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Introduction
Cancer is one of the leading causes of death worldwide. 
A large percentage of patients are diagnosed at an advanced 
stage, making the removal of tumors in this population prob-
lematic. As a result, the overall 5-year survival rate is low for 
this cohort of patients.1 Therefore, early stage detection would 
be helpful in reducing cancer mortality because treatment 
might be most effective at the earliest stages of the disease. 
For this reason, a well-established assessment model would 
greatly benefit patients, clinicians, and researchers because it 
would allow individuals at high risk to be identified at the 
earliest stages.

Cancer is a polygenic disease in which many genetic fac-
tors appear to play important roles in disease development in 
its different subtypes of cancer.2 To date, more than 50 can-
cer genome-wide association studies (GWAS) incorporating  
more than 15 different malignancies have been reported 

identifying over 100 genomic cancer susceptibility regions.3 
The cancer-associated genetic variants identified in GWAS or 
candidate gene association studies have been shown to collec-
tively enhance cancer risk prediction, improve our understand-
ing of carcinogenesis, and possibly result in the development 
of targeted treatments for patients. For example, clinicians 
already use these kinds of guidelines in making decisions 
about assessments in order to identify carriers of BRCA1 and 
BRCA2 mutations, which indicate very high risks of breast 
and ovarian cancer.4 The number of rapidly discovered cancer-
associated genetic variants continues to rise and is reflected 
by the increasing number of published articles looking closely 
at the performance of genetic variants in popular cancer risk 
prediction models. These studies have prompted an updated 
assessment of the associations between genetic variants and 
cancer risk. Nevertheless, to date there has been no literature 
review concerning these publications, which provides an initial 
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assessment. This paper examines in detail the performance of 
cancer risk prediction models with genetic variants by exam-
ining the relevant studies through PubMed, Medline, and 
Web of Science. This review article summarizes what has 
been learned regarding the contribution of genetic variants as 
an alternative or as a supplement to the components of risk 
prediction models for cancer including breast cancer, prostate 
cancer, testicular cancer, lung cancer, and bladder cancer, as 
well as cancers of the head and neck.

breast cancer
Although the incidence rate of breast cancer has been declining 
since 1998–1999, there will still be 232,670 new female cases 
and 2,360 new male cases in the US in 2014 (http://www.
cancer.gov/cancertopics/types/breast). Early stage detection of 
breast cancer is very important because treatment can be more 
effective at the early stages. For this reason, a well-established 
assessment model that could identify individuals at high risk 
would greatly benefit patients, clinicians, and researchers in 
the prevention and intervention of breast cancer.

Risk prediction models have been widely used to identify 
individuals with high risk of breast cancer. The Gail model,5,6 
for example, is used by FDA to screen women with high risk 
for chemopreventive use of tamoxifen. Traditional risk factors 
like family history, age at menarche, age at first live birth and 
number of previous breast biopsies, mammographic density, 
and diagnosis of atypical hyperplasia have been used to predict 
breast cancer as well.

Recently, genetic susceptibility risk prediction has been 
improved with the discovery of more than 40 risk-associated 
single-nucleotide polymorphisms (SNPs) from GWAS. Sev-
eral breast cancer susceptibility genes have now been identi-
fied, including BRCA1,* BRCA2, TP53, and PTEN/MMAC1. 
Approximately, 60% of women with an inherited mutation in 
BRCA1 or BRCA2 will develop breast cancer sometime dur-
ing their lives, compared with about 12% of women in the 
general population. Women with inherited BRCA1 or BRCA2 
gene mutations also have an increased risk of ovarian cancer. 
Thus, evaluating these genetic susceptive predicting models 
has become crucial during clinical decision-making in order 
to help physicians and patients to determine whether a genetic 
testing is warranted.

Wacholder et al.7 evaluated the Gail model using 5,590 
cases and 5,998 control subjects, which are from four US 
cohort studies as well as from a Poland case control study. The 
range of age of all the subjects is from 50- to 79-years old. The 
area under the receiver-operating-characteristic (ROC) curve 
(AUC)** is 58% for four traditional risk factors. After incor-
porating 10 genetic variants into the prediction using a logis-
tic regression model, the Wacholder study achieved a 61.8% 
AUC, a 3.8% increase over the model without genetic variants. 

Another notable study in breast cancer risk prediction was done 
by Machiela et al.8 In this study, a total of 1,145 breast cancer 
cases and 1,142 controls from the Nurses’ Health Study were 
used to build and evaluate polygenic risk scores (PRSs) with 
10–60,000 independent SNPs showing the strongest evidence 
of association with breast cancer. No significant evidence was 
found that polygenic risk score (PRS) using common variants 
could improve risk prediction for breast cancer over replicated 
SNP scores that had been robustly replicated across several 
independent sample sets.

Some polymorphisms identified in GWAS were also 
associated with an increased risk of breast cancer for BRCA1 or 
BRCA2 mutation carriers. Another study by Antoniou et al.9 
reanalyzed the association between breast cancer and six sus-
ceptibility polymorphisms in gene FGFR2, TNRC9/TOX3, 
MAP3K1, LSP1, 2q35 using a sample of 12,525 BRCA1, and 
7,409 BRCA2 carriers. The six susceptibility polymorphisms 
were identified in recent large-scale association studies con-
ducted by the Consortium of Investigators of Modifiers of 
BRCA1/2.10 Three additional SNPs (ie, rs4973768 in SLC4A7/
NEK10, rs6504950 in STXBP4/COX11, and rs10941679 
at 5p12) were also evaluated in this study. The interactions 
between SNPs were also investigated. Of the nine polymor-
phisms investigated, seven SNPs were found to be associated 
with breast cancer for BRCA2 carriers and two SNPs were 
associated with BRCA1 carriers. Additionally, interaction 
existed among all risk-associated polymorphisms for muta-
tion carriers. Based on the joint genotype distribution of 
seven risk-associated SNPs in BRCA2 mutation carriers, the 
top 5% high-risk BRCA2 carriers were predicted to develop 
breast cancer by the age of 80 with a probability of 80–96%, 
whereas the bottom 5% low-risk BRCA2 carriers only have a 
risk of 42–50% of developing breast cancer. Thus, the author 
concluded that these risk differences could be used in the day-
to-day clinical management of mutation carriers.

Compared to high-penetrance mutations, such as BRCA1 
or BRCA2, all of the genetic susceptibility loci identified in 
GWAS to date are low-penetrance polymorphisms, with 
weak associations to breast cancer risk. Although each low-
penetrance variant confers only a small increase in the risk of 
breast cancer, a combination of single variants may act cumula-
tively to increase the risk. For example, Sueta et al.11 analyzed  
23 genetic variants identified in previous GWASs and con-
ducted a case–control study with 697 case subjects and 1,394 
controls matched with age and menopausal status in the 
Japanese population. They fit conditional regression models 
with genetic variants and conventional risk factors. In addi-
tion, they created a polygenic risk score, using those variants 
with a statistically significant association with breast cancer 
risk, and also evaluated the contribution of these genetic pre-
dictors using AUC. Eleven SNPs revealed significant associa-
tions with breast cancer risk. In addition, a dose-dependent 
association was observed between the risks of breast cancer 
and the genetic risk score (GRS), which was an aggregate 

*Appendix B. Description for the Abbreviations of Gene Names in this Article.
**More details about basic concepts used in this article can be found in Appendix A.
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measure of alleles in seven selected variants. The AUC for 
the regression model, which included the GRS in addition 
to the conventional risk factors, was 0.6933, but it was only 
0.6652 for conventional risk factors (P = 1.3 × 10−4). The pop-
ulation-attributable fraction of the risk score was 33.0%. Thus, 
this kind of study indicates that risk models, which include 
a GRS, are helpful in distinguishing women at high risk of 
breast cancer from those at low risk, particularly in the context 
of targeted prevention.

Prostate cancer
Prostate cancer, behind only lung cancer, is the second leading 
cause of cancer-related deaths in American men. Recent data 
indicate that the estimated probability of being diagnosed 
with prostate cancer is 2.5%, 7%, and 13% for men ages 40–59 
years, 60–69 years, and 70 years and older, respectively. In 
2014, 233,000 new cases will be diagnosed in the US, and 
more than 29,480 men die of the disease (http://www.cancer.
org/cancer/prostatecancer/detailedguide/prostate-cancer-key-
statistics).

Prostate cancer is also a complex and unpredictable dis-
ease, with the risk for cancer affected by advancing age, ethnic 
background, and family history.12

Prostate cancer is usually accompanied by a rise in the 
concentration of serum prostate-specific antigen (PSA). PSA 
lacks specificity, but, nevertheless, has been used for decades 
as a sensitive biomarker and has evolved into a controversial 
predictor of prostate cancer mortality. In general, prostatic 
biopsies are often deemed unnecessary, which underscores the 
need for improving prediction models with increased specific-
ity in order to aid clinicians when deciding whether or not to 
recommend a biopsy for patients. This is especially relevant for 
men with mildly elevated PSA values (3–10 ng/mL), where 
the risk of being diagnosed with prostate cancer is only about 
20–25%.13 After diagnosis, some cancers are indolent and 
cause no clinical problems, whereas others progress and may 
become fatal. Therefore, it is important to search for biomarkers 
that signal a need for more aggressive treatments, potentially  
improving clinical outcomes. Recently, more than 30 discov-
ered SNPs have been associated with prostate cancer.14 These 
SNPs provide an opportunity to identify strong candidates for 
a predictive role. SNPs identified and associated with prostate 
cancer in GWAS are common but confer only small increases 
in the risk. The mechanisms underlying their association with 
prostate cancer risk remain unknown.

Xu et al.15 used SNPs of multiple DNA sequence vari-
ants and family history to estimate the absolute risk for pros-
tate cancer. These investigators examined a Swedish study with 
2,893 cases and 1,781 controls and a study in the US – the 
Prostate, Lung, Colon and Ovarian Cancer Screening Trial 
with 1,172 cases and 1,157 controls. Individuals with more than 
14 risk alleles and positive family history had almost a five-fold 
increase in risk compared with people who had 11 risk alleles 
and negative family history. The study also outlined the risk of 

developing prostate cancer for a 55-year-old man who has posi-
tive family history and more than 14 risk alleles as being 40% 
over the next 20 years, while men without family history and 
such genotypes saw their absolute risk reduced to 13%.

In another study by Sun et al.16 the investigators assessed 
predictive performance by employing positive predictive values 
(PPV) as well as sensitivity using family history and three sets 
of SNPs associated with prostate cancer. This study was a 
population-based case–control study (2,899 cases and 1,722 
controls) in another Swedish population. SNPs and family 
history emerged as factors that can differentiate individual risk 
for prostate cancer, while identifying men at higher risk. In 
this particular study, the top 18% of men had a two-fold risk, 
while the top 8% had developed a three-fold risk of having 
prostate cancer in a 20-year period (age range: 55–74 years). In 
addition, the study showed that including more SNPs in the 
risk prediction will increase sensitivity with PPV.

Other studies have combined genetic variants along 
with PSA to predict the risk of prostate cancer. For example, 
a study by Johansson et al.17 specifically combined 33 genetic 
variants with PSA and evaluated the risk. This was a case 
control study (520 cases and 988 controls) nested within the 
Northern Sweden Health and Disease Cohort. The AUC was 
used to assess whether the GRS of 33 SNPs in addition to pre-
diagnostic PSA improves prostate cancer prediction. Adding 
GRS into the model improved the AUC from 86.2% to 87.2%. 
Thus, it appears that including GRSs into these models may 
not be beneficial when competing for a clinical risk assessment 
of prostate cancer.

Others such as Machiela et al.8 created a new model by 
applying PRSs18 and incorporating common variants to pre-
dict the risk of prostate cancer. A total of 1,164 prostate cancer 
cases and 1,113 controls from the Prostate Lung Colorectal 
and Ovarian Cancer Screening Trial were employed in this 
study. PRSs with 10 to 60,000 independent SNPs were used 
in the PRS model to compare with a model only including 
30 published risk variants. Appling a 10-fold cross-validation 
for PRS model, the area under the ROC curve ranged from 
0.564 (60,000 SNPs) to 0.569 (10 SNPs), while the AUC 
using 30 published risk SNPs from the literature was 0.614. 
Kote-Jarai19 also proposed a study to predict the risk of prostate 
cancer using a multiplicative risk model, which combines the 
risk variants. This study used a worldwide consortium, com-
posed of 13 groups with 7,370 prostate cases and 5,742 con-
trols. All of the loci contributed to 16% of the familial risk of 
the disease, and the top 10% of risk distribution doubled the 
chance of prostate cancer with an odds ratio of 2.1.

The first risk prediction model for familial prostate 
cancer was developed by Macinnis et al.20 which incorporated 
26 prostate cancer-associated SNPs identified in previous 
GWAS.21 Family phenotypes and histories were explained by 
a mixed model of inheritance which can be used to predict 
the probability of developing prostate cancer for an individual. 
Combined populations from 1,832 prostate cancer patients 
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and relatives in Australian and 2,558 patients from prostate 
cancer clinics at the Royal Marsden NHS Foundation Trust 
(UK) were used. Using this predictive model, the risk of pros-
tate cancer for an UK male can be predicted. For example, if 
a man’s genotype is in the top 10th percentile of joint genotype 
distribution and his father was diagnosed with prostate cancer 
at age 70, he would have a cumulative risk of 33% of develop-
ing prostate cancer by age 85. For a male with a genotype risk 
within the bottom 10%, the risk to develop prostate cancer 
would be 23%. In comparison, even without SNP information 
and incorporation into this kind of model, the risk remains 
22% for a UK man.

Finally, LindstrÖm et al.22 combined a series of risk mod-
els and estimated their performance in 7,509 prostate cancer 
cases and 7,652 controls within the National Cancer Institute 
Breast and Prostate Cancer Cohort Consortium. The investi-
gators also calculated absolute risks based on the Surveillance, 
Epidemiology, and End Results incidence data. The best risk 
model included individual genetic markers and family history 
of prostate cancer. They observed a decreasing trend in dis-
criminative ability with advancing age, with highest accuracy 
in men younger than 60 years. The absolute 10-year risk for 
50-year-old men with a family history ranged from 1.6% (10th 
percentile of genetic risk) to 6.7% (90th percentile of genetic 
risk). For men without a family history, the risk ranged from 
0.8% (10th percentile of genetic risk) to 3.4% (90th percentile 
of genetic risk). These results indicate that incorporating both 
genetic information and family history into prostate cancer 
risk models can be particularly useful for identifying younger 
men who might benefit from PSA screening.

testicular cancer
Testicular cancer remains the most common form of cancer in 
men between the ages of 15 and 35 (http://www.ncbi.nlm.nih.
gov/pubmedhealth/PMH0002266/). It is also the most treat-
able form of cancer with a survival rate greater than 95% for 
the least aggressive type.

The risk of this type of cancer has been reported to be 
8- to 10-fold higher for brothers and two- to four-fold higher 
for the sons of men who previously had testicular cancer.23–27 
Familial studies have estimated that genetic effects account 
for nearly a quarter of testicular cancer risk, which is one of 
the largest estimated heritabilities reported for any type of 
cancer.28 More specifically, GWASs have implicated mul-
tiple genomic regions associated with testicular cancer risk, 
including those containing KITLG, SPRY4, BAK1, ATF7IP, 
DMRT1, and TERT.29–33

Previously published GWAS and candidate gene data 
have also been used to build a multiplicative model with risk 
variants and estimate the AUC as a measure of discrimination 
between testicular cancer cases and controls. Kratz et al.’s34 
study is one such example, of using this kind of data,29–33 
where previously uncovered predisposition alleles in or near 
KITLG, BAK1, SPRY4, TERT, ATF7IP, and DMRT1 were 

used to predict the risk of testicular cancer by employing ROC 
curve analysis. The authors claim that an AUC of 69.2% sug-
gests that about 69.2% of the time a randomly selected testicu-
lar cancer patient had a higher estimated risk than that of a 
randomly selected control subject. Another study showed how 
several established testicular germ cell tumor risk factors, such 
as cryptorchidism (relative risk (RR) = 4.8) and male inferti-
lity (standardized incidence ratio (SIR) = 2.8) can be incorpo-
rated into the clinical model to predict the risk.35 Under this 
kind of multiplicative model, the authors estimated that white 
men in the top 1% of genetic risk as defined by eight risk vari-
ants had a relative risk that was 10.5-fold greater than that for 
a general population of similar male subjects.

We have to be aware as well that white men are more 
likely to develop testicular cancer than African-American and 
Asian-American men. Because of this race/ethnicity effect, 
cancer risk prediction needs to be tailored for specific popula-
tions. Additionally, GWAS needs to be extended into different 
populations. Each specific population requires models devel-
oped with their specificity in mind in order to create improved 
methods for overall risk assessment of testicular cancer.

Lung cancer
Lung cancer remains the most common form of human cancer 
with complex risk factors, including genetic and environmen-
tal effects. Heredity plays an important role, and in relatives 
of people with lung cancer, the risk is increased 2.4 times.36,37 
This may be due, for example, to risks associated with genetic 
polymorphisms.38–43 Environmental factors, such as a history 
of smoking, are central to several proposed lung cancer risk 
assessment models. These models include the Bach model, 
Spize model, and Liverpool Lung Project (LLP) model44–47 as 
well as the improvement models based on LLP.48,49 The LLP 
risk model,45 developed from the LLP case–control study, pro-
vides a single unified model for smokers (current and former) 
and nonsmokers, whereas the Bach model was developed for 
predicting risk only in smokers and the Spitz model46 requires 
three separate models for predicting risk in current smokers, 
former smokers, or nonsmokers. In addition, the LLP model 
also accounts for important lung cancer risk factors in addition 
to age, sex, and smoking duration. These include history of 
pneumonia, a history of non-lung cancer, prior asbestos expo-
sure, and family history. Overall, this comprehensive model is 
simpler to incorporate into a clinical setting than Tammemagi 
and colleagues’ model,47 which includes many smoking-related 
variables that may be difficult to obtain from patients during 
clinical exchanges.

Other models have been developed in order to predict 
the 5-year absolute risk of lung cancer. For example, model 
based on five epidemiologic risk factors has been developed 
by the LLP by Raji et al.48 where investigators quantified the 
improvement in risk prediction with the addition of SEZ6L, 
a Met430IIe polymorphic variant linked with an increased risk 
of lung cancer, within the framework of the LLP risk model. 
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In this predictive model, the authors combined the genotypes 
of 388 LLP subjects on SEZ6L SNP with epidemiologic risk 
factors. They use multivariable conditional logistic regression, 
with and without SEZ6L SNP, to predict 5-year absolute risk 
of lung cancer. Pair-wise comparison of the AUC and the net 
reclassification improvements (NRI) were also used to assess 
the improvement in the model itself with and without the 
SEZ6L SNP. The authors found a modest statistically signifi-
cant increase in AUC when SEZ6L was added into the base-
line model. The NRI for the genetic model was 27% with the 
SNP, while 15% without the SNP.

Raji et al. also further evaluated the LLP risk model in 
terms of discrimination and its ability to demonstrate a predic-
tive benefit for stratifying patients for computed tomography 
(CT) screening.49 These investigators assessed the 5-year abso-
lute risks for lung cancer that were predicted by the LLP model 
in both case–control and prospective cohort study, which used 
data from three independent studies – the European Early 
Lung Cancer (EUELC), Harvard case–control studies, and 
the LLP population-based prospective cohort (LLPC) study 
from Europe and North America. The LLP risk model pro-
duced good discrimination in both the Harvard (AUC = 0.76 
[95% confidence interval, CI, 0.75–0.78]) and the LLPC 
(AUC, 0.82 [CI, 0.80–0.85]) studies and modest discrimi-
nation in the EUELC (AUC, 0.67 [CI, 0.64–0.69]) study. 
The decision utility analysis, which incorporates the harm and 
benefit of using a risk model to make clinical decisions, indi-
cated that the LLP risk model performed better than smoking 
duration or family history alone in stratifying high-risk 
patients for lung cancer CT screening. However, this model 
cannot assess whether the incorporation of other risk factors, 
such as lung function or genetic markers, will improve accu-
racy. In particular, the lack of information on asbestos expo-
sure in the LLPC limited the ability to validate the complete 
LLP risk model.

Models and risk evaluation focused on genetic suscepti-
bility loci have conferred a small to moderate disease risk and 
appear to be of limited utility in risk prediction. Li et al.50 
combined multiple disease-related loci with modest effects 
into a GRS and identified subgroups that were at high risk 
of lung cancer in a Chinese population. In their case–control 
study, they evaluated the discriminatory and predictive abil-
ity of the cumulative effect of several SNPs associated with 
lung cancer risk. Five SNPs identified in previous GWA or 
large cohort studies were genotyped in 5,068 Chinese case–
control subjects. The GRS based on these SNPs was esti-
mated by two approaches: a simple risk alleles count (cGRS) 
and a weighted (wGRS) method. The AUC in combination 
with the bootstrap resampling method was used to assess 
the predictive performance of the GRS for lung cancer. Four 
independent SNPs were found to be associated with a risk of 
lung cancer. The wGRS based on these four SNPs was a bet-
ter predictor than cGRS. Using a liability threshold model, 
they estimated that these four SNPs accounted for only 4.02% 

of genetic variance in lung cancer. As with other studies, 
smoking history contributed significantly to lung cancer risk 
(P , 0.001) (AUC = 0.619 [0.603–0.634]), with the AUC 
value becoming 0.639 (0.621–0.652) after incorporation 
with wGRS and adjustment for over-fitting. Ultimately, this 
model shows some promise for assessing lung cancer risk in a 
Chinese population.

Black/white disparities concerning in lung cancer inci-
dence and mortality mandate an evaluation of underlying bio-
logical differences. Etzel et al.51 have previously shown higher 
risks of lung cancer associated with prior emphysema in 
African-American populations compared with white patients 
with lung cancer. Spitz et al.52 further evaluated a panel of 
1,440 inflammatory gene variants in a two-phase analysis 
(discovery and replication), adding top GWAS lung cancer 
hits from white populations, and 28 SNPs from a published 
gene panel. The discovery set (477 self-designated African-
Americans cases, 366 controls matched on age, ethnicity, and 
gender) was from Houston, Texas. The external replication set 
(330 cases and 342 controls) was from the EXHALE study at 
Wayne State University. In discovery, 154 inflammation SNPs 
were significant (P , 0.05) on univariate analysis. One inflam-
mation SNP, rs950286, which is intergenic between IRF4 and 
EXOC2 genes, was successfully replicated with a concordant 
odds ratio of 1.46 (1.14–1.87) in discovery, 1.37 (1.05–1.77) 
in replication, and a combined odds ratio of 1.40 (1.17–1.68). 
These researchers also constructed and validated an epide-
miological discovery model. Furthermore, they extended risk 
prediction models, with the AUC for the epidemiologic dis-
covery model being 0.77 and 0.80 for the extended model; for 
the combined datasets, the AUC values were 0.75 and 0.76, 
respectively.

bladder cancer
Bladder cancer remains a major health issue worldwide. In the 
US, bladder cancer is the fourth most common tumor in men 
and an estimated 74,690 new diagnoses are expected in 2014 
(http://www.cancer.org/cancer/bladdercancer/detailedguide/
bladder-cancer-key-statistics). The disease generally pres-
ents in older individuals, and is more common in men than 
women, with higher frequency among white patients than 
those of other ethnicities. Smoking is the most widely recog-
nized cause of bladder cancer and accounts for half of all cases 
in the US.

The first risk prediction model for bladder cancer was 
developed by Wu et al.53 in 2007. Patient epidemiologic and 
genetic data from a case–control study were used to build 
risk prediction models and constructed ROC. The AUC was 
used to evaluate the model’s discriminatory ability. The model 
consisted of 678 white patients and 678 controls and included 
mutagen sensitivity and pack-years as well as six other risk 
factors, while achieving a 0.80 AUC, demonstrating good 
discrimination ability. In 2009,54 the same group added three 
bladder cancer predisposition SNPs into the risk prediction 
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model but found no improvement of the discrimination 
power. However, Chen and colleagues54 also pointed out that 
with the development of computing power and statistical 
tools, other risk factors such as gene–gene interaction and 
gene–environment interactions may offer greatly improved  
risk prediction.

In a recent paper published in Cancer Research, Garcia-
Closas and colleagues55 examined how genetic variants were 
recently identified in GWAS for bladder cancer interaction 
with smoking status to influence bladder cancer risk. The 
authors identified a new high-risk subgroup of individuals –  
current smokers carrying the highest genetic risk burden – 
who could be targeted for behavioral interventions and/or 
early detection protocols. This article is the first time to evalu-
ate gene–environment interactions on risk difference, which 
indicates a new direction in bladder cancer prevention. Using 
data from seven studies, including 3,942 patients and 5,680 
controls of European ancestry, the team investigated additive 
and multiplicative interactions between smoking status and 
12 SNPs on the risk of developing bladder cancer. The SNPs 
selected for inclusion were recently identified bladder cancer 
susceptibility hits or known smoking metabolizing variants. 
To determine the combined effect of the SNPs across loci, 
the researchers created a PRS representing lowest to highest 
genetic risk quartiles. Smoking was assessed as lifetime history 
(ever/never), and as smoking status at the time of enrolment 
into the study (current/former/never). To gauge the public 
health relevance of their findings, they calculated the absolute 
risks resulting from the joint effects of smoking and the SNPs, 
and reported gene–environment interactions on the risk differ-
ence rather than relative risk of bladder cancer. Garcia-Closas 
and colleagues found that the cumulative 30-year absolute risk 
for bladder cancer in a 50-year-old US male varied by smok-
ing status: 1.3% in never smokers, 3.0% for former smokers, 
and 6.2% for current smokers, confirming the importance of 
smoking as a strong risk factor for bladder cancer. When they 
factored in the PRS quartiles, the cumulative 30-year absolute 
risk for bladder cancer in a 50-year-old US male who is a cur-
rent smoker and who carries the highest genetic risk jumped 
to 9.9%. Furthermore, they reported highly significant addi-
tive interactions between risk differences for smoking status 
across levels of PRS. They found that over four times more 
bladder cancer cases would be prevented if smoking were 
eliminated from the highest genetic risk group (n = 8,200 per 
100,000 men) compared with the lowest genetic risk group 
(n = 2,000 per 100,000 men; P , 0.0001).

Head and Neck cancer
The incidence of head and neck cancer has increased mark-
edly in the last 20 years. Head and neck cancers account for 
about 3–5% of all cancers in the US. In this year, an esti-
mated 55,070 people (40,220 men and 14,850 women) will 
develop head and neck cancers and 12,000 deaths (8,600 men 

and 3,400 women) will occur (http://www.cancer.net/cancer-
types/head-and-neck-cancer/statistics).

Cigarette smoking is associated with increased head and 
neck cancer risk and tobacco-related carcinogens are known 
to cause bulky DNA adducts. Nucleotide excision repair genes 
encode enzymes that remove adducts and may be indepen-
dently associated with head and neck cancer risk, as well as 
modifiers of the association between smoking and head and 
neck cancer risk.56–58

Several studies have reported that SNPs of genes in mul-
tiple biological pathways are involved in the development of 
head and neck cancer.59–63 Recently, Annah et al.61 performed 
a two-stage GWAS with a total of 8,605 cases and 11,405 
controls and reported that five genetic variants had signifi-
cant associations with risk of upper aerodigestive tract cancers 
including head and neck cancer in Europeans.

With the recent increase in associated SNPs with head 
and neck cancer being identified, the development of risk 
prediction models is catching up. A study by Wu et al.64 
used a customized chip containing 9,645 chromosomal and 
mitochondrial SNPs (mtSNPs) to call genotypes for 150 
early stage head and neck cancer patients with 300 controls. 
The goal is to model the second primary tumor or head and 
neck cancer recurrence using both clinical and epidemio-
logical variables. Results showed that when 12 chromosomal 
SNPs and one mtSNP were incorporated into the model, the 
AUC increased from 0.64 to 0.84. The 95% CI of the AUC 
difference is 0.18–0.29, indicating significant improvement in  
discrimination power.

discussion
Cancer is a polygenic disease in which many genetic factors 
appear to play important roles in disease development in its 
different subtypes of cancer.2 During the past several years, 
more than 100 SNPs have been identified that are associated 
with cancer.3

How to effectively incorporate these genetic suscep-
tive variants in risk predictive models has become more and 
more important during the clinical decision-making process 
because effective models can help physicians and patients 
determine whether a genetic testing is needed. Although enor-
mous progress has been made in the area of genetics and the 
susceptive risk prediction of cancer, cautions should be made 
when considering the application of these models within the 
clinical setting. Cancer remains a fundamentally complex dis-
ease with multiple, interacting risk factors. These risk factors 
include components of race/ethnicity, environmental carcino-
gens, familial history, genetic variants, and their interactions. 
The studies reviewed here should be understood as an initial 
attempt to begin a more systematic approach to assessing pre-
dictive risk models for cancer treatment in the future. In order 
to more accurately predict the overall risk of cancer in patients, 
risk prediction models need to be continuously reexamined, 
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noise. Evans et al.18 and Purcell et al.65 have proposed methods 
of aggregating information on a large number of SNP alleles 
associated with a trait that does not achieve stringent genome-
wide statistical significance or even nominal statistical signifi-
cance of P , 0.05. These models create PRS by summing risk 
alleles from thousands or tens of thousands of loci spanning 
the genome to predict an individual’s genetic risk of develop-
ing disease. Michielsla et al.8 built a logistic regression model 
and used PRS to reflect the genetic effect of lists of genetic 
markers prioritized by their association with breast cancer in 
a training dataset and evaluated whether these scores could 
improve current genetic prediction of these specific cancers 
in independent test samples. However, the logistic regression 
model integrating PRS did not outperform the model without  
PRS. Whereas, the study of Sueta et al.11 demonstrates that the 
regression model including PRS of seven published varia nts 
outperform the model without PRS with an increased AUC 
as 2.81%. Both Sueta et al.11 and Michielsla et al.8 use logistic 
regression models including PRS to predict breast cancer risk, 
but the performance of PRS in the two studies are quite differ-
ent. Sueta et al. create the PRS based on published SNPs with 
a statistically marginally significant association with breast 
cancer risk. Michielsla et al.8 build PRS based on 10–60,000 
common SNPs in their GWAS. The comparison of the two 
studies indicates how effectively selecting SNPs when creating 
PRS is critical and will affect the performance of the predic-
tion model.

Table 1. Performance of cancer risk prediction models with genetic variants.

CANCER  
TYPE

RISk PREDICTIoN MoDEL TYPES of  
GENETIC fACToR

MEASURES of  
PERfoRMANCE 

VARIANTS IN  
PREDICTIoN

REfERENCE

Breast Logistic regression model Individual SNP and GRS aUC Helpful 7

Logistic regression model PRS aUC Not helpful 8

Conditional regression model PRS aUC Helpful 11

Prostate Logistic regression model GRS Relative risk Helpful 15

Multiplicative model Individual SNPs PPV and sensitivity Helpful 16

Logistic regression model GRS aUC Not helpful 17

Logistic regression and  
multiplicative model

Individual SNPs and GRS Overall familial risk Helpful 19

Mixed recessive model PRS LRT and AIC Helpful 20

Logistic regression model Individual SNPs and GRS aUC Helpful 22

Testicular Multiplicative model Individual SNPs aUC Helpful 34

Lung Conditional logistic regression Individual SNPs aUC and nrI Helpful 48

Logistic regression model GRS aUC Helpful 50

Logistic regression model Individual SNPs aUC Helpful 52

Bladder Logistic regression model Individual SNPs aUC Helpful 53

Logistic regression model Individual SNPs and PRS Bootstrap resampling Helpful 55

HnC Cox proportional hazard model Individual SNPs aUC Helpful 64

Abbreviations: NRI, the net reclassification improvements; PPV, positive predictive value; AUC, the area under the receiver operator characteristic (ROC) curve 
(AUC); PRS, polygenic risk score; GRS, genetic risk score; HNC, head and neck cancer; PSA, prostate-specific antigen; AIC, Akaike’s A Information Criterion; LRT, 
Likelihood ratio tests.

comprehensively assessed, and revised, taking into consider-
ation specific populations and emergent subtype of cancer.

Table 1 indicates that the cancer risk prediction models 
with genetic variants generally outperform the models with-
out genetic variants in both discrimination and prediction of 
cancer. However, there are still many practical concerns on 
implementing genetic testing into the diagnostic process. For 
example, the substantial cost of genetic screening is one of the 
main concerns.

Table 2 summarizes the frequently used risk prediction 
models with genetic factors and general modeling procedures. 
The most commonly used model is logistic regression model. 
When dealing with multiple genetic factors and other covari-
ates, logistic regression assumes a linear relationship among 
the predictors and uses a logit link to combine them into a 
one-dimensional fitted value.

Although more than 50 cancer GWAS incorporating more 
than 15 different malignancies have been reported, identifying 
over 100 genomic cancer susceptibility regions,3 for most malig-
nancies the number of consistently confirmed SNPs is less than 
a dozen. The lack of power of GWAS suggests that there may 
exist many more SNPs associated with some malignancies that 
have smaller effect sizes. However, such SNPs may be statisti-
cally insignificant in genome-wide. How to effectively incorpo-
rate these SNPs in a risk prediction model is challenging since a 
group of these SNPs may likely make a positive contribution to 
a risk prediction model while the other ones may just add some 
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Compared with traditional risk factors such as family 
history, smoking, age, and sex, sometimes the impact of 
genetic variants in predicting risk is small which may reflect 
the small effect size of disease-associated SNPs integrated in 
the risk prediction model. Due to the difference in effect sizes 
of associated SNPs, the power of genetic variants in predic-
tion for different cancers is different as well. A recent report 
uses PRS to estimate the relative risks of disease. In these 
reported estimates, the predictive power is higher for pros-
tate cancer than for breast cancer, which reflects the fact that 
the known associated SNP effect sizes for prostate cancer are 
greater and account for a larger percentage of the familial 
relative risk.66

In the article, we reviewed the cancer risk prediction 
models by different cancer types. But many cancers share 
the same major oncogenic or tumor suppressor genes such as 
KRAS, P53, SRC, HER2/neu, RAF, and MYC. Most onco-
genes display a very broad tumor spectrum. For example, 
abnormalities of the P53 gene (which codes for the P53 pro-
tein) have been found in more than half of human cancers. 
Acquired mutations of this gene appear in a wide range of 
cancers, including lung, colorectal, and breast cancer. The 
predictive power of the same oncogenic gene might be differ-
ent for different cancer types. If the incidence of the disease is 
low, such as ovarian cancer, the predictive power for ovarian 
cancer might be low as well. This advocates the need for the 
analysis of substantially larger numbers of cases, especially if 
there is significant variability across histological subtypes of 
the disease.
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Appendix A. basic concepts related to risk 
Prediction Models Used in this Article

risk prediction model.67 A statistical model is used to 
estimate the risk of future outcomes for individuals based on 
one or more underlying characteristics. Such characteristics 
often simply referred to as predictors traditionally not only 
include standard features such as age, sex, smoking, and fam-
ily history but also increasingly include genetic variants iden-
tified in genetic association studies.

Polygenic risk scores.68 Risk alleles among an ensemble 
of markers that do not individually achieve significance in a 
large-scale association study can be summarized as a score. 
This score can be used to test association between the selected 
markers and a trait and predict an individual’s genetic risk of 
developing disease. Moreover, these scores could be used to 
predict an individual’s outcome even without knowing which 
of the SNPs in the score are conclusively associated with 
disease.

sensitivity. The probability that a test will indicate “dis-
ease” among those with the disease. 

specificity. The fraction of those without disease will 
have a negative test result.

Positive predictive value. The probability that the patient 
actually has the disease if the test result is positive.

Area under the receiver-operating-characteristic (roc) 
curve (AUc). ROC curve analysis is commonly adopted in 
cancer predictive studies to evaluate the performance of a pre-
dictive test. The ROC curve plots the test’s sensitivity against 
one specificity by continuously changing the cutoff points over 
the whole range of possible test results, and is often summa-
rized by its one-dimension summary index – the area under 
the ROC curve (AUC). The AUC measures discrimination, 
that is, the ability of the predictive test to correctly classify 
those with and without the disease. A test with perfect dis-
crimination has a ROC curve that passes through the upper 

left corner (100% sensitivity, 100% specificity). Therefore, the 
closer the ROC curve is to the upper left corner, the larger 
the AUC, which means the higher the overall accuracy of the 
test.

Appendix b. description for the Abbreviations of 
Gene Names in this Article

ATF7IP – activating transcription factor 7 interacting 
protein

BAK1 – BCL2-antagonist/killer 1
DMRT1 – double sex and mab-3 related transcription 

factor 1
EXOC2 – exocyst complex component 2
FGFR2 – fibroblast growth factor receptors 2
HER2 – v-erb-b2 avian erythroblastic leukemia viral 

oncogene homolog 2
IRF4 – interferon regulatory factor 4
KITLG – KIT ligand
KRAS – Kirsten rat sarcoma viral oncogene homolog
LSP1 – lymphocyte-specific protein 1
MAP3K1 – mitogen-activated protein kinase kinase 

kinase 1
MYC – v-myc avian myelocytomatosis viral oncogene 

homolog
PTEN (MMAC1) – phosphatase and tensin homolog
P53(TP53) – tumor protein p53
RAF – Raf kinases
SEZ6L – seizure related 6 homolog (mouse)-like
SLC4A7(NEK10) – solute carrier family 4, sodium bicar-

bonate cotransporter, member 7
SRC – SRC proto-oncogene, non-receptor tyrosine kinase
STXBP4(COX11) – syntaxin binding protein 4
SPRY4 – sprouty homolog 4 (Drosophila)
TNRC9(TOX3) – trinucleotide-repeat-containing 9
TERT – telomerase reverse transcriptase
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