 −0.116(0.423) −2.287(0.025) 1683 −0.120 (0.311) −3.233(0.002) 843 −0.113, (0.235) −4.027 (<0.001) 545

5 41 −0.211(0.588) −2.298(0.027) 978 −0.208(0.403) −3.304(0.002) 474 −0.201, (0.375) −3.438 (0.001) 438

6 41 −0.139(0.427) −2.079(0.044) 1193 −0.168(0.271) −3.952(<0.001) 332 −0.177, (0.217) −5.225, (<0.001) 191

7 20 −0.239(0.374) −2.851(0.01) 312 −0.289(0.318) −4.066(0.001) 154 −0.300, (0.255) −5.257, (<0.001) 93

AIBLMMSE AIBL PACC AIBL CC−ACC

1 87 −0.236 (1.603) −1.389 (0.168) >2300 −0.154 (0.753) −1.915 (0.059) >2300 −0.074 (0.708) −0.981 (0.329) >2300

2 115 −0.052 (0.91) −0.641 (0.523) >2300 −0.022 (0.363) −0.654 (0.514) >2300 −0.051 (0.383) −1.418 (0.159) >2300

3 99 −0.073 (0.472) −1.537 (0.127) >2300 −0.087 (0.299) −2.893 (0.005) 1172 −0.094(0.309) −3.035 (0.003) 1065

4 37 −0.118 (0.446) −1.666 (0.104) 1812 −0.086 (0.262) −2.005 (0.053) 913 −0.115 (0.331) −2.107 (0.042) 827

5 45 −0.23 (0.679) −2.325 (0.025) 1095 −0.160 (0.350) −3.059 (0.004) 477 −0.174 (0.338) −3.447 (0.001) 376

6 52 −0.144 (0.355) −3.058 (0.003) 768 −0.102 (0.232) −3.162 (0.003) 516 −0.091 (0.264) −2.478 (0.017) 840

7 22 −0.061 (0.249) −1.146 (0.265) 2105 −0.064 (0.171) −1.760 (0.093) 704 −0.076 (0.142) −2.513 (0.020) 347

Abbreviations: Aβ, amyloid beta; ADNI, Alzheimer’s Disease Neuroimaging Initiative; AIBL, Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing; CC-
ACC, Cross-Cohort Alzheimer Cognitive Composite; MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; PACC, Preclinical Alzheimer Cognitive
Composite.

3.8 CC-ACC executive function and memory
subcomponents are sensitive to Aβ-related change

LMEmodels for longitudinal change in CC-ACCmeasures of executive

functionandmemory inCN individuals fromtheHarmonization sample

(n = 667) showed a main effect of Aβ status for both executive func-

tion (F[1,2650] = 14.30, P < 0.001, β = −0.28 [−0.426, −0.135]) and

memory (F[1,2650] = 13.48, P < 0.001, β = −0.30 [−0.466, −0.142]).

Further, we observed a significant interaction between baselineAβ sta-
tus and time from baseline for both executive function (F[1,2650] =

13.09, P< 0.001, β=−0.067 [−0.104−0.031]) andmemory (F[1,2650]

= 24.18, P < 0.001, β = −0.097 [−0.134 −0.061]; Figure 4a, c). For the

CNAIBL Validation cohort (n= 1089) we showed similar results to the

Harmonization cohort, observing a significant main effect of Aβ sta-

tus for executive function (F[1,2746] = 24.17, P < 0.001, β = −0.248

[−0.348, −0.149]) and memory (F[1,2746] = 40.08, P < 0.001, β =
−0.419 [−0.549, −0.289]). Further, we observed a significant interac-

tion between baseline Aβ status and years from baseline for executive

function (F[1,2746] = 46.75, P < 0.001, β = −0.110 [−0.142, −0.079])

and memory (F[1,2746] = 62.27, P < 0.001, β = −0.131 [−0.164,

−0.0985]; Figure 4b, d).

Finally, the LME models in clinically impaired individuals from the

harmonization sample (n = 956 baseline MCI; N = 273 AD) showed

a main effect of Aβ status for both executive function (F[1,4306] =

118.35,P<0.001, β=−1.514 [−1.787,−1.24]) andmemory (F[1,4306]

= 195.67, P < 0.001, β = −1.61 [−1.83, −1.38]). Further, we observed

a significant interaction between baseline Aβ status and time from

baseline for both executive function (F[1,4306] = 121.5, P < 0.001,

β = −0.354 [−0.417 −0.291]) and memory (F[(1,4306] = 134.56,

P < 0.001, β = −0.252 [−0.295 −0.21]; Figure 4e, g). For the clini-

cally impairedAIBLValidation cohort (n=681; baseline diagnosis:MCI

= 390, AD = 291) we showed similar results to the Harmonization

cohort, observing a significant main effect of Aβ status for executive

function (F[1,996]= 76.09, P< 0.001, β=−1.434 [−1.756,−1.11]) and
memory (F[1,996] = 155.84, P < 0.001, β = −1.474 [−1.705, −1.242])

with a significant interaction between baseline Aβ status and years

from baseline for executive function (F[1,996] = 46.71, P < 0.001,

β = −0.422 [−0.543, −0.3007]) and memory (F[1,996] = 55.69, P <

0.001, β = −0.341 [−0.431, −0.2514]; Figure 4f, h). Comparing how

well each subdomain discriminated Aβ status for CN andMCI individu-

als throughout different duration of follow-up showed that executive

function performed the poorest at discriminating baseline Aβ status

(Supplementary Results: Sub-domain Discrimination of baseline Aβ
status, Figure S8 in supporting information). Thus, our harmonization

approach derives single domain composite scores that are sensitive to

AD pathology for both CN and clinically impaired individuals.

4 DISCUSSION

In this report, we use a simple imputation approach on test and sub-

test cognitive data to show that diverse AD cognitive test batteries

can be harmonized across cohorts. The exemplar cognitive compos-

ite from our harmonized data (i.e., CC-ACC) showed high sensitivity
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F IGURE 4 Executive function andmemory trajectories. CNmemory and executive function trajectories a, c. Harmonization cohort; b, d. AIBL
Validation cohort. Expected trajectories for an Aβ− (blue) and an Aβ+ (red) 70-year-old womenwith an education of 14 years with no cognitive
impairment (i.e., CN) at baseline. Error bars represent standard deviation of the residual of the fit from the LMEmodel. Numbers below the plots
show the sample size at different years of follow-up. Clinically impairedmemory and executive function trajectories. e, g, Harmonization cohort; f,
h, AIBL Validation cohort. Expected trajectories for an Aβ− (blue) and an Aβ+ (red) 70-year-old womanwith an education of 14 years with
cognitive impairment (i.e., MCI or AD) at baseline. AD, Alzheimer’s disease; AIBL, Australian Imaging, Biomarker & Lifestyle Flagship Study of
Ageing; CN, cognitively normal; LME, linear mixed effects; MCI, mild cognitive impairment
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to Aβ-related cognitive decline both in the preclinical and prodromal

stages of AD. Critically, we show that this Aβ-related decline is robust

across cohorts and has better or equal performance compared to the

PACC. Furthermore, we show that the CC-ACC is also sensitive to a

fine-grained pathological staging based on both Aβ positivity and tau

severity at baseline. These findings provide strong evidence that our

harmonization approach can be used to derive specific and sensitive

cognitive composites across very different datasets. Our easy-to-

implement tool can be used to test hypotheses and validate models

across cohorts as well as retrospectively pool samples to improve sta-

tistical power and detect subtle treatment effects on cognition. We

provide code and instructions to readily apply our approach on new

datasets (https://github.com/jjgiorgio/cognitive_harmonisation)

We used non-parametric k-NN to impute differentially sampled

neuropsychological data between cohorts, replicating disease-related

covariance patterns across all cohorts while achieving good predic-

tions when imputing held out data. The result of this is a full set of

125 cognitive variables for > 18,000 neuropsychological assessments.

While previous work has used parametric imputation approaches on

similar cognitive data to impute missing data,24,26 these approaches

are limited by the structure of missing data and may have poor

performance due to differential sampling across cohorts. A recent non-

parametric approach showed good performance harmonizing some

variables between AIBL and ADNI data;35 our work differs as we have

integrated multiple cohorts with varying degrees of overlap resulting

in a 3-fold increase in variables available for subsequent imputation.

In addition, we extend previous work35 providing a benchmarked

approach to use the resultant imputed data to derive the novel CC-

ACCwith all required code and data readily available in our standalone

toolbox. Here, we used k-NN to overcome constraints on parametric

approaches as it is less biased by the structure of the missing data

(i.e., missing at random).27 Further, we performed a stepwise approach

imputing data between cohorts that have maximal overlap at each

stage, aiming tomitigate possible issueswhen large proportions of data

are missing.36 To maintain a more accurate representation of the data

structure of the imputed data, we optimized the number of neighbors

(k) ensuring that a lower k was preferred.37 This reliably reproduced

covariance patterns between item-level variables, suggesting the har-

monized data can be used in the empirical derivation of cognitive

composites that leverage the covariance between variables. Together,

we show k-NN provides a simple, robust, and computationally effi-

cient approach to harmonize item-level neuropsychological data from

independent cohorts regardless of size.

Using our global measure, the CC-ACC, we integrate multiple cog-

nitive domains showing benchmarked sensitivity to Aβ-related decline
across clinical and tau pathological stages in different cohorts. In

addition, we show the component domains of the CC-ACC (i.e., exec-

utive function and memory) are also sensitive to Aβ-related change.

Our approach provides a substantial advantage over previous harmo-

nization approaches, which assume a single driving latent factor of

cognition and use this as the common scale to harmonize cohorts.38

Further, our strategy of deriving component scores from a combi-

nation of tests may also improve the ability to detect relationships

between cognitive domains and their biological underpinnings, which

can be affected by the degree of missingness when using item-level

analysis.39 Recent approaches have included multiple domains in their

harmonization; however, the selection of tests and anchor points for

these domains requires expert assessment and restricts the freedom

to interrogate cognitive variables on amore granular level.40

The CC-ACC calls on methods used to derive the PACC10,11 but

differs in threemain regards. First, the CC-ACC takes all possible item-

level variables (real and imputed) and derives a single factor for either

memory (2 vs. 25 scores), executive function (1 vs. 21 scores), and gen-

eral cognition (1 vs. 4 scores). Second, the CC-ACC does not apply a

double weight to the memory domain. Previous work has shown that

cognitive composites that increase the weighting of executive7,12,13

and general41 domains increases sensitivity to AD-related change.

Such findings come with the caveat that poor performance on exec-

utive function tests may be initially driven by the pathological short-

term memory loss.42 Finally, the CC-ACC does not choose different

item-level variables across different cohorts. This variability in variable

selection makes the PACC difficult to interoperate and may introduce

artificial cohort differences.11

Our harmonization approach has several strengths. First, we have

developed and benchmarked an approach for researchers to interop-

erate their cognitive data and thus greatly improve their statistical

power. Using our approach to derive a set of cognitive variables cov-

ering multiple cognitive domains researchers can validate, derive, and

benchmark different cognitive composites. This alleviates a major

restriction in clinical research as cohorts are now able to be merged

for neuroimaging data and cognitive outcomes. Although standardiza-

tion in neuropsychological testing protocols is being promoted,43,44

our approach offers flexible harmonization between pre-existing and

future research cohorts. Second, our harmonization software provides

a way to test the efficacy of imputation, by (1) assessing the vari-

ance explained in a holdout variable and (2) calculating the covariance

between real and imputed tests, and comparing these for the tar-

get (i.e., a new sample) and reference cohort. Knowing the minimum

amount of data required to impute across cohorts is difficult as the

efficacyof imputationwill not only bedeterminedby the absolute num-

ber of variables acquired but also the domains and ranges of available

data.37 As such we have not attempted to empirically derive the opti-

mal or minimum data required to effectively impute data, but suggest

researchers confirm the fidelity of imputation. Finally, we have shown

using a simple derivation procedure based on existing literature that

our harmonized data are sensitive to AD-related change.10 However,

any number of targeted data-driven approaches can be applied follow-

ing the derivation of our harmonized data set. These may include the

derivation of single ormultiple domain cognitive composites, ormining

of paired cognitive and biological (i.e., imaging, biofluid, or genetic) data

to assess relationships in healthy aging or AD,45,46 as well as modeling

the temporal course of the disease.47,48

We consider the following potential limitations to our approach.

First, we combined data for each domain using a variance-normalized

mean, deriving a single factor score. This approach was not psy-

chometrically driven and ignores potential subdomain factors and

https://github.com/jjgiorgio/cognitive_harmonisation
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differential scaling of individual variables that could be accounted for

using latent modeling approaches.49,50 However, our harmonization

approach replicates item-to-item covariance, suggesting the harmo-

nized data are well suited for deriving psychometrically derived com-

posites which may track changes in cognitive domains due to aging51

or AD pathology.52 Second, prior to imputation we scaled several sim-

ilar but not identical scores. This approach has been used in previous

harmonization studies;53 however, the scaled values may not exactly

replicate the underlying score.54 Therefore, a more intensive pre-

harmonization approach may improve performance.55 Our strategy of

deriving factor scores basedon the covariancebetween testsmayame-

liorate some of this random variability in single variable alignment.

Third, our derivation of the cognitive composite, analogous to the

PACC, did not take into account potential practice effects, which are

known to show differences in Aβ-related cognitive decline.56 Future

work using psychometric approaches such as item response theory

applied to the harmonized cognitive data could explicitly model such

practice effects and capture more fine-grained item-level weighting

that maymore closely track AD-related cognitive decline.57–60 Fourth,

despite their widespread use, our reference benchmark tests have

intrinsic limitations themselves. We note that all cohorts in our anal-

ysis included the MMSE, suggesting that the test remains prevalent

in research use; however, the MMSE has substantial limitations such

as ceiling effects and proprietary restrictions.61 Notwithstanding, it

has remained a comparator benchmark for the performance of other

composite scores such as ADNI-Mem15 and PACC.11 Further, we note

although thePACC is a current standard cognitive composite it is a non-

psychometrically derived composite score.10 Finally, test and subtest

variables that are commonly used in AD research may be missing from

ourharmonized cohort.Our approach is easily built on asmoredata are

made available, allowing us to expand the library of neuropsychological

variables as well as increase sample heterogeneity.

Composite cognitive scores across cohorts with diverse neuropsy-

chological source variables are an important step forward. We hope

that composites such as CC-ACC will facilitate the generation and

testing of hypotheses in independent datasets, improve trials design

throughvalidationof in silicomodels and stratification tools, andenable

pooling across cohorts of data from under-represented groups.
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