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Abstract

HSD10 disease is a rare X-linked mitochondrial disorder caused by pathogenic

variants in the HSD17B10 gene. The phenotype results from impaired

17β-hydroxysteroid dehydrogenase 10 (17β-HSD10) protein structure and func-

tion. HSD10 is a multifunctional protein involved in enzymatic degradation of

isoleucine and branched-chain fatty acids, the metabolism of sex hormones and

neurosteroids, as well as in regulating mitochondrial RNA maturation. HSD10

disease is characterised by progressive neurologic impairment. Disease onset is

varied and includes neonatal-onset, infantile-onset and late-onset in males.

Females can also be affected. Our index case is a 45-month-old female, who ini-

tially presented at 11 months of age with global developmental delay. She subse-

quently began to lose previously acquired cognitive and motor skills starting

around 29 months of age. Brain MRI showed abnormalities in the basal ganglia

indicative of possible mitochondrial disease. Urine organic acid analysis revealed

elevations of 2-methyl-3-hydroxybutyric acid and tiglyglycine. HSD17B10 gene

sequencing revealed a likely pathogenic variant, NM_001037811.2:c.439C>T

(p.Arg147Cys) inherited from her mother, expected to be causative of HSD10

disease. Her X-chromosome inactivation study is consistent with a skewed

X-inactivation pattern. We report a female patient with HSD10 disease cau-

sed by a missense pathogenic variant, Arg147Cys in the HSD17B10 gene. The

patient is the fifth severely affected female with this disease. This case adds

to the small number of known affected families with this highly variable dis-

ease in the literature. These findings support the possibility of X-inactivation

patterns influencing the penetrance of HSD10 disease in females.
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Synopsis
HSD10 disease is a rare X-linked mitochondrial disorder, a hallmark feature of
this disorder is impairment of HSD10 protein function. 17β-HSD10 is a
multifunctional protein involved in various metabolic pathways as well as
mitochondrial tRNA processing. Basic urine organic acid analysis typically
reveals elevated levels of intermediate metabolites of isoleucine metabolism.
Most affected individuals have neurological regression in the early infantile or
early childhood period. Approximately 13% of females are severely affected.
Data suggests that phenotypic severity among females may be linked to X-
chromosome inactivation (XCI).

1 | INTRODUCTION

17β-Hydroxysteroid dehydrogenase type 10 (17β-HSD10)
deficiency or HSD10 mitochondrial disease (OMIM
300256) is an X-linked disorder caused by dysfunction of
the 17β-HSD10 protein. 17β-HSD10 is encoded by the
HSD17B10 gene, which maps to chromosome Xp11.2.
The 17β-HSD10 protein is a multifunctional enzyme,
involved in the metabolism of isoleucine1 and branched
chain fatty acids.2 This protein is a component of mito-
chondrial ribonuclease P (RNase P) localised in
mitochondria,3 which contributes to mitochondrial RNA
posttranscriptional processing.4,5 Moreover, 17β-HSD10
protein also plays an important role in the metabolism of
sex steroid hormones, neurosteroids,6 and the mainte-
nance of neurosteroid homeostasis; all critical to brain
development.7 Pathology of HSD10 disease is thought to
be caused by general mitochondrial dysfunction owing to
its role in mitochondrial tRNA processing4,8 along with
abnormal neurosteroidogenesis.7 17β-HSD10 protein is
found in various human tissues and is most abundant in
liver.3 Levels of 17β-HSD10 protein vary among different
brain regions, it is found most abundantly in the hippo-
campus. The hypothalamus, thalamus, hippocampus, and
brain stem have higher 17β-HSD10 protein levels com-
pared to the cerebral cortex, cerebellum and spinal cord.9

Pathogenic variants in the HSD17B10 gene cause HSD10
disease, which is also known as 2-methyl-3-hydrox-
ybutyryl-CoA dehydrogenase (MHBD) deficiency due to
the enzymes activity in the isoleucine degradation path-
way, resulting in elevation of 2-methyl-3-hydroxybutyrate
and tiglylglycine in urine organic acid analysis.10,11 This
older nomenclature is felt to be misrepresentative of the
complex pathophysiology of this disease therefore, HSD10
disease is the preferred nomenclature.

HSD10 disease is a rare X-linked disorder characterised
by progressive neurodegeneration, seizures, cardiomyopa-
thy, hypotonia, ataxia, microcephaly, and visual impair-
ment. This disease is most commonly described in males,
but females may also be affected due to non-random

X-chromosome inactivation (XCI).12,13 The onset of this dis-
ease may be neonatal, infantile or late childhood onset. The
phenotypic spectrum ranges from asymptomatic to severe
with progressive neurological regression in the neonatal
period.12,14-16 Severely affected children may die in infancy
or early childhood as a result of fulminant cardiac failure,
refractory lactic acidosis or neurological regression.12,14,15

A few males with no or minimal neurological involvement
have been reported.16-19 The neurologic examination can
reveal microcephaly, truncal hypotonia, ataxia, myoclonus,
choreoathetoid movements, dystonia, and spastic-
ity.15,16,20-22 Ophthalmologic manifestation includes nystag-
mus, astigmatism, strabismus, optic atrophy, retinopathy,
pigmentary retinopathy, and non-pigmentary retinopa-
thy.15,20,22 Patients may present during the first few days of
life with lactic and metabolic acidosis, as well as hypoto-
nia.12,20 Regression and/or metabolic decompensation may
be triggered by illness.14,21 The diagnosis of HSD10 disease
is established in affected individuals with elevation of
2-methyl-3-hydroxybutyrate and tiglylglycine in urine
organic acid analysis plus the detection of a HSD17B10
pathogenic variant or significantly reduced activity of the
MHBD enzyme in fibroblasts or leukocytes. It should be
mentioned that the level of enzyme activity does not corre-
late well with disease severity.15,19 HSD17B10 pathogenic
variants disrupt the structure and function of mitochondrial
RNase P protein complex and this disruption is independent
of MHBD enzyme activity.4,23 Acylcarnitine profile can be
normal or slightly abnormal with mild elevation of C5:1
with or without elevation of C5-OH.10,20,24 There is cur-
rently no effective treatment of clinical symptoms. Dietary
limitation of isoleucine intake has been shown to reduce
2-methyl-3-hydroxybutyrate and tiglylglycine in urine, how-
ever this has been reported without clinical improvement.15

Brain imaging abnormalities in individuals with HSD10 dis-
ease are variable and may include frontotemporal atrophy,
diffuse cerebral atrophy, decreased white matter volume,
progressive cortical and subcortical atrophy, periventricular
white matter lesions, hypoxic ischemic encephalopathy
(HIE)-like lesions, enlarged ventricles, occipital infarction,
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signal abnormality in putamen, increased T2 signal in the
basal ganglia, dentate nuclei and pons, and Leigh-like
lesions.11,12,22,24,25 Normal MRI findings have been reported
in some cases.12,16 An elevation of brain lactate can be seen
by MR spectroscopy in some cases.8,12

Since its first description in 2000,20 34 index cases and
29 relatives from different ethnic backgrounds with patho-
genic variants in HSD17B10 gene have been reported.
Approximately 10% of index cases were females. Among
4 index females, 3 cases were reported to have infantile
onset neurological features,12,24,26 and 1 case was reported
to have a pathogenic variant in CACNA1A gene in addi-
tion to HSD10 disease which could have synergistically
contributed to her neurologic symptoms.16 It was previ-
ously reported that this gene is the first of the gene cluster
at Xp11.2 to escape inactivation.27 Approximately 10% of
X-linked genes show varied degrees of expression between
female individuals and tissues, which results in a range of
disease severity in heterozygous females.28,29 However,
this conclusion is not consistent between studies.
A subsequent quantification study of HSD17B10 cDNA
in skin fibroblasts indicated that this gene does not
escape XCI. This may point to potential effects of XCI
in the severity of HSD10 disease in females.13 Skewed
XCI or non-random XCI is generally known to play a
role in the clinical variability of X-linked disorders seen
in female carriers of X-linked dominant conditions.
Skewed XCI is common in females and the extent of
skewed XCI differs greatly.30

In this report, we describe an African American
female with X-linked HSD10 disease caused by an
NM_001037811.2:c.439C>T (p.Arg147Cys) pathogenic
variant identified by HSD17B10 gene sequencing who
presented with neurologic deterioration and an abnormal
brain MRI. In this study, we present a severely affected
female with skewed XCI, and explore the role of XCI in
modulating HSD10 disease in females.

2 | CASE PRESENTATION

We report a 45-month-old African American female who
was admitted to our facility for evaluation of developmen-
tal delay and regression. She was born at 34-weeks gesta-
tional age via C-section to a 28-year-old G2P1 mother.
Post-natal course was complicated by mild jaundice and
bradycardia, which resolved before discharge. Newborn
screen by tandem mass spectrometry was normal. Family
history is positive for mild learning disability in her
mother. At 11 months of age, she was noted to have global
developmental delay and low muscle tone; she was not
able to sit or crawl. The patient started to sit independently
by age 17 months and walk by age 2 years. At 18 months
of age, she was referred for genetic evaluation. Chromo-
some SNP microarray analysis, plasma amino acid analysis
and urine organic acid analysis were reported to be normal.
A series of MRI scans of the brain have evolved over time.
Her first brain MRI at age 11 months shows an isolated

FIGURE 1 (A) T2 axial MRI of the Brain from 11 months of age. An edematous lesion is present within the right putamen nucleus

(large arrow). The caudate nuclei remain radiographically unaffected (thin arrows). (B) T2 axial MRI of the brain at 15 months of age

showing the formerly edematous right-sided lesion of the putamen evolving into cystic cavitation (thick arrow). (C) T2 axial MRI of the

brain at 2 years, 5 months of age showing massive edematous changes of the caudate nuclei (thin arrows), as well as of the putamen nuclei

bilaterally (thick arrows)
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edematous lesion affecting the lateral aspect of the right
putamen nucleus (Figure 1A). A follow-up MRI of the
brain at age 15 months shows evolution of the right puta-
men lesion into cystic cavitation (Figure 1B).

At 29 months of age, she experienced her first seizure,
described as a tonic-clonic seizure, and began to show
regression in her cognitive and motor functions. Her
most recent brain MRI at age 31 months shows signifi-
cant confluent edematous changes in both caudate nuclei
as well as scattered edematous changes within the puta-
men nuclei bilaterally with sparing of the thalamus,
globus pallidus and brainstem nuclei (Figure 1C). At age
32 months, she was admitted for further investigation
and treatment. At her peak abilities, she was able to walk
and run, feed herself with her hands and say approxi-
mately two words. On admission, she was not able to
walk, stand or feed herself. Examination revealed normal
growth parameters: weight 12.1 kg (26.5th centile),
height 86 cm (4th centile), and head circumference
45.5 cm (5th centile). She had no evidence of dysmorphic
features or craniofacial anomalies. Her neurologic exami-
nation was notable for low muscle tone on all extremi-
ties. Deep tendon reflexes were 2+ in the biceps and
patella bilaterally without clonus. Ophthalmologic exami-
nation showed vascular attenuations, pale optic disc and
retinal dystrophy of both eyes. Auditory brainstem response
was reported to be normal. Echocardiogram showed normal
cardiac anatomy and function. Electrocardiogram was
reported to be normal. Blood lactate was mildly elevated
at 2.9 mmol/L (0.5-2.2 mmol/L), urine organic acid anal-
ysis showed an increase in lactic acid, 2-methyl-
3-hydroxybutyric acid and tiglyglycine without elevation
of 2-methyacetoacetic acid, which is consistent with
2-methyl-3-hydroxybutyryl-CoA Dehydrogenase deficiency
(MHBDD, or HSD10 disease). HSD17B10 gene sequencing
revealed a likely pathogenic variant, NM_001037811.2:
c.439C>T (p.Arg147Cys). In silico analysis support that
this variant has a deleterious effect on protein structure
and function.31 Her clinical presentation, biochemical
findings and molecular result were consistent with the
diagnosis of HSD10 disease. The patient has inherited this
variant from her mother. To elucidate the factors contrib-
uting to distinct clinical phenotypes in the proband and
her mother, XCI analysis of the Androgen Receptor
(AR) locus was performed on genomic DNA from blood
samples from the patient and her mother. XCI ratios of
77:23 and 68:32 were observed in the patient and her
mother, respectively.

On most recent follow-up visit to assess functional
status at age 37 months, the patient's mother reported
increased mobility. She was non-verbal. She was able to
take a few independent steps without support and has
frequent falls with a widened base of support and over-

pronation of the feet. Caregivers reported that she could
self-feed with her hands, but she had difficulty manipu-
lating and effectively grasping a utensil to bring food to
her mouth.

3 | DISCUSSION

We report an Arg147Cys variant in HSD17B10 gene in an
African American female patient with HSD10 disease.
HSD10 disease is a rare X-linked mitochondrial disorder,
which occurs primarily in males and rarely in females.
Thus far, only four females have been reported to have
neurologic features related to HSD10 disease.12,16,24,26 How-
ever, one case had co-occurring disease which very likely
contributed to her neurologic symptoms.16 Several female
carriers have not shown signs and symptoms of neurologic
regression. There have been 16 different missense variants
reported to cause HSD10 disease.12,15-17,22,26,32,33 Our case
also has a missense variant that has not been previously
described in literature. A correlation between the
HSD17B10 variants and clinical severity has not been
established in the majority of cases due to the rarity of each
variant. Arg130Cys is the most frequent variant seen in
approximately 30% of index cases.

The HSD17B10 gene has 261 codons in its main tran-
script NM_004493.3. Referring to the functional
domain map for HSD17B10-encoded HSD10 protein,8

the N-terminus of the HSD10 protein contains the NAD-
binding domain (codons 17-23) and subunit interaction
domains (covered within codons 100-146), while the C-
terminus contains the dehydrogenase domain (covered
within codons 155-172), the substrate binding domain
(codons 203-220), and the tetramerization domain (in the
remaining coding region). As previously described, the
dehydrogenase activity was not a reliable indicator for
predicting the phenotypes. The protein structural
changes in the functional tetramer complex and the suc-
cessive functional damages to the tetramer may contrib-
ute more to the disease severity. A potential correlation
between disease severity and the mutated domain was
observed. Pathogenic variants around the dehydrogenase
domain (Ala154Thr, Ala157Val, and Gln165His) contrib-
uted to the non-progressive/mild disease type, while
those around the subunit interaction domain (Asp86Gly,
Leu122Val, Arg130Cys, and the present variant
Arg147Cys), the substrate binding domain (Arg192Arg=,
Pro210Ser, and Lys212Glu), and the tetramerization
domain (Arg226Gln, Asn247Ser, and Glu249Gln) contrib-
ute to the classic neonatal and infantile onset of develop-
mental regression. The HSD10 protein functions through
a homotetrameric complex, which catalyses mitochon-
drial tRNA (mt-tRNA) maturation as well as mt-tRNA
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TABLE 1 Genotypes and phenotypes summary of females with pathogenic/likely pathogenic variant in HSD17B10 gene

Case Genotype Phenotype Brain MRI

Our report Index case (45
months)

c.439C>T
p.Arg147Cys

Infantile onset
Developmental delay

Regression
Abnormal brain MRI

Lesions at basal
ganglia

Mother of index
case (32 y)

c.439C>T
p.Arg147Cys

Mild LD NA

Ensenauer et al., 200224 Patient 1 c.388C>T
p.Arg130Cys

Infantile onset
Psychomotor and speech
delay

Mild frontoparietal
cortical atrophy

Poll-The et al., 200422 Mother of index
case

c.364C>G
p.Leu122Val

Asymptomatic NA

Perez-Cerda et al., 200512 Patient 1 (10y) c.740A>G
p.Asn247Ser

Infantile onset
Psychomotor delay
Ataxic gait
SNHL

Normal (at age 29
months)

Mother of
patient 1

p.Asn247Ser Asymptomatic NA

Mother of
patient 3

c.388C>T
p.Arg130Cys

Borderline LD NA

Cazorla et al., 200725 Mother of index c.388C>T
p.Arg130Cys

Mild ID NA

Lenski et al., 200732 Mother of index
case

c.574C>A
p.Arg192Arg

Asymptomatic NA

GM of index
case

c.574C>A
p.Arg192Arg

Asymptomatic NA

Maternal great
GM of index
case

c.574C>A
p.Arg192Arg

Asymptomatic NA

Maternal aunt
of index case

c.574C>A
p.Arg192Arg

Asymptomatic NA

García-Villoria et al., 200915 Mother of
patient 3

c.628C>T
p.Pro210Ser

Mild ID NA

Maternal
grandmother
of patient 3

c.628C>T
p.Pro210Ser

Mild ID NA

Mother of
patient 4

c.388C>T
p.Arg130Cys

Borderline LD NA

Maternal aunt
of patient 4

c.388C>T
p.Arg130Cys

Borderline LD NA

Mother of
patient 6

c.628C>T
p.Pro210Ser

Borderline LD NA

Seaver et al., 201138 Mother of index
case

c.194T>C
p.Val65Ala

Asymptomatic NA

Zschocke et al., 201214 Mother of
patient 2

c.388C>T
p.Arg130Cys

Asymptomatic NA

Fukao et al., 201418 Mother of index c.460C>A
p.Ala154Thr

Not described NA

(Continues)
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methylation through a subcomplex with the methyl-
transferase subunit in the mitochondrial RNase P com-
plex (TRMT10C) for methyltransferase activity. Vilardo
et al (2015)23 revealed that Arg130Cys, Pro210Ser,
Arg226Gln, and Asn247Ser significantly prevented mt-
tRNA from maturation. In contrast, Arg130Cys,
Arg226Gln and Asn247Ser in the tetramer subunit inter-
acting domains (subunit interaction domain and
tetramerization domain) had various levels of impact to
the interaction of HSD10 with TRMT10C. Therefore,
HSD17B10 pathogenic variants around tetramer subunit
interacting domains contributing to the mt-tRNA matu-
ration and downstream function are more likely causing
a more severe phenotype of disease than those variants

resulting in defective HSD10 dehydrogenase function.
Due to the limited number of variants evaluated in these
studies, correlation of functional impact of variants in dif-
fering domains remains to be seen

Thirty females with heterozygous pathogenic variants
in HSD17B10 including index cases and relatives have
been reported Table 1. Among 30 heterozygous females,
approximately 13% (4/30) including our case have infan-
tile onset HSD10 disease. All four females with HSD10
disease, including our case, present with delayed neuro-
logic development and/or regression, which is similar to
the clinical presentation seen in affected males.12,16,24,26

One had a coexisting genetic diagnosis, CACNA1A-
related developmental and epileptic encephalopathy,

TABLE 1 (Continued)

Case Genotype Phenotype Brain MRI

Richardson et al., 201533 Mother of index
case

c.194T>C
p.Val65Ala

LD
Autism
Chromosome 3q29
microduplication syndrome

NA

Akagawa et al., 201617 Mother of male
siblings

c.460C>A
p.Ala157Val

Not described NA

Oerum et al., 201726 Mother of
patient 1

c.526G>A
p.Val176Met

Asymptomatic NA

Patient 2 c.364C>G
p.Val12Leu

Infantile onset
Hypotonia
Cerebella ataxia
Developmental delay
Dilated cardiomyopathy

NA

Waters et al., 201916 Mother of index,
Family 1 (39
y)

c.364C>G
p.Leu122Val

Asymptomatic NA

Mother of index,
Family 2 (32
y)

c.364C>G
p.Leu122Val

Asymptomatic NA

Index, Family 3
(33 months)

c.364C>G
p.Leu122Val

Neonatal onset
Developmental delay
Hypotonia
Axial hypotonia
Ataxia
Pathogenic variant in
CACNA1A

Normal (at age 23
months)

Mother of index,
Family 3 (21
y)

c.364C>G
p.Leu122Val

Mild intellectual deficiency
Speech difficulty

NA

Mother of index,
Family 4 (31
y)

c.364C>G
p.Leu122Val

Asymptomatic NA

Maternal GM of
index, Family
4 (59 y)

c.364C>G
p.Leu122Val

Asymptomatic NA

Abbreviations: GM, grandmother; ID, intellectual disability; LD, learning disability; NA, not applicable; SNHL, sensorineural hearing loss.
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which is most likely consistent with her neurological
symptoms. Approximately 30% of heterozygous females
present with an array of symptoms including learning dis-
ability, borderline intellectual disability, and dysarthria.
Autism was reported in a mother of index case; however,
she was also diagnosed with 3q29 microduplication syn-
drome. Roughly, 43% of heterozygous female were reported
as asymptomatic.16,22,26,32 Phenotype of 2 heterozygous
females (6.7%) were not described. Skewed XCI or non-
random XCI is generally known to play a role in the clini-
cal variability of X-linked disorders in female carriers.
Moderately skewed and highly skewed XCI are defined
as having an XCI ratios of 80:20 and >90:10, respec-
tively.34 These ratios have been described in many
studies.35 However, it has not been proven whether
HSD17B10 is affected by XCI. Correlation with a
skewed XCI pattern was noted in a previous study and
our case.13 A skewed X-inactivation pattern (80:20)
was observed in cultured fibroblasts from a severely
affected female with HSD10 disease, and a random
X-inactivation pattern was observed in a female with a
mild phenotype.13 Our proband has an XCI ratio of
77:23, and while this is not clinically skewed by defini-
tion, it is worth noting that this ratio is skewed to an
extent where it is closer to moderate (80:20) than it is
to random XCI, 50:50. This XCI pattern and variant,
Arg147Cys which is located around the subunit inter-
action domain, may be contributing to the phenotypic
severity in this case. XCI study of additional tissues
was not done; however, patterns of XCI are typically
consistent across blood and tissues in young female
populations.36,37 Therefore, the XCI ratio in blood
likely represents the XCI ratio in other tissues. The
mother, who has a history of mild learning disability,
showed an XCI ratio of 68:32, which is considered not
clinically significant. The observations in this study
support the role of the XCI pattern in the clinical vari-
ability of HSD10 disease.

We report a female patient with HSD10 disease. The
XCI pattern in this case supports the possibility of
X-inactivation playing a role in HSD10 disease in
females. It still remains to be seen if the XCI pattern is
closely correlated with the phenotypic variability among
reported females and/or if there are other factors under-
pinning the wide array of severity observed among both
males and females. Thus far, research into whether the
HSD17B10 gene escapes XCI is inconclusive. There are
also several reports of mildly affected or apparently
asymptomatic males in families with the same patho-
genic variants as severely affected male probands who
are not carrying the Leu122Val attenuated variant. Func-
tional studies of the known causative variants in general
and further analysis of XCI patterns among females are

warranted to further characterise disease mechanisms
and to provide insight into the observed variability
among both males and females carrying pathogenic vari-
ants in the HSD17B10 gene.
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