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Abstract

Motivation: Protein domain duplications are a major contributor to the functional diversification of protein families.
These duplications can occur one at a time through single domain duplications, or as tandem duplications where
several consecutive domains are duplicated together as part of a single evolutionary event. Existing methods for
inferring domain-level evolutionary events are based on reconciling domain trees with gene trees. While some for-
mulations consider multiple domain duplications, they do not explicitly model tandem duplications; this leads to in-
accurate inference of which domains duplicated together over the course of evolution.

Results: Here, we introduce a reconciliation-based framework that considers the relative positions of domains within
extant sequences. We use this information to uncover tandem domain duplications within the evolutionary history
of these genes. We devise an integer linear programming approach that solves our problem exactly, and a heuristic
approach that works well in practice. We perform extensive simulation studies to demonstrate that our approaches
can accurately uncover single and tandem domain duplications, and additionally test our approach on a well-studied
orthogroup where lineage-specific domain expansions exhibit varying and complex domain duplication patterns.
Availability and implementation: Code is available on github at https://github.com/Singh-Lab/TandemDuplications.

Contact: mona@cs.princeton.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Nearly all proteins contain short, modular subsequences known as
domains. These domains have structural and functional properties,
and can be categorized into domain families based on sequence simi-
larity. The number of domains present in a protein varies widely,
ranging from a single domain to over a hundred in some protein
families (Labeit ez al., 1990). Differing combinations of domains
occur across multidomain protein sequences, and changes in the rep-
ertoire and number of domains are a major driver of protein evolu-
tion (Chothia et al., 2003). Understanding the domain-level
evolutionary processes behind these changes is crucial to under-
standing the evolution of sequence families in general.

Proteins typically diversify their repertoire of domains through
domain duplications and losses. Duplications may be either single
domain duplications or tandem duplications, in which several con-
secutive domains within a protein duplicate at once in a single event
(Bjorklund et al., 2006). For proteins with multiple consecutive
repeats of the same domain, it can be difficult to ascertain which
types of duplications gave rise to those repeats. However, uncover-
ing the evolutionary history of protein domains can be instructive in
learning their function. For example, nebulin domains have been
observed to duplicate in sets of seven (Bjorklund et al., 2010). These
match the seven-actin monomer repeat unit of the actin filament to
which they bind during muscle contractions (Labeit et al., 2011). In
other cases, the same protein family may exhibit several modes of
duplication. For example, filamin domains in the Filamin-A protein
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family have been shown to exhibit both tandem duplications and
consecutive single duplications (Light et al., 2012). Proteins with
repeated copies of the same domain are ubiquitous across the tree of
life, and account for nearly 20% of human proteins (Bjorklund
etal., 2006).

Evolutionary event histories are typically gleaned through the
process of reconciliation (Goodman et al., 1979; Li and Bansal,
2019; Muhammad et al., 2018). In these methods, a phylogeny of
related domains is built, along with a phylogeny of the genes (and
sometimes species; Bansal et al., 2012; Stolzer et al., 2015) from
which they came. Nodes in the domain phylogeny are then mapped
to nodes in the gene phylogeny according to a set of biological con-
straints. This mapping is used to infer domain duplications and
losses (and sometimes other events, including transfers, merges and
splits; Hallett er al., 2004; Yi-Chieh et al., 2012). Duplications are
typically handled in one of two ways. In the traditional approach,
multidomain duplications are ignored. Instead duplications are
assumed to occur one domain at a time. In other approaches, multi-
domain duplications are explicitly included in the model (Aluru and
Singh, 2020; Bansal and Eulenstein, 2008; Dondi et al., 2019; Guigo
et al., 1996). However, these approaches do not consider tandem
duplications. Instead, they try to minimize the total number of mul-
tiple duplication events without constraining the positions of the
domains involved. This can lead to groupings of domains that are
scattered across the sequence and could not have duplicated together
in a single event. In practice, these types of models are acceptable
for simple cases with few duplication events, but quickly lose
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accuracy for proteins with repeated domain duplications, where cas-
cades of independent duplication events can be incorrectly grouped
into a few large duplication groups.

Our main contribution is a reconciliation framework, which sig-
nificantly increases the accuracy of tandem duplication inference. We
(i) introduce a model for tandem duplication events, (ii) integrate this
model into the reconciliation framework, (iii) give both an exact inte-
ger linear programming (ILP) solution and a significantly faster heur-
istic for the problem and (iv) show that we can accurately identify
tandem duplications in both simulated and real data. We prove that
our framework can correctly identify tandem duplications in the ab-
sence of domain shuffling and losses, and show in simulation that
our methods are robust even under high loss scenarios.

The rest of the article is organized as follows. Section 2 gives def-
initions useful for understanding our framework and defines the
Tandem Duplication Loss (TDL) reconciliation problem. Section 3
gives our tandem duplication model and shows how to use the pos-
ition of domains within modern day sequences to differentiate single
and tandem duplications. Section 4 introduces our heuristic solu-
tion, while Section 5 demonstrates the performance of our methods
on both real and simulated datasets.

2 The TDL reconciliation problem

In this section, we give a description of the TDL reconciliation prob-
lem. We first introduce notation which will be useful in describing
the problem, and then present our reconciliation formulation for
finding multidomain duplications. We define tandem duplications,
add constraints to distinguish between tandem and single duplica-
tions, and finally present a parsimony framework by which to opti-
mize reconciliations. While we describe the reconciliation problem
in terms of domain and gene trees, we note that it is equally applic-
able in the context of reconciling gene and species trees.

2.1 Preliminaries
Domain-gene reconciliation requires as input a rooted full binary
gene tree and a rooted full binary domain tree. We refer to these
phylogenies as the gene tree G and the domain tree D, respectively.
For any rooted full binary tree T, we denote the sets of vertices, in-
ternal vertices, leaves and edges by V(T),I(T),L(T) and E(T), re-
spectively. A directed edge, or arc, in T between parent node # and
child v is denoted as (u, v). The parent of node v in tree T is denoted
as pr(v). If there is a path from u to v in tree T, we say that v is a
descendant of u in the tree T (or equivalently that # is an ancestor of
v in T), and we denote this by v <7u and by v<7u if v #u (or
equivalently by u>7v and by u>v if v # u). Vertices u and v are in-
comparable in T if u%£1v and v#71u, and otherwise are comparable
in T. We define the lowest common ancestor (LCA) of nodes x and
y in tree T, termed LCA7(x,y), to be the vertex v in T such that
v>7x and v>ty, and for which there is no other vertex u where
u < v and u>7x and u>Ty. For ease of notation, we omit the sub-
script T when it is obvious. The distance between comparable verti-
ces u and v in T, disty(u,v), is defined as the number of arcs in the
path from u to v if u > v and otherwise in the path between v and u
in T. We denote the subtree of tree T rooted at internal node u as T,,.
A leaf mapping ¢ : L(D) — L(G) maps each leaf node in the do-
main tree to a leaf in the gene tree. A full mapping y : V(D) — V(G)
maps each node in the domain tree to a node in the gene tree. Each
gene may contain multiple domains, but every domain instance
occurs in exactly one gene. Therefore, these mappings are many-to-
one. A full mapping must be consistent with a leaf mapping (i.e.
o(u) = y(u) for all leaves # in the domain tree).

2.2 TDL reconciliations

Given domain and gene trees, the goal of reconciliation is to assign an
evolutionary event to each internal node in the domain tree and pin-
point the gene in which it existed. To determine which ancestral gene
a given domain was present in, reconciliation methods infer y, the full
mapping from nodes in the domain tree to nodes in the gene tree.
While inferring 7, a reconciliation also assigns an evolutionary event

to each internal node in the domain tree. We consider three types of
evolutionary events: co-duplications, tandem duplications and losses.
Co-duplications are domain duplications that occur as a result of gene
tree bifurcations, typically due to whole gene duplications or speci-
ation events. Tandem duplications are duplications of one or more
consecutive domains within a gene. To ensure that domains grouped
together as taking part in the same duplication are actually part of a
tandem duplication, we extend the typical reconciliation formulation
to additionally use a pairwise eligibility matrix E. For any two nodes u
and v in the domain tree, E,, = 1 if # and v could be part of the same
tandem duplication, and 0 otherwise. Briefly, E,, is computed using
the relative positions of the children of # and v on the gene. If their
children are interleaved (see Fig. 1), then # and v are considered pair-
wise eligible, and otherwise not. For ancestral domains, whose posi-
tions on the sequence are unknown, we must infer relative orderings.
In the next section, we describe how this inference is done, and how
eligibility matrices are computed from extant sequences, domain trees
and gene trees. Losses correspond to single domain losses within a
gene; these do not label nodes within the domain tree as they are not
observed, and will be inferred instead (as described further below). We
do not consider other possible evolutionary events (e.g. transfer of
domains between contemporary sequences).

More formally, given a gene tree G, a domain tree D, a leaf map-
ping ¢ : L(D) — L(G), and an eligibility matrix E, a TDL reconcili-
ation consists of a full mapping y: V(D) — V(G), a set X that
consists of all nodes in D that are associated with co-duplications,
and a set A where every tandem duplication is represented as the set
of nodes in D corresponding to domains duplicated in that event.
Note that within A, a duplication of a single domain « is represented
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Fig. 1. Two possible duplication patterns and their corresponding phylogenetic
trees. (a) A protein has two domain instances, depicted by a triangle and star,
labeled ‘A’ and ‘B’, respectively. Here, a single tandem duplication occurs, and the
entire stretch containing both domains is duplicated at once. The resulting protein
contains two instances each of the star and triangle domains. Without loss of gener-
ality, after duplication we refer to the first copy of the two domains in the second se-
quence as corresponding to the ancestral domains and thus refer to them by ‘A’ and
‘B’. The domains in the second copy are considered new domains and are referred to
by the new labels ‘C’ and ‘D’. (b) A different set of duplication events with the same
starting protein. Here, we see two individual domain duplications; first the triangle
domain duplicates and then the star domain duplicates. In the end, the protein has
two triangle and two star domains, as in part (a). Again, after duplication the first
copy of each of these two domains is assumed to be the ancestral one. (¢ and d)
Phylogenetic trees built from the domains found in the final proteins from parts (a)
and (b). The leaf labels correspond to the name of the domain, with position in the
sequence marked below. Ancestral node labels are obtained by taking the name of
its leftmost child (as by design this is assumed to be the original copy after the dupli-
cation). Their positions are unknown and must be inferred. Note that the topologies
of the trees are identical, so we cannot distinguish between tandem duplication and
two individual duplication events from tree topology alone. However, by including
the relative position of each domain in the tree, we see that the leaves in (c) are inter-
leaved, indicating a tandem duplication, while the leaves in (d) are not, indicating
that two separate duplication events occurred.
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as {u}, whereas a tandem duplication of domains uq,us,...,u, is
represented as {uy,u;,...u,}. Every node in I(D) is assigned either
a co-duplication or a tandem duplication event. Every non-leaf do-
main node is assigned exactly one event, and therefore £ and the
sets contained in A together form a partition of I(D).

2.2.1 Valid TDL reconciliations

A TDL reconciliation must maintain biological consistency with the
input trees G and D, mapping ¢ and eligibility matrix E, and thus 7,
¥ and A are constrained. A valid TDL reconciliation is defined as
follows:

Definition 1 (TDL Reconciliation Problem). Input: A full rooted binary
gene tree G, a full rooted binary domain tree D, a leaf mapping o :
L(D) — L(G) and a symmetric, binary |V(D)| x |V(D)]| eligibility ma-
trix E. Output: A full mapping 7 : V(D) — V(G), a set of co-duplication
nodes X CI(D), and a set of tandem duplication sets A=
{X;: X; CI(D)} such that:

1. a. y(u) =o(u)Vu e L(D)
b. Forany u,v € V(D) s.t. pp(v) =u, y(v) < gy(u)
2. Forany u,v,w € V(D) where pp(v) = pp(w) = u,
a. u € X if and only if y(v) and y(w) are incomparable in G
b. ug <= uc UxcpX
3. Foreach X € A where X = {x1,...,%p}
a. x;and x; are incomparable in D Vx;,x; € X
b. 9(xi) = 7(x;) Vi, x; € X
c. Elxil[xj] =1Vx;,xje X
X, YeA X={x1,...,x} and
Yubs Pxis ), i, i) 8.t xi>pyg and x; <py

4. For any where

Y={y,...

These conditions combine our understanding of domain evolution
with constraints implied by the inputs. The first set of constraints
deal with domain to gene node mapping. A full mapping must respect
the input leaf mapping. Because we do not allow horizontal domain
transfers in our model, domains must follow the evolutionary history
of their encompassing genes. If a domain is mapped to a particular
gene, then its children must be mapped to that gene or descendants of
that gene. The second rule is used to decide which event a domain is
assigned. A domain d present in gene g may only be considered a co-
duplication if the children of d are present in incomparable descend-
ants of g. Otherwise, d is assigned a tandem duplication event.
Conditions 3 and 4 constrain tandem duplication sets. Condition 3
states that for any pair of domains to be in a tandem duplication set,
they must (i) have no ancestry relationship between the two, (ii) have
been present in the same gene and (iii) be allowed to be in the same
tandem duplication set by the eligibility matrix. Finally, condition 4
ensures temporal consistency between tandem duplication sets.

These constraints only pertain to tandem duplication and co-du-
plication events. Lost domains are not seen in existing genes and
therefore do not show up in the input domain tree. Losses are instead
inferred based on the mapping of domains to genes. For each parent—
child pair (u,v) € E(D), we infer one loss for each gene tree vertex
on the path between y(u#) and y(v); in this case, at each such inter-
mediary node in G, there are no descendants of domain u observed in
the other branch of the gene tree. We note that if # is a co-duplication
node, distg(y(u),y(v)) > 1, as its domain duplication arises from a
gene bifurcation represented in G. An additional loss is inferred if # ¢
Y (i.e. u is part of a tandem duplication) and y(u) # 7(v); in this case,
in addition to one loss for each intermediary node in G, there is an-
other loss that must have existed at node y(#) corresponding to a co-
duplication that we do not see in the domain tree. Across all edges in
the domain tree, the total number of inferred losses is

> dista(y(w),7())) - 2IZ.

(u,v)eE(D)

2.2.2 Maximum parsimony costs for TDL reconciliations

For any input, there may be several valid reconciliations. We use a par-
simony framework with event costs to choose the optimal one among
them. Co-duplication events are required due to gene- or species-level
events, and therefore have 0 cost. Tandem duplications are assigned a
fixed cost cp per set (regardless of size), while losses are assigned a cost
cr. The full cost of a TDL reconciliation is given by

C=cpx |Al+c1 % {( 3 distc(y(u),y(v))) zm}

(u,v)eE(D)

2.2.3 Relationship of the TDL reconciliation formulation to

previous formulations

Reconciliation has typically been used to infer gene-level events,
with a few recent works extending the framework to domains. In
the earliest reconcilation models, known as Duplication Loss (DL)
models, duplications are restricted to consist of single domains (or
genes), with a fixed cost for each duplication and each loss; these
reconciliations can be defined using just the first two conditions of
Definition 1, with no eligibility matrix input, and where each X; € A
has |X;| = 1. In this case, reconciliations can be easily found in linear
time (Goodman et al., 1979). Other models have considered hori-
zontal transfers, merges/splits and shuffling events, but again with
each duplication consisting of a single domain (Hallett ez al., 2004;
Stolzer et al., 2015; Yi-Chieh et al., 2012). In contrast, Aluru and
Singh (2020) and Dondi ef al. (2019) consider reconcilations where
single duplication events can consist of multiple units (e.g. domains
or sequences), but they do not consider the positional information of
these units and thus these duplications are not constrained to be tan-
dem duplications; these formulations, which we term as Concurrent
Duplication Loss (CDL) reconciliations, can be defined using all
conditions except Condition 3¢ from Definition 1, and with no eligi-
bility matrix as input. In Dondi ez al. (2019), a maximum parsimony
approach with fixed duplication and loss costs is used, it is shown
that the CDL reconciliation problem is NP-complete, and a fixed-
parameter tractable algorithm (along with its implementation
MultRec) is given. In Aluru and Singh (2020), more general duplica-
tion cost functions based on duplication size are considered, and an
ILP solution is given. While these previous models did not explicitly
consider tandem duplications, a key insight of our work is that we
can define TDL reconciliations with a simple adaptation of the def-
inition of CDL reconciliations (Aluru and Singh, 2020; Dondi et al.,
2019) with the use of an eligibility matrix, which specifies which do-
main pairs can be part of the same tandem duplication. In the next
section, we show how the elements of this key matrix are computed
from input domain and gene trees and the relative positions of
domains in modern day sequences. We note that previous
approaches have also considered tandem duplications (Savard et al.,
2011), while additionally considering domain shuffling, but with the
goal of counting the number of evolutionary events rather than
assigning them to specific domains.

3 Identifying tandem duplication eligible domain
pairs

In a tandem domain duplication, one or more consecutive domains pre-
sent in a single gene are duplicated at once. In order to correctly identify
tandem duplications, we need to be able to differentiate between a tan-
dem duplication of multiple domains and multiple individual duplica-
tion events. This requires knowing the relative positions of a set of
domains and their copies post-duplication. Specifically, suppose a gene
contains k domains, 1, ..., k. Let P; be the position of domain i in a left
to right ordering of domains on the protein, and assume without loss of
generality that P; < P;;1Vi. Suppose domains j and j+ 1 are involved
in duplication events, adding domains ;' and (j + 1)'. We consider this
as a tandem duplication if and only if after this has occurred, P; <
Pig <Py < P(,-H)r (see Fig. 1).
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Unfortunately, information on the relative ordering of ancestral
domains is lost in domain phylogenies. In order to infer these, we
make the following assumptions:

1. When a tandem duplication occurs, the duplication copy is
inserted immediately after the original domains. If a tandem du-
plication of size k occurs, affecting domains with positions
i,i+1,...,i+k —1, then the copy of the domain with position
j is inserted at position j + k. Any domain previously at position
I > i+ k — 1 will have position [ + k after the duplication.

2. Domain shuffling does not occur; that is, if at any time point we
have P; < P; for domains 7 and j, then at no time point shall P; >
P;. In the domain tree, this applies to all pairs of nodes i and j,
and any of their descendants labeled with the same names (see
Fig. 1).

3. Children of co-duplication nodes are identical to and maintain
the same position as the parent.

The first and third assumptions are generally taken to be bio-
logically reasonable, while the second may not be correct in all
cases. Gene shuffling is known to occur in some families (Niimura
and Nei, 2003), and may occur between domains as well. Our
framework may not correctly identify tandem duplications in these
cases. With these assumptions, we have a simple algorithm for deter-
mining whether a pair of ancestral domains could be involved in a
tandem duplication. This algorithm additionally requires no losses
after tandem duplications in order to guarantee correctness.
Otherwise, necessary position information may be lost. We examine
the case of domains duplicating within a single gene first, and then
extend this solution to reconciliations with more than one gene.

3.1 Single gene case

In the single gene case, we examine a domain tree D that maps entire-
ly to a single gene g. In the following, let P,, be the actual position of
domain node # in the first sequence it occurred in, while P,, is the pos-
ition value we will infer. Note that because we have the positions of
domains in modern day sequences, we can annotate each leaf i in the
domain tree with an integer variable P; that corresponds to the pos-
ition of that domain within g (i.e. we set P; = P;). In this case, these
P;’s are distinct. Position values for internal nodes are set based on
the values of their children. Let # be an internal domain node with
children v, w. Following our assumption that the original copy of the
domain is the leftmost one in the sequence, we set P,, = min(P,, P,,).
Note that this is an arbitrary decision, and we could instead have in-
stead assumed that the original copy of the domain is the rightmost
one. We use these position values to determine whether two nodes
could be involved in a tandem duplication as follows:

Definition 2 (Pairwise Eligibility). Let u and x be two internal nodes in do-
main tree D with children v, w and vy, z, respectively. Suppose w.l.o.g. that
P, < P,, 13y < P,and P, < I3y. We say that u and x are pairwise eligible
if neither u nor x is an ancestor of the other, and P, < 13), <P, <P,

Pairwise eligibility tells us whether two nodes could have been
involved in a tandem duplication or not. Being pairwise eligible does
not imply that two nodes were involved in a tandem duplication,
but as we will see in the remainder of this section, in the absence of
certain losses, two nodes that duplicate in tandem are guaranteed to
be pairwise eligible. The notion of pairwise eligibility extends natur-
ally from pairs of nodes to sets of nodes:

Definition 3 (Tandem Duplication Eligibility). Let X = {u1,...,u,} be a
set of two or more internal nodes in domain tree D. We say that X is tan-
dem duplication eligible if u; and u; are pairwise eligible for all
ijeX,it]

Like pairwise eligibility, sets of domains that underwent a tan-
dem duplication event will be tandem duplication eligible in the ab-
sence of certain losses, but the converse is not necessarily true. We

prove this in Theorem 1. Due to space considerations, all proofs are
in the Supplementary Material.

Theorem 1.Let D be a domain tree containing all domains mapping to a
single leaf gene. Let {uy,...,uy} be a set of internal nodes in D corre-
sponding to domains involved in a tandem duplication, and suppose no
losses occur among their descendants. Then, under assumptions (1) and
(2), {u1,...,u} is tandem duplication eligible.

3.2 Multi-gene case

In the multi-gene case, position values are no longer distinct. Each
domain is assigned a position relative to other domains on the same
gene, so domains appearing in different genes may have the same
position value. The notion of pairwise eligibility is complicated by
the fact that it is no longer clear whether two ancestral domains ap-
pear in the same gene without a mapping. Subtrees rooted at two in-
ternal domain nodes may not have any overlap in the genes that
their leaves were present in. In these instances, we have no informa-
tion on whether the domains at their root could be part of a tandem
duplication. The key insight here is that we can only test tandem du-
plication eligibility between domains with descendants occurring in
the same gene. Let # be an internal node in domain tree D with chil-
dren v and w, and g be a leaf in gene tree G. We say that g annotates
u if D, and D,, both contain domains occurring in g. A gene g anno-
tates a pair of domain nodes {u1,u,} if it annotates both #; and u,.
Any pair of internal nodes {#1,u,} in D may be annotated by zero,
one or multiple genes. In each of these cases, we determine whether
uy and u, are pairwise eligible as follows:

* No annotations. If #; and u, have no shared annotations, then
we cannot determine the relative ordering of their children. That
is, we cannot determine whether #; and u, are pairwise eligible,
and so we are permissive and say that #; and u, are pairwise
eligible.

*  One annotation. If #; and u, have one shared annotation, then
there exists some leaf gene g that annotates both #; and u,. Let
Dig] be the induced subtree of D formed from the leaves of D
present in gene g; that is, D[g] corresponds to the subtree of D
rooted at the least common ancestor of the domains of gene g.
Note that #; and u, are both preserved in D[g]. We say #; and u,
are pairwise eligible if they are pairwise eligible in D[g] according
to the single gene tree case.

* Multiple annotations. Suppose #; and u, are annotated by genes
g1,---,8k Nodes u; and u, are pairwise eligible if they are pair-
wise eligible in D|g;] for any g;.

See Supplementary Figure S4 for an illustration of each case. As
in the single gene case, we say that a set {u1,...,u,} of two or more
internal domain nodes is tandem duplication eligible if u; and u; are
pairwise eligible for all 7, € [1, k].

Theorem 2. Let D be a domain tree, and G be the containing gene tree.
Let {u1,...,u;} be a set of internal nodes in D mapped to gene node g
in G corresponding to domains involved in a tandem duplication.
Suppose there exists some g; € L(Gg) such that no losses occur in the do-
main subtrees of D|g;] rooted at uy,...,uy,. Then, under assumptions
(1), (2) and (3), {m1, ... ,u} is tandem duplication eligible.

Theorem 2 tells us that if a tandem domain duplication occurred,
then the nodes in the domain tree representing those domains will be
marked as pairwise eligible. Of course, the converse is not true; there
may be some sets of nodes which are tandem duplication eligible but
were not tandem duplications.

Theorem 3. Suppose nodes u and v in domain tree D are mapped to gene
g and annotated by genes gy, ..., gy, and no losses occur in their subtrees
D, and D,. If u, v are marked as duplication nodes by the reconciliation
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framework and are pairwise eligible in D|g;] for any g, then u;, u, are
pairwise eligible in D|g;] for all g;.

Theorem 3 tells us that with no losses and under our assump-
tions, genes will not ‘disagree’; that is, if domains are ordered on
one gene such that their ancestors could have been tandem duplica-
tions, assumption (2) tells us that sibling domains must be ordered
the same way on any other gene as well. In cases where genes do dis-
agree, either assumption (2) has been violated, or our domain tree is
incorrect. In such cases, we do not constrain tandem duplication
eligibility.

For a domain tree with # nodes, we define the n x n eligibility
matrix E such that E;; = 1 if domains i and j are pairwise eligible,
and 0 otherwise. Note that E; = 0 Vi by the pairwise eligibility def-
inition. The eligibility matrix is used to weed out pairs of domains
that cannot be part of the same tandem duplication. While it is con-
servative in allowing some false positive pairs, in practice we see
that our approach is dramatically more accurate than approaches
that do not constrain tandem duplications.

In this section, our proofs relied on having no losses following
duplications. This may seem like a serious limitation, but our
method can maintain accuracy even when some losses occur. First,
recall that the position label of any internal node # of our gene tree
is taken from the leaf in its subtree with the minimum position
value. If any other leaf in the subtree is lost, # will still be assigned
the correct position value. Second, if a tandem domain duplication
occurs in an ancestral gene g, then the descendants of those domains
will be passed to all descendants of that gene. If no losses occur
among those descendant domains in even one gene in L(g), our
method will mark the domains involved in that duplication event as
tandem duplication eligible (see Supplementary Fig. S3). Taken to-
gether, these points make our method robust to losses even in rela-
tively high loss regimes, as we will show via simulations in Section
5.2,

4 A heuristic solution

Once the eligibility matrix is computed, the TDL reconciliation
problem can be solved with a simple modification to the ILP we pre-
viously introduced (Aluru and Singh, 2020) to solve the CDL recon-
ciliation problem. Solving the TDL reconciliation problem with this
ILP requires the addition of a single constraint (see Supplementary
Material for the full ILP solution). However, this solution requires
O(m?n?) constraints on an instance with 7 genes and n domains,
making it computationally infeasible for large gene families with
many domains. To scale to larger instances, we introduce a heuristic
which works by breaking up the original problem into a series of
sub-problems, and then running a simpler ILP on each sub-problem.
In Section 5, we show that this heuristic infers tandem duplications
almost as well as the original ILP, while being significantly faster.
Our full ILP solves the TDL reconciliation problem exactly; how-
ever, note that we do not add constraints to prevent non-consecutive
domains in tandem duplications, or non-consecutive tandem dupli-
cations. In practice, these events may arise if the input contains
errors or violates the assumptions given in Section 3.

To decompose our ILP, note that all domains in any tandem du-
plication set must be mapped to the same gene node. Similarly,
losses can only occur on edges in the domain tree between domain
nodes mapped to different gene nodes. This means that once a map-
ping is fixed, the number of losses can be immediately calculated,
and duplication sets can be constructed by looking individually at
the sets of domains mapped to each gene tree node. In other words,
given a mapping oracle which gives the optimal full mapping y*, we
can find the optimal tandem duplication sets for this mapping by
running a reduced version of our ILP on the domain sets mapped to
each gene node. In the remainder of this section, we describe our
heuristic, which consists of three steps:

1. Map domain nodes to gene nodes using an oracle that gives an
‘imperfect’ but valid mapping.

2. TIsolate sets of domains mapped to each gene node and infer tan-
dem duplications within each gene using a reduced ILP.

3. Remap domains to genes by moving tandem duplication sets
until convergence.

Each of these steps is described in more detail next, and an over-
view of our entire approach is given in Supplementary Figure S2.

4.1 Mapping oracle

For our mapping oracle, we use the mapping from a simpler prob-
lem, the DL reconciliation problem. In this variant, tandem duplica-
tions are not considered, and the only events allowed are single
domain duplications and losses (see Section 2.2). This problem can
be solved in O(|DJ) time using an LCA full mapping y (Goodman
et al., 1979):

* y(u) = o(u) Vu € L(D).
* y(u) = LCA(y(m1),y(n2)) Yu € I(D) with children sy, u,.

This mapping may be suboptimal for the full TDL reconciliation
problem. However, as we show in Section 5.2, we find in simulation
that this mapping tends to be very close to the ground truth

mapping.

4.2 Reduced ILP

Given a full mapping of domains to genes, we need to assign events
to each internal domain. As mentioned earlier, only domains
mapped to the same gene may be involved in a tandem duplication.
This means that when determining tandem duplication events within
a gene, we can ignore all domains not present in that gene. Let R(g)
be the set of all domains mapped to gene g. We find the sequence of
tandem duplication events that minimizes the reconciliation parsi-
mony cost for these nodes. This is done using a reduced ILP, given
below, which is based on our full ILP (given in the Supplementary
Material). In our reduced ILP, we remove mapping constraints,
keeping only duplication/co-duplication constraints. We first define
constants that encode the inputs:

1. d,, for each pair of nodes u,v € R(g). We fix d,, = 1 if u>pv
and 0 otherwise. That is, d,,, encodes ancestry relationships be-
tween nodes in the domain tree.

2. e,, for each pair of nodes u,v € R(g). We set e, = 1 if u, v are
eligible to be in the same tandem duplication set according to
the eligibility matrix E.

3. b, for each node u# € R(g). We set b, = 1 if # must be part of a
tandem domain duplication according to rule 2 of the TDL
problem using the oracle’s node mapping.

Next, we define our variables, which assign events to domain
nodes:

1. X, for each pair of nodes u,v € R(g), u # v. X,,, will be set to 1
if nodes u# and v are found to be part of the same tandem dupli-
cation; that is, X,,, = 1 if there is a set a € A such that u,v € a.

2. T, for each node u € R(g) and 1 < k < Kigr, where K,y is
the maximum allowed size of a tandem duplication. K, can be
set to half the number of domain nodes in R(g) to allow for all
possible tandem duplication sizes. T, will be set to 1 if the
length of the tandem duplication that node u belongs to is k, and
0 otherwise.

Our reduced ILP is given below. Because there are no losses be-
tween domains mapped to the same gene, the objective function
only needs to minimize the cost from tandem duplication events.
This cost is given by cp {Zu by —> 1 (k% Tuk)d] , with the b, term
counting the number of nodes taking part in tanidem duplication sets
and the T, term ensuring we do not double count tandem duplica-
tion events. The objective function omits the >", b, term since this is
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a constant, and instead maximizes the negative of the second term.
The constraints given are a direct translation of rules 3 and 4 from
the TDL reconciliation problem. The first constraint ensures that
two comparable domains may not be in the same tandem duplica-
tion set. The second constraint enforces rule 4 of problem definition,
ensuring temporal consistency between tandem duplications. The
third and fourth constraints ensure our sets are consistent, requiring
that if # is marked in a tandem duplication set with v, then v must
also be in a set with #. Similarly, if # and v are part of a tandem du-
plication set, and v and w are also in a tandem duplication set, then
u and w must also be part of the same set. Constraints 5 and 6 make
sure that nodes are only part of tandem duplication sets if they are
duplications to begin with, and that two domains may be part of the
same tandem duplication set only if they are tandem duplication eli-
gible. Constraints 7 and 8 ensure the T variables accurately count
the size of tandem duplications, for the purpose of cost calculation.
Finally, constraint 9 is the integer constraint on the X and T
variables.

—dw  Vu,v€R(g)

1-Xy:)+ (1 —diydz) Yu,v,y,2 € R(g)
ww 2 Xy + Xy — 1 Vy,u,v € R(g),u #v
Yu,v € R(g)

Vu,v € R(g)

Yu,v € R(g)

> Tu<1  VueR(y)

T, < 1(17” +wa) V€ R()1 < k < Koy
k v#u

Xm/aTuk € {0 1} VM7U € R(g),l < k < Kmax-

If R(g) is accurate, the tandem duplication events yielded by this
process will be part of an optimal solution to the TDL reconciliation
problem, and repeating this process on all nodes g € G gives all tan-
dem duplication sets in the optimal TDL solution.

4.3 Node remapping

Once all domains are mapped and assigned events, we attempt to
improve our solution by remapping domain nodes when doing so
reduces the reconciliation cost. Note that our initial mapping was an
LCA mapping. This means that for any domain node # initially
mapped to y(u), the only valid genes to which # could be mapped
are ancestors of y(u). The following lemma shows the effect of such
a remapping move on the reconciliation cost. It has been proven sev-
eral times (e.g. see Aluru and Singh, 2020; Dondi et al., 2019), and
we reproduce it here without proof:

Lemma. Let G, D and y be a gene tree, domain tree and full mapping,
respectively. Let u,v,w € D such that u = pp(v) = pp(w). Let i =
y(u) and j= LCA(y(v),y(w)) and suppose i>gj. Then, at least
dc(i,]) losses can be saved by setting y(u) = j.

This lemma tells us that the LCA mapping minimizes the number
of losses inferred. Remapping a domain to an ancestor will increase
the number of losses and therefore the overall cost of the reconcili-
ation. The only case in which this is acceptable is if remapping a
node can also decrease the number of tandem duplications we infer.

Remapping is done as follows. First, we create an ordering over
tandem duplications sets such that for any two sets X and Y, if 3x €
X,y € Y s.t. x < py, then X occurs after Y in the ordering. We note
that if there exists such x and y, then there cannot exist nodes u €
X,v € Y s.t. v< pu, or else constraint (4) of the TDL reconciliation
problem would be violated. Roughly, this creates a ‘top down’ tra-
versal over tandem duplication sets. We process tandem duplica-
tions in this order. For any inferred tandem duplication set X
occurring in gene g, we check whether every domain node in X can

be remapped to an ancestor of g without violating any conditions in
the definition of a TDL reconciliation. For any ancestor g* to which
X can be remapped, we check whether X can be combined with an
existing tandem duplication set already mapped to g*. If so, the
change in cost from remapping all nodes in X to g* is
cr X |X| x dg(g,g") —cp. If there exists some g* for which the
change in cost is negative, we remap all domains in X to the node g*.
Prior to remapping, our solution was guaranteed to have the min-
imum possible number of tandem duplication sets subject to the
oracle’s mapping. If a duplication set X originally mapped to gene g is
remapped to an ancestor node g*, we know that the tandem duplica-
tion sets mapped to gene g are still optimal. Similarly, because the
number of tandem duplications in g* is not allowed to increase from
remapping, the tandem duplications at g* after this operation are also
optimal. Therefore, we do not need to rerun our ILP after this step.
We repeat the remapping step until convergence. The final node map-
pings and tandem duplication sets are the output of our heuristic.

5 Results

5.1 Simulation

We tested our methods on both simulated and real datasets.
Simulated data were generated using our TreeSim package, first
described here (Aluru and Singh, 2020), and with full details pro-
vided in the Supplementary Material. Briefly, we generate simulated
gene tree topologies, and generate domain tree topologies within
them. Gene trees are generated as randomized topologies with a
fixed number of leaves. The overall branch length on a root to leaf
path in the gene tree represents the expected number of sequence
mutations that occur along that branch. This is taken as an input to
our simulation. Domain trees are simulated with respect to a given
gene tree. Co-duplication events occur at each gene tree bifurcation.
Between these events, tandem domain duplications and losses occur
according to a birth—death process. The distance between events fol-
lows an exponential distribution whose expected value is given as an
input parameter. Loss events affect any single domain, whereas tan-
dem duplications involve one or more consecutive domains at once.
Duplications are inserted immediately after the original copies. We
set the probability of a tandem duplication of size k occurring to be
1/2%. This makes single duplications the most likely type, while
making tandem duplications of size greater than three rare. No other
events are simulated. The ratio of duplication to loss events is vari-
able, tuned to create a series of tandem duplications followed by a
high probability of repeated losses. We note that this represents a
worst case scenario for our methods as losses may violate the
assumptions necessary to accurately infer whether domains are eli-
gible to be in the same tandem duplication. As we show next, how-
ever, our methods have excellent performance despite this, and will
likely only be better on real world datasets.

5.2 Simulation results

Simulations were run using gene trees with eight leaf nodes and an
average root to leaf distance of 0.3. We varied the mean distance be-
tween evolutionary events in D between 0.1 and 0.01 to examine its
effects on reconciliation accuracy. Large evolutionary event distan-
ces produce one or two events per gene, while low event distances
can simulate a cascade of consecutive domain events within a single
gene. We generate 50 gene and domain tree topologies at each of the
five event distances, giving a total of 250 simulations. On average,
we obtain 126, 83, 55,29 and 17 leaf domains for event distances of
0.01, 0.025, 0.5, 0.75 and 0.1, respectively. For these event distan-
ces, respectively, we have on average 20, 7, 3, 1 and 0 domain
losses, and 34, 18, 11, 5 and 2 tandem duplication events, of which
roughly half affect two or more domains. All tests were performed
using the trees generated by our simulation.

We first test the accuracy of several methods that map domains
to genes, as we need to use one of these as the mapping oracle for
our heuristic. We test LCA mapping as well as the mapping output
by a previous algorithm, MultRec (Dondi ez al., 2019), which solves
the CDL reconciliation problem. Although using it as a mapping


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab329#supplementary-data

Inferring tandem domain duplications

i139

oracle would defeat the purpose of our heuristic, we test the accur-
acy of the mapping output by our full ILP for comparison purposes.
For each of these three methods, we give it a simulated gene and do-
main tree, and mapping accuracy is measured as the fraction of do-
main nodes that are mapped to the correct gene node. For each
tested method, Table 1 shows the average mapping accuracy for
each event distance. We find that for all methods accuracy is nearly
perfect for all tested event distances. The LCA mapping, which is
both the simplest and fastest method, is slightly better at the lowest
event distances. Therefore, we use this method as the mapping or-
acle for our heuristic.

Next, we assess the ability of our full ILP, our heuristic and
MultRec to infer tandem duplications. Each method is given the do-
main and sequence trees generated by a simulation, and our methods
are additionally given an eligibility matrix, computed using these
trees and the positions of domains in the generated extant sequences
as described in Section 3. For each run of each of these algorithms,
we compute precision, recall and F1 scores as follows. For every tan-
dem duplication set X found by a method, we create a set consisting
of all pairs of domains (a, b) such that a,b € X. The tandem duplica-
tion sets are combined into one set Pred of pairs of domains pre-
dicted to be part of the same tandem duplication. We create a
similar set Real of pairs of domains that are actually part of the
same tandem duplication in the simulation. Precision is computed as
|Pred N Real|/|Pred| and recall is computed as |Pred N Real|/|Real|.
Fl1-scores, which compute the tradeoff between precision and recall,
are computed as 2 - %‘m. Figure 2 compares the precision,
recall and Fl-scores of our methods to MultRec. At low event dis-
tances, our methods have significantly better precisions than
MultRec; our average precisions are 1.73, 1.33 and 1.18 times
higher than MultRec’s at event distances of 0.01, 0.025 and 0.5, re-
spectively. On the other hand, MultRec has slightly better recall
than our methods, though for all distances, its average recall is <5%
better. Across event distances, our approaches have excellent per-
formance with average precisions >0.95 and average recalls >0.9.

Table 1. Accuracy of mappings obtained by the LCA method, our
full ILP and MultRec

Event distance

0.010 0.025 0.050 0.075 0.100
LCA 0.993 1.000 1.000 1.000 1.000
Full ILP 0.999 1.000 1.000 1.000
MultRec 0.990 0.997 1.000 1.000 1.000

Note: For each event distance, we give the average mapping accuracies
obtained across simulations when using mappings obtained by each of three
methods. All three methods have nearly perfect performance in all instances,
indicating that in most cases, using mappings from the fastest method (LCA)
is sufficient. We omit results for the ILP at an event distance of 0.01 because it

was unable to run in a reasonable time.

Method

Furthermore, our methods have significantly higher F1-scores than
MultRec at event distances up to 0.05. By incorporating tandem
duplications into our model, our method is able to significantly re-
duce the number of false positive tandem duplication sets found,
while removing only a small number of true positives relative to
MultRec. True positives can be removed by our approach when do-
main losses lead to the mislabeling of domain pairs as tandem dupli-
cation eligible. Moreover, our heuristic approach detects tandem
duplications almost as well as our exact ILP.

We also report runtimes of our approaches. Each of the methods
was run on a 3.2 GHz eight core Xeon processor with 64 GB of
RAM. We used the gurobi (LLC Gurobi Optimization, 2021) pack-
age to solve all ILPs. Table 2 shows the average runtime across the
simulations of our heuristic and ILP approaches, as well as of
MultRec. Our full ILP does not scale well as event distance
decreases, and at the smallest event distance of 0.01 did not finish
running on our 50 simulations in a reasonable time. In contrast, the
heuristic approach scales well across event distances. At the lowest
event distance of 0.01, it takes about 4s per example on average,
while providing significantly better tandem duplication sets than
MultRec.

5.3 Results on a biological dataset

Having shown that our heuristic works well in identifying tandem
repeats on simulated data, we next apply it to a protein sequence
family with numerous repeated domains. In particular, we used our
heuristic to analyze the evolutionary history of filamin domains
from the Filamin-A protein family. Light et al. (2012) analyzed this
family in detail and found via manual inspection of domain se-
quence similarity that although long tandem repeats of filamin
domains are a hallmark of this protein family, most sequences do
not exhibit evidence of tandem duplications. In particular, two spe-
cies, Hirudo medicinalis and Trichoplax adhaerens, contain lineage-
specific expansions in their filamin domain arrays. However, while
the Filamin-A protein of T.adhaerens shows clear signs of tandem
duplications, in H.medicinalis this protein appears to have increased

Table 2. Average runtime in seconds of our heuristic, our full ILP
and the MultRec program

Event distance

0.010 0.025 0.050 0.075 0.100
Heuristic 4.041 1.369 0.48 0.13 0.062
Full ILP - 282.734 35.214 1.706 0.333
MultRec 0.975 0.185 0.041 0.018 0.012

Note: For each event distance, the average runtime in seconds across 50
simulations is reported. Our heuristic scales nearly as well as MultRec while
providing significantly better tandem duplication inference. In contrast, at
event distance 0.01, the ILP did not finish running on the 50 simulations in
under 24 h.
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Fig. 2. Performance of methods in inferring tandem domain duplications. Average precision (left), recall (middle) and F1-scores (right) of MultRec (blue), our heuristic (orange)
and our full ILP (green) when run on 50 simulations each at the five given event distances. Error bars depict one standard deviation around the mean. At high event distances,
all three methods have excellent precision, recall and F1-scores. At lower event distances, the heuristic and ILP have significantly higher precision than MultRec but slightly
lower recalls. The heuristic and ILP also have significantly higher F1-scores than MultRec at low event distances. While due to runtime, we do not report results for the ILP at
an event distance of 0.01, we observe that the heuristic achieves perfect scores at high event distances and is only slightly worse than the ILP at an event distance of 0.025.
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Fig. 3. Lineage-specific filamin domain expansions in Filamin-A proteins. Shown are
clades of domains whose leaves consist of domains found only in (a) Hirudo medici-
nalis or (b) Trichoplax adhaerens. These subtrees of the full domain tree represent
lineage-specific expansions in each species. The number labeling each leaf refers to
the relative position of each domain in the constituent protein. Gray rectangles spe-
cify the tandem duplication events inferred by our heuristic approach. All internal
nodes not covered by these gray rectangles correspond to single domain duplica-
tions. Branch lengths are not representative. In H.medicinalis, we see a series of sin-
gle duplications, with one small tandem duplication in the middle. On the other
hand, T.adhaerens exhibits a very clear pattern of tandem duplications. Models that
attempt to minimize the number of tandem duplications without considering do-
main positions would be mostly correct for (b), but not for (a). With our model, we
can accurately infer duplication events in both scenarios.

its domain repertoire through repeated single domain duplications.
We sought to recapitulate these results in a fully automated manner.

We built a dataset of 18 Filamin proteins from 18 organisms
(Supplementary Table S1), extracted all filamin domains from these
sequences using HMMER (Eddy, 2011) and built a multiple se-
quence alignment of these domains using Clustal Omega (Sievers
and Higgins, 2018). These proteins contain from 5 to 36 filamin

domains per sequence. We inferred a domain tree using RAxML
(Stamatakis, 2014), and used the gene tree given in Light e al.
(2012). We ran our heuristic to find tandem duplications, and con-
firmed the existence of a cascade of tandem duplications in
T.adhaerens while finding mainly single duplications in the lineage-
specific expansion of H.medicinalis (see Fig. 3). Unfortunately,
MultRec was unable to run on these sequences within 6 h but the
CDL model would mark both expansions as a series of tandem
duplications whereas DL reconciliation would mark both as
repeated single duplications. In contrast, by explicitly modeling tan-
dem duplications, our approach is able to distinguish between these
very different evolutionary patterns that can occur in real sequence
families.

6 Conclusion

In this work, we introduce an approach to infer the evolutionary his-
tory of repeat domains where we explicitly model tandem domain
duplications, a frequent evolutionary event. We demonstrate how to
use domain and gene trees, along with the positions of domains
within extant genes, to identify whether domains can be within the
same tandem duplication. We have proved the correctness of this,
under the assumptions that tandem duplication copies occur imme-
diately after (or equivalently before) the original domains, domain
shuffling does not occur, and that losses do not occur to domains
that were involved in a tandem duplication. We use this knowledge
to constrain allowable tandem duplications found by reconciling do-
main and gene trees, and give both an exact ILP solution and a fast
yet effective heuristic to infer these reconciliations. We note that our
approach may allow tandem duplications consisting of sets of
domains that are not adjacent to each other; this can occur when
losses follow tandem duplications or there are errors in the input
trees. Theoretically, it remains possible that using our method for
determining whether domains can be part of the same tandem dupli-
cation, optimal solutions for TDL reconciliation may include tan-
dem duplication sets consisting of non-contiguous domains even
when evolutionary events occurred only under the assumptions of
our model; however, we have not observed such an example.
Despite these caveats, we show via extensive testing that the algo-
rithms we develop significantly improve our ability to detect and
distinguish between real tandem duplications and repeated single
duplications. Moreover, we show the importance of this distinction
using a protein family that exhibits both types of duplications in sep-
arate lineages.

While we focused on three types of evolutionary events—co-
duplications, tandem duplications and losses—other types of events,
including horizontal domain transfers and domain merge/split
events have been previously modeled. Adding these events to the
TDL reconciliation framework will increase the accuracy of event
inference in gene families where they occur. Modeling domain shuf-
fling events, in which domains swap positions on the protein, would
be particularly useful to our model as we rely on the inference of an-
cestral domain positions.

With large protein families, or those with many domains, run-
time can be an issue. This is especially important in families with
tandem duplications, whose existence implies a large number of
domains per protein. Our ILP solution, while exact, is unable to
scale to realistically sized protein and domain trees. Our heuristic
mitigates this issue, speeding up the process significantly while main-
taining accuracy by running a simplified ILP on a series of smaller
sub-problems. This approach scales to tens of proteins with dozens
of domains, but has difficulty with protein families of interest such
as the nebulin and immunoglobulin families, which can have over
100 domains per protein. Developing faster heuristics to assign tan-
dem duplication sets would allow these families to be analyzed.
Another challenge in inferring the evolutionary history of repeat
domains within a protein family is that these domains can be quite
short, with some containing as few as 20 amino acids. In these cases,
it is difficult to obtain accurate phylogenies using traditional meth-
ods like RAXML. Recent methods such as TreeFix (Wu et al., 2013)
mitigate this issue by balancing both maximum likelihood and
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duplication-loss reconciliation scores. Using TDL-derived reconcila-
tion scores may improve the accuracy of these approaches, as they
will correspond to higher quality reconciliations.

An especially exciting avenue for future work is the large-scale
application of our approach to other orthogroups, either in the con-
text of domain and gene tree reconciliations or gene and species tree
reconciliations. We hypothesize that large tandem duplications of
certain domains and genes will map to places in the phylogeny
where accelerated evolution leads to important functional innova-
tions, and anticipate that the methods we have developed in this art-
icle will be a great aid in pinpointing these important events.

Data Availability: The code underlying this article is available at
https://github.com/Singh-Lab/TandemDuplications
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