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Physics-driven Spatiotemporal 
Regularization for High-
dimensional Predictive Modeling:  
A Novel Approach to Solve the 
Inverse ECG Problem
Bing Yao & Hui Yang

This paper presents a novel physics-driven spatiotemporal regularization (STRE) method for high-
dimensional predictive modeling in complex healthcare systems. This model not only captures the 
physics-based interrelationship between time-varying explanatory and response variables that are 
distributed in the space, but also addresses the spatial and temporal regularizations to improve the 
prediction performance. The STRE model is implemented to predict the time-varying distribution of 
electric potentials on the heart surface based on the electrocardiogram (ECG) data from the distributed 
sensor network placed on the body surface. The model performance is evaluated and validated in both 
a simulated two-sphere geometry and a realistic torso-heart geometry. Experimental results show that 
the STRE model significantly outperforms other regularization models that are widely used in current 
practice such as Tikhonov zero-order, Tikhonov first-order and L1 first-order regularization methods.

Linear regression is a widely used approach for modeling the relationship between explanatory variables x’s and 
response variable y by the linear function, y =  Rx +  ε, in which R is a parameter matrix characterizing the model 
details. Linear regression has widespread applications in various fields such as engineering, healthcare, economics 
and social science, for predictive modeling, experimental design, or system optimization. Regression parameters 
are often estimated based on the static data set of explanatory and response variables. However, rapid advance-
ment of distributed sensing and imaging technology brings the proliferation of high-dimensional spatiotemporal 
data, i.e., y =  y(s, t) and x =  x(s, t) in healthcare systems. Traditional regression is not generally applicable for 
predictive modeling in these complex structured systems.

For example, Fig. 1 shows the distribution of electric potentials y(s, t) acquired by the ECG sensor network 
placed on the body surface, also named body surface potential mapping (BSPM)1,2. Medical scientists call for 
the estimation of electric potentials x(s, t) on the heart surface from BSPM y(s, t) so as to investigate cardiac 
pathological activities (e.g., tissue damages in the heart)3–6. However, spatiotemporally varying data and complex 
torso-heart geometries defy traditional regression modeling and regularization methods.

In general, high-dimensional predictive modeling (i.e., y(s, t) =  Rx(s, t) +  ε) poses several challenges including

(1) Physics-based derivation of parameter matrix R: Traditional regression modeling estimates parameter 
matrix R based on the readily available data set of [x, y]. However, distributed sensing or imaging of spatio-
temporal systems provides only the surface profiles y(s, t) such as BSPMs. It is often difficult to directly meas-
ure heart-surface potential mappings x(s, t). As such, inferring x(s, t) needs a better knowledge of parameter 
matrix R. Fortunately, physical laws define the mechanisms of electrical propagation from the heart to the 
body surface. This, in turn, enables the derivation of parameter matrix R using physics-based principles (i.e., 
divergence theorem, Green’s theorem).

(2) Ill-conditioned system: Linear systems involving high-dimensional data y(s, t) and x(s, t) are commonly 
ill-conditioned. This is partly caused by unobserved x(s, t), and partly due to the fact that parameter matrix R 
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is rank deficient (i.e., rank(R) <  min{dim(x),dim(y)}). The condition number of R (i.e., cond(R) =  ||R||||R−1||) 
is also shown to be large in high-dimensional predictive modeling (e.g., inverse ECG problems7,8). Moreover, 
the derivation of R depends, to a great extent, on deterministic physics-based principles and the numerical 
analysis of complex geometries but does not account for real-world uncertainties. Such uncertainties may be 
introduced by simplified physical assumptions, geometric variations, measurement noises and other extra-
neous factors. As a result, high-dimensional prediction models cannot always match satisfactorily with data 
from real-world experiments.

(3) Spatiotemporal regularization: Ill-conditioned systems make the prediction more sensitive to noise factors 
(e.g., ε) and approximation errors in parameter matrix R. For example, measurement noises can potentially 
cause a small change Δ y in the observed data y(s, t). Considering the estimation of x changes to x +  Δ x, we 
will have the changes in the solution expressed as ∆ ∆x x R y ycond/ ( ) / . Because of the large condition 
number cond(R), the pseudo-inverse solution of x̂ s t( , ) may be completely different. As such, there is an 
urgent need to develop new statistical approaches that leverage physics-based principles and observed data to 
account for uncertainties and tackle the ill-conditioned problems. Although x(s, t) and y(s, t) are spatially 
distributed and dynamically evolving over time, they have spatial and temporal correlations. Very little has 
been done to develop new spatial regularization methods that handle approximation errors through spatial 
correlations of dynamic profiles on the complex geometry (e.g., the heart surface), as well as new temporal 
regularization methods to increase model robustness to measurement noises and other uncertainty factors.

This paper presents a new spatiotemporal regularization model to tackle these research challenges and address 
ill-condtioned problems in high-dimensional predictive modeling. Our contributions in the present investigation 
are as follows:

(1) High-dimensional systems involve complex geometries, which challenge the derivation of parameter matrix 
R. We developed realistic models of torso-heart geometries, numerically discretized them with the boundary 
element method, and then utilized physical laws (i.e., divergence theorem and Green’s theorem) to derive the 
parameter matrix.

(2) As physics-based models are deterministic and do not account for real-world uncertainties, we developed a 
physical-statistical approach that integrates physics-derived parameter matrix R with a spatiotemporal reg-
ularization (STRE) method to build the high-dimensional prediction model. This approach leverages data 
from actual experiments to improve spatial and temporal regularity of the solutions, thereby making the final 
prediction closer to reality.

(3) The proposed STRE model involves quadratic programming and high-dimensional data, which cannot be 
solved analytically. Iterative algorithms are commonly used such as the multiplicative update method which, 
however, requires the nonnegative constraint of x(s, t). As such, they are not generally applicable because the 
electric field involves both positive and negative potentials. We developed a new method of dipole multiplica-
tive update, which is inspired by the dipole assumption in electrodynamic physics. This new idea overcomes 
the drawbacks of existing multiplicative update methods, and provides a generalized approach to solve spati-
otemporal regularization problems.

(4) Few, if any, previous works focused on both spatial and temporal regularizations in inverse and forward 
ECG problems. We evaluated and validated the proposed STRE model in simulation as well as a real-world 
case study to map electric potentials from the body to the heart surface. Experimental results show that our 
method not only effectively tackles the ill-conditioned problems in high-dimensional predictive modeling, 
but also outperforms those regularization models widely used in current practice (i.e., Tikhonov zero-order, 
Tikhonov first-order and L1 first-order regularization methods). This research work provides a new and 
effective approach to investigate disease-altered electric potentials from the body to the heart surface.

Figure 1. Spatiotemporal distribution of electrical potentials on the body and heart surfaces. (Note that 
black dots are ECG sensors placed on the body surface).
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The remainder of this paper is organized as follows: Section II introduces the research background. Section 
III presents our research methodology. Section IV describes the experimental design. Experimental results are 
shown in section V. Section VI concludes this paper.

Research Background
Ill-conditioned systems. The high-dimensional predictive model, y(s, t) =  Rx(s, t) +  ε, where x(s, t) and 
y(s, t) are spatiotemporal data, is generally ill-conditioned. For example, the inverse ECG problem in healthcare 
(i.e., mapping the potential distribution on the heart surface from the body surface)7,8 is ill-conditioned. The 
condition number of the parameter matrix R (i.e., cond(R) =  ||R||||R−1||) is a measure of relative sensitivity of the 
solution x(s, t) to the observed data y(s, t) (i.e., ∆ ∆x x R y ycond/ ( ) / ), which is shown to be large in prediction 
models that involve high-dimensional data and complex structured systems. The large value of cond(R) indicates 
that the prediction model is highly sensitive to changes in y(s, t). The pseudo-inverse solution of x̂ s t( , ) in tradi-
tional regression methods (i.e., = −x̂ R R R ys t s t( , ) ( ) ( , )T T1 ) is unreliable and sensitive to uncertainty factors. 
Therefore, additional physical or statistical constraints are required to guarantee the norm of the solution to be 
regular and increase the reliability of the high-dimensional prediction model.

Regularization Methods. Statistical regularization models such as Tikhonov and L1 regularization methods7–10  
were proposed to address the ill-conditioned parameter matrix R, increase the model reliability and improve the 
prediction accuracy.

The objective function of Tikhonov regularization is formulated as

λ− + Γy Rx xs t s t s tmin{ ( , ) ( , ) ( , ) }
(1)x s t( , ) 2

2 2
2
2

while the L1 regularization is formulated as

λ− + Γy Rx xs t s t s tmin{ ( , ) ( , ) ( , ) }
(2)x s t( , ) 2

2 2
1

where ||·||2 and ||·||1 denote the L2- and L1-norm, respectively, λ is the regularization parameter, and Γ  represents 
the mathematical operator constraining x(s, t). Note that Γ  is the identity matrix in zero-order Tikhonov and L1 
regularization methods (also known as ridge regression11 and LASSO12 in statistics), which directly penalize the 
magnitude of the estimator.

Zero-order regularization is effective to shrink unreliable components of the estimator and achieve sparse 
solutions for high-dimensional predictive modeling. However, they are limited in the ability to handle measure-
ment noises or approximation errors in ill-conditioned systems. Therefore, first-order regularization methods 
were proposed to address such limitations by constraining the gradient of the solution x(s, t). Note that Γ  is a 
discretized gradient operator in the first-order regularization methods. One of the most commonly used gradient 
operators is a bidiagonal matrix9,10 expressed as

Γ =











−
−

−











 

1 1
1 1

1 1

which is a central-difference approximation for the first-order derivative. However, this approximation does not 
account for the complex geometries of space-time dynamic systems, and is only effective for one-dimensional 
data. Most of previous works aligned x(s, t) in one column as {x(s1|t), x(s2|t), … , x(sN|t)}T, and then applied the 
bidiagonal gradient matrix. Note that the alignment of spatiotemporal data in one column is not an effective way 
(maybe even incorrect) to compute the spatial gradients. As such, regularization results are not as satisfactory as 
expected.

In the inverse ECG problem, another commonly used gradient operator is the normal derivative-operator of 
the potential distribution on the heart surface, Γ x(s, t) =  ∂ x(s, t)/∂ n, where x(s, t) denotes the dynamic potential 
distribution on the heart surface and n denotes the surface-normal vector7,8. However, this operator only includes 
the normal derivative of x(s, t), but ignores the gradient component on the the heart surface (i.e., ∂ x(s, t)/∂ τ, 
where τ denotes the surface-tangent vector) and does not take into account the spatial correlations between adja-
cent regions. It is worth mentioning that spatiotemporal data from distributed sensing and imaging are generally 
spatially distributed and have spatial correlations13,14. In the existing first-order regularization methods, the gra-
dient operator Γ  does not account for the spatial correlations or complex geometries of space-time systems. Thus, 
it is imperative to develop new regularization models to handle the approximation errors and improve the spatial 
regularity of the solution in high-dimensional predictive modeling.

In addition, space-time systems are dynamically varying over time and have temporal correlations. For example,  
the human heart is a typical spatiotemporal system with cardiac electrical activities dynamically varying in both 
space and time15,16. Messnarz et al.17 proposed a spatiotemporal approach to reconstruct cardiac electric poten-
tials. Spatial correlation is addressed by a surface gradient of the solution that is approximated using a symmetric 
matrix. The temporal constraint is formulated on the assumption that electric potentials on the heart surface 
are monotonically nondecreasing during the depolarization phase. However, the geometry of heart surface is 
highly complex, and thus a symmetric matrix tends to be limited in the ability to approximate the surface gra-
dient. Moreover, the nondecreasing assumption in the temporal constraint may not be generally applicable to 
high-dimensional predictive modeling. Thus, there is an urgent need to design a novel spatiotemporal regulari-
zation method with the ability to effectively improve the spatial and temporal regularities in space-time systems.
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Research Methodology
As shown in Fig. 2, modern industries are increasingly investing in distributed sensing and imaging technol-
ogy to cope with complexity in space-time dynamic systems. This brings large amount of spatiotemporal data 
(e.g., potential mappings in cardiology). This section presents a new physics-driven spatiotemporal regulari-
zation (STRE) approach for high-dimensional predictive modeling. First, we derive the parameter matrix R by 
integrating the boundary element method with divergence theorem and Green’s theorem. Second, we investigate 
the spatial regularization that handles approximation errors through spatial correlations of dynamic profiles on 
the complex geometry (i.e., heart surface), as well as the temporal regularization to increase model robustness to 
measurement noises. Finally, we develop a new generalized method of dipole multiplicative update to solve the 
objective function of the proposed STRE model.

Physics-based Derivation of Parameter Matrix R. The observed data y(s, t) are generally obtained 
from the surface of a complex structured system such as BSPMs. Inferring the internal dynamic variable x(s, t)  
(e.g., electric potential distributions on the heart surface) of these systems depends on the high-dimensional 
predictive modeling

ε= +y Rxs t s t( , ) ( , ) (3)

where R is the parameter matrix characterizing the interrelationship between x(s, t) and y(s, t).
In the human body system, the heart represents the bioelectric source, and the torso is modeled as a homo-

geneous and isotropic volume conductor whose boundary consists of body surface SB and heart surface SH
18,19. 

Electric potentials x(s, t) on the heart surface and y(s, t) on the body surface are related by the Laplace’s equations 
derived from physics-based principles (i.e., divergence theorem and Green’s theorem). Solving for the parameter 
matrix R involves tackling this Laplace’s equation and calculating complex surface integrations, which are difficult 
to solve analytically in realistic torso-heart geometry. Thus, boundary element method (BEM)20,21 is implemented 
to discretize SB and SH into triangle meshes, and divide the surface integrals into a series of numerical integrations 
over the triangle elements. Thus, the parameter matrix R is expressed as18,19

= − −− − −R A M M A M M A A( ) ( ) (4)BB BH HH HB BH HH HH BH
1 1 1

where the coefficient matrices, A's and M's depend entirely on the torso-heart geometry. The rows of ABB, ABH and 
MBH correspond to the locations of different nodes on the body triangle-mesh SB. Similarly, the rows of AHH, AHB 
and MHH represent the locations of different nodes on the heart triangle-mesh SH. The different columns of all the 
matrices correspond to locations of triangle elements on the surface of integration.

However, inferring x(s, t) in complex structured systems is an ill-conditioned problem, because the parameter 
matrix R is often with a large condition-number7,8. Moreover, several assumptions have been made when deriv-
ing matrix R. For examples, the human body is modeled as a homogeneous volume conductor, and geometrical 
variations over time are assumed to be negligible. These assumptions may not hold true in real-world situations 
and will introduce uncertainties when predicting x(s, t)22,23. Thus, obtaining a numerically robust solution of 
high-dimensional predictive modeling calls for the integration of physics-based principles with new statistical 
regularization methods.

Spatial and Temporal Regularization. The spatiotemporal data acquired by distributed sensing and 
imaging systems are generally distributed in the space and have spatial correlations. In existing regularization 
methods, the constraint operator Γ  or the penalty term does not account for the spatial correlations or the geom-
etries of complex systems, but rather align the mesh nodes in one column or take the normal derivative operator. 
As such, they are limited in the ability to improve the spatial regularity. In this investigation, we propose to define 
the constraint operator Γ  to be a spatial Laplacian operator Δ s to overcome the drawbacks in existing methods.

The matrix Δ s is computed by determining the Laplacian at each mesh node. In a two-dimensional square lat-
tice with a lattice constant d as shown in Fig. 3(a), xi denotes the value of dynamic variable x(s, t) at node pi =  (ui, vi),  
where (ui, vi) are location coordinates. According to Taylor’s theory, xi is approximated as the sum of x0 and its 
derivatives at node p0 =  (u0, v0):

Figure 2. Flowchart of research methodology. 
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Adding the above four equations yields
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Thus, the Laplacian of x0 at node p0 is expressed as

∑∆ =





−





= −
=

x
d

x x
d

x x1 4 4 ( )
(5)i

i0 2
1

4

0 2 0

where = + + +x x x x x( )/41 2 3 4 . Finally, the surface Laplacian of this square lattice is

∆ =











− =

≠ ∈

d
i j

d
i j p p

4 , if

1 , if , neighborhood of

0, otherwise (6)

ij
j i

2

2

However, real-world geometries are complex and are generally discretized into irregularly triangulated meshes 
using the boundary element method20,21 as shown in Fig. 3(b). Unlike the 2D square lattice, the Euclidean dis-
tance between different pairs of nodes is not a constant on the 3D triangle mesh. Thus, we estimate the Laplacian 
at each mesh node by linear interpolation. In this 3D triangle mesh, xt(i) denotes the value of dynamic variable 
x(s, t) at node pi at time t, and dij is the distance between pi and pj. Using linear interpolation, the value ′x j( )t  at the 
location ′pj  which is along the edge of pi and pj, and di away from pi, as shown in Fig. 3(b), is expressed as

′ = + −x j x i d
d

x j x i( ) ( ) ( ( ) ( ))
(7)

t t
i

ij
t t

where di is the average of dij’s over the neighbor nodes pj’s of pi, and these neighbors pj’s are the vertices of the 
triangles that include pi as one of the vertices. Thus, the Laplacian of xt(i) at pi in a 3D triangle mesh is defined as
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Figure 3. (a) 2D square lattice; (b) 3D triangle mesh.
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where ni is the number of neighbor nodes pj’s of pi; = ∑ =d n j
n

d
1 1

1
1

i i
i

ij
, denotes the average of 

d
1

ij
 over these pj’s. 

According to Eq. (8), we define the elements of the Laplacian matrix Δ s as

∆ =







−










=

≠ ∈

d d
i j

d n d
i j p p

4 1 , if

4 1 1 , if , neighborhood of

0, otherwise (9)

ij

i i

i i ij
j i

Therefore, the spatial regularity of three-dimensional triangle mesh at node pi is defined as

∑∆ = ∆
=

x s t x j( ( , )) ( )
(10)

s i
j

N

ij t
1

where N is the total number of mesh nodes.
In addition, spatiotemporal data x(s, t) and y(s, t) are dynamically evolving over time and have temporal 

correlations. However, few, if any, previous works have effectively dealt with the temporal regularization for 
high-dimensional predictive modeling in space-time systems (i.e., y(s, t) =  Rx(s, t) +  ε, the two-body dynamic 
prediction problem). Therefore, we propose to define the temporal regularity as

∑ ∑ τ−
τ= = −

+

x xs t s( , ) ( , )
(11)t

T

t w

t w

1 2

2 2

where T denotes the length of the overall time span of the spatiotemporal data, and w is a time window. Temporal 
correlation is stronger when two time points are close to teach other, and electric potentials at two time points 
that are far away from each other tend to have bigger differences. Therefore, the time window w is often chosen 
to be a small number. Adding the temporal constraints in Eq. (11) to our regularization model is conducive to 
increase the model robustness to measurement noises in the time domain.

Spatiotemporal Regularization (STRE) Model. Combining the parameter matrix, spatial and temporal 
regularization as described in previous subsections, we formulate our STRE model by the following objective 
function

∑ ∑λ λ τ=







− + ∆ + −





τ= = −

+

y Rx x x xJ s t s t s t s t smin ( , ) ( , ) ( , ) ( , ) ( , )
(12)

x s t t

T

s s t
t w

t w

( , ) 1

2 2 2 2

2

2 2

where λs and λt are the spatial and temporal regularization parameters, which can be chosen by the L-curve 
method24 or cross validation. By adding both the spatial and temporal regularization into the objective function, 
the proposed model will not only handle the approximation errors in R, but also increase the model robustness 
to measurement noises in the time domain. Therefore, it is expected that the proposed STRE method will greatly 
improve the performance of high-dimensional predictive modeling in space-time systems.

This objective function involves both spatial and temporal correlations, and is difficult to be solved analytically. 
Iterative algorithms are commonly used such as the multiplicative update method which, however, requires nonneg-
ative constraint of x(s, t)25,26. As such, they are not generally applicable because both negative and positive electric 
potentials exist on the heart or body surface. Here, we develop a dipole multiplicative update method to solve the 
proposed STRE model, inspired by the dipole assumption in electrodynamic physics. In this method, xt is split into 
its positive part +xt  and negative part −xt , which are defined as =+x xmax{0, }t t  and = −−x xmax{0, }t t . Thus, xt 
can be denoted as = −+ −x x xt t t . To simplify notation, we use yt and xt to denote y(s, t) and x(s, t) here and later on. 
Then the term that only depends on vectxt in the objective function becomes

∑ ∑

λ λ
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τ τ
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where I is an identity matrix whose dimension is the same as the Laplacian matrix Δ s. We substitute = −+ −x x xt t t  
into Eq. (13) and define

λ λ= − = + ∆ ∆ ++ −A A A R R Iw2 (14)T
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where matrix A+ and A− are the positive and negative parts of matrix A, whose definition is similar to that of +xt  
or −xt . We then obtain the update rules shown in Table 1. See the detailed proof in Appendix B.

Experimental Design
In the present investigation, the proposed STRE model is implemented to predict the time-varying distribution 
of electric potentials on the heart surface from real-world sensor data of electric potentials on the body sur-
face. The model performance is evaluated and validated in both a simulated two-sphere geometry and a realistic 
torso-heart geometry.

Simulation Studies in a Two-sphere Geometry. Figure 4 shows the simulated two-sphere geometry 
that is formed by two concentric spheres. Each sphere is triangulated with 364 triangles and 184 nodes, which 
generates a 184 ×  184 parameter matrix R. A time-varying three-dimensional current dipole p(t) =  (px(t), py(t), 
pz(t)) is placed at the center of the two-sphere geometry, which is defined as

π

π

π

= . + − .

= . + +

= + − .

− − .

− − .

−

p t e t

p t e t

p t e t

( ) 10(0 9 )cos(2 ( 1 48))

( ) 2(1 1 )cos(2 ( 1))

( ) (1 )cos(2 ( 1 2))

x
t

y
t

z
t

1 4

1 6

where time t ranges from 0 ms to 300 ms. Thus, the dynamic distributions of electric potentials on the inner sur-
face x(s, t) and outer surface y(s, t) are calculated analytically by the equations27:

πσ
=

⋅ 







+


















x p rs t t s
r r

r
r

r
r

( , ) 1
4

( ) ( ) 2

(16)

H

B H

H

B

B

H
2

2

πσ
=

⋅y p rs t t s
r

( , ) 3
4

( ) ( )
(17)

B

B
3

where σ =  1 is the electric conductivity inside the outer sphere, rH(s) and rB(s) denote the location vectors from 
the center to the inner and outer spheres, respectively, and rH =  1.0 and rB =  1.5 are the radii of the two spheres.

The proposed STRE model is implemented to predict the electric potentials x̂ s t( , ) on the inner sphere based 
on electric potentials y(s, t) on the outer sphere calculated by Eq. (17). Regularization parameters λs =  0.015 and 

1: Set constants λs, λt and w.

2: Initialize {x+} and {x−} as positive random matrices:

   whose columns (rows) denote different time points (different nodes on the heart surface)

3: Repeat

4: for t =  1, … , T do

   
←+

− + + − + + + + − +

+ +
+x x( ) ( )

Ax Ax A x A x

A xt i

t i Bi t i Bi t i t i

t i
t i

( ) (( ) )2 4( ) ( )

(2 )

   ←−
+ − + + − + + − − −

+ −
−x x( ) ( )

Ax Ax A x A x

A xt i
t i Bi t i Bi t i t i

t i
t i

( ) (( ) )2 4( ) ( )

(2 )

5: end for

6: until convergence

Table 1.  The Proposed New Dipole Multiplicative Update Algorithm for STRE.

Figure 4. (a) Parameters of the two-sphere geometry; (b) Each sphere is triangulated with 184 nodes and 364 
triangles.
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λt =  0.5 are chosen by the L-curve method24, and time window w is specified to be 2. In our simulation studies, 
Gaussian noises with mean zero and variance σε

2 (i.e., ε σ∼ εN 0( , )2 ) are added to y(s, t). Five different noise levels 
(i.e., 10%, 20%, 30%, 40%, 50%) are added at each time, which correspond to noises with standard deviations 
σε =  0.1, 0.2, 0.3, 0.4, 0.5, respectively. At each noise level, the predicted potentials on the inner sphere will be 
compared with the true data (i.e., reference potentials) calculated by Eq. (16).

Real-world Case Studies in a Realistic Torso-heart Geometry. Furthermore, we conduct experiments 
in the realistic torso-heart geometry, as shown in Fig. 5. The data of electric potentials (whose recording length is 
a complete cycle of heartbeat and t ranges from 0ms to 1000 ms) on the heart and body surfaces, and the 
torso-heart geometry are obtained from the Center for Integrative Biomedical Computing (CIBC) at the 
University of Utah28. In this torso-heart geometry, the heart surface consists of 257 nodes and 510 triangles, while 
the torso surface is formed by 771 nodes and 1538 triangles. The BSPM y(s, t) are acquired from 367 sensors, 
which are located at 367 nodes on the body surface. Thus, a 367 ×  257 parameter matrix R is generated. The STRE 
model is implemented to predict the potential distribution x̂ s t( , ) on the heart surface from the BSPM y(s, t). 
Regularization parameters λs =  2.0 and λt =  0.005 are chosen by the L-curve method24, and the time window w is 
specified to be 2.

Similarly, five different noise levels (i.e., 0.6%, 1.3%, 6.3%, 12.6%, 25.3%) are added to the electric potentials on 
the body surface y(s, t) to simulate the real-world uncertainties in this torso-heart geometry. The five noise levels 
are with standard deviations σε =  0.005, 0.01, 0.05, 0.1, 0.2, respectively. The estimated electric potentials on the 
heart surface from high-dimensional predictive modeling will be benchmarked with real-world sensor data of 
reference potentials.

Performance Evaluation. The performance metric, relative error (RE), is used to evaluate the model per-
formance, i.e.,

=
∑ −

∑

x̂ x
x

RE
s t s t

s t
( , ) ( , )

( , ) (18)

s t

s t

, 2

, 2

where x̂ s t( , ) and x(s, t) denote the estimator and reference results, respectively. The performance of our STRE 
model is benchmarked with Tikhonov zero-order (Tikh_0th), Tikhonov first-order (Tikh_1st) and L1 first-order 
(L1_1st) regularization methods. In these first-order regularization methods, the matrix Γ  is defined as the nor-
mal derivative operator of the electric potentials on the inner surface7,8. The methods to solve Tikhonov and L1 
regularizations are described in Appendix A.

Results and Discussions
Experimental Results in the Two-sphere Geometry. Figure 6(a) shows the comparisons of relative 
error (RE) between the proposed STRE model and other regularization methods (i.e., Tikhonov zero-order, 
Tikhonov first-order and L1 first-order methods) in the two-sphere geometry, when there is no noise on the 
potential map y(s, t) of the outer sphere. Note that the proposed STRE model yields the RE of 0.006, which is sig-
nificantly smaller than that obtained from Tikh_0th, Tikh_1st and L1_1st, which are 0.1475, 0.1026, and 0.1025, 
respectively.

Figure 6(b) shows the variations of RE for different regularization methods with respect to the noise level 
added to the potential map y(s, t) of the outer sphere. In the present investigation, we replicated the experiment 
20 times for each noise level, and thus the resulted RE is shown with a corresponding error bar (i.e., the standard 
deviation of RE). When the noise level increases from σε =  0.1 to σε =  0.5, the RE monotonically increases for all 

Figure 5. (a) Front and (b) back views of the realistic torso-heart geometry. The heart surface is triangulated 
with 257 nodes and 510 triangles and the torso surface is triangulated with 771 nodes and 1538 triangles.
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the methods. Specifically, the RE increases from (0.0670 ±  0.00057) to (0.0769 ±  0.0034) for the proposed STRE 
model, from (0.1557 ±  0.00058) to (0.2080 ±  0.005) for Tikh_0th, from (0.1037 ±  0.00031) to (0.1538 ±  0.0031) 
for Tikh_1st, and from (0.1046 ±  0.0004) to (0.1569 ±  0.0041) for L1_1st. Notably, the STRE model yields the 
smallest RE for all noise levels, and achieves the slowest increase of RE with respect to the noise level among 
various regularization methods.

Furthermore, Fig. 7(a) shows the reference mapping of the true potential distribution on the inner sphere cal-
culated by Eq. (16), whose value ranges from − 2.5 mV to 2.5 mV. Note that the potential distribution on the inner 
sphere is dynamically varying over time, and Fig. (7) illustrates the mapping at t =  150 ms. Figure 7(b) shows the 
predicted potential mappings on the inner sphere by different methods when there is no noise on the potential 
map y(s, t) of the outer sphere. Note that the predicted potential mapping by the STRE yields a smaller RE of 0.006 
compared to that of Tikh_0th (i.e., 0.1475), Tikh_1st (i.e., 0.1026) and L1_1st (i.e., 0.1025), which achieves the 
best performance to predict the reference potential mapping shown in Fig. 7(a). Figure 7(c) shows the predicted 
potential mappings on the inner sphere by different methods with noise level σε =  0.5 in y(s, t) of the outer sphere. 
Notably, the predicted potential mappings by Tikh_0th, Tikh_1st and L1_1st under this noise level show differ-
ent color patterns from the results under the condition of no noise, and their RE’s are 0.208, 0.1528 and 0.1569, 
respectively. However, the predicted mapping by the proposed STRE model closely preserves the color patterns of 
the results with no noise, and yields the smallest RE of 0.0769.

As shown in Figs 6 and 7, the proposed STRE model achieves the best performance among these regulariza-
tion methods when predicting the dynamic potential distribution on the inner sphere in this two-sphere geom-
etry. The model performance of Tikh_0th is the worst among all the methods, which is due to the fact that 
zero-order regularization method does not account for the spatial or temporal correlations in the data, but rather 
penalizes the magnitude of the estimator to achieve sparse solutions. The RE’s of Tikh_1st and L1_1st are around 
the same level, which is because the gradient operators of these two regularization methods are the same (i.e., the 
normal derivative operator). In the regular spherical geometry, the normal derivative operator does account for 
the spatial correlations to some extent in this simulation study, and thus these two first-order methods perform 
better than Tikh_0th. However, the temporal correlations are not well considered in Tikh_1st or L1_1st, and 
their RE’s are higher compared to that of the proposed STRE model. Experimental results show that the proposed 
STRE model achieves the smallest RE and increases the model robustness to measurement noises by improving 
both the spatial and temporal regularities of the solution.

Experimental Results in the Realistic Torso-heart Geometry. Figure 8(a) shows the comparisons 
of relative error (RE) between the proposed STRE model and other regularization methods (i.e., Tikhonov 
zero-order, Tikhonov first-order and L1 first-order methods) in the realistic torso-heart geometry, when there is 
no additional noise on the potential map y(s, t) of the body surface. In the present investigation, our STRE model 
yields a much smaller RE of 0.0997 compared to that of Tikh_0th (i.e., 0.2488), Tikh_1st (i.e., 0.2839) and L1_1st 
(i.e., 0.2735). Note that the RE’s of all the methods in this realistic torso-heart geometry are relatively bigger com-
pared to the results in the simulated two-sphere geometry when no extra noise is added to y(s, t). This is mainly 
due to the fact that y(s, t) are real-world BSPM data with measurement noises and other uncertainty factors in 
the inverse ECG problem, while that in the simulated two-sphere geometry are clean data calculated analytically 
by Eq. (17).

Figure 8(b) shows the variations of RE with respect to the noise level for different regularization methods. 
Although there are already measurement noises in the sensor data of potential map y(s, t) on the body surface, 
we added different levels of noises to increase the real-world uncertainties on y(s, t). In the present investiga-
tion, we also replicated the experiment 20 times for each noise level, and thus each resulted RE is shown with 

Figure 6. (a) The comparisons of relative error (RE) between the proposed STRE model and other regularization 
methods (i.e., Tikhonov zero-order, Tikhonov first-order and L1 first-order methods) in the two-sphere geometry 
when there is no noise on the potential map y(s, t) of the outer sphere; (b) The comparisons of RE between the 
proposed STRE model and other regularization methods (i.e., Thikhonov zero-order, Tikhonov first-order and 
L1 first-order methods) for different noise levels σε =  0.1, 0.2, 0.3, 0.4, 0.5 on the potential map y(s, t) of the outer 
sphere.
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a corresponding error bar (i.e., standard deviation of RE). When the noise level increases from σε =  0.005 to 
σε =  0.2, the RE monotonically increases for all the methods. Specifically, the RE increases from (0.2386 ±  0.0105) 
to (0.4933 ±  0.0175) for the proposed STRE model, from (0.5570 ±  0.0025) to (0.8521 ±  0.0086) for Tikh_0th, 
from (0.9720 ±  0.0115) to (2.8261 ±  0.1835) for Tikh_1st, and from (1.2481 ±  0.0082) to (2.8994 ±  0.1849) for 
L1_1st, respectively. It is worth mentioning that the RE’s increase dramatically when adding noises to y(s, t) on 
the body surface, compared to the results in the simulated two-sphere geometry. This is mainly due to the fact that 
the realistic torso-heart geometry is much more complex and irregular. As such, the resulted high-dimensional 
prediction model tends to be more sensitive to noises. Nevertheless, our STRE model yields the smallest RE for all 
noise levels, and achieves the slowest increase of RE with respect to the noise level among various regularization 
methods in this realistic torso-heart geometry.

Furthermore, Fig. 9(a) shows the reference mappings of measured potential distribution on the heart surface, 
whose value ranges from − 15 mV to 15 mV. Note that the potential distribution on the heart surface is dynam-
ically varying over time, and Fig. (9) illustrates the heart-surface potential mapping when t =  50 ms. Figure 9(b) 
shows the predicted potential mappings on the heart surface by different methods, when there is no additional 
noise on the potential map y(s, t) of the body surface. Note that the proposed STRE yields the RE of 0.997, which 
is significantly smaller than that of Tikh_0th (i.e., 0.2488), Tikh_1st (i.e., 0.2839) and L1_1st (i.e., 0.2735), and 
yields the best performance to predict the reference potential mapping shown in Fig. 9(a). Figure 9(c) shows the 
predicted potential mappings by different methods with the noise level σε =  0.005 in y(s, t) on the body surface. 
It is worth mentioning that the predicted potential mappings by Tikh_0th, Tikh_1st and L1_1st under this noise 
level show significantly different color patterns from Fig. 9(a) and (b). Their RE’s are 0.557, 0.927 and 1.248, 
respectively. However, the STRE model yields the smallest RE of 0.2386 and approximately preserves the color 
patterns in real-world data of potential mapping on the heart surface.

As shown in Figs 8 and 9, the proposed STRE model achieves the best performance among various regulariza-
tion methods when predicting the dynamic potential distribution on the heart surface in this realistic torso-heart 
geometry. The inferior performance of Tikh_0th, Tikh_1st and L1_1st is due to the fact that they neither effec-
tively address the spatial regularity in the inverse ECG problem nor take into account the temporal correlations 
of the space-time systems. It may be noted that the RE’s of Tikh_1st and L1_1st are higher than that of Tikh_0th, 
which is not the case in the simulated two-sphere geometry. This is because the realistic torso-heart geometry is 
more complex and irregular than the simulated two-sphere geometry. The normal derivative operator in Tikh_1st 

Figure 7. (a) Reference potential mapping on the inner sphere x(s, t), t =  150 ms, in the two-sphere geometry. 
(b) The comparisons of predicted potential mapping on the inner sphere x(s, t), t =  150 ms, between the 
STRE model and other regularization methods (i.e., Thikhonov zero-order, Tikhonov first-order and L1 first-
order methods) when there is no noise on the potential map y(s, t) of the outer sphere. (c) The comparisons 
of predicted potential mapping on the inner sphere x(s, t), t =  150 ms, between the STRE model and other 
regularization methods (i.e., Thikhonov zero-order, Tikhonov first-order and L1 first-order methods) with the 
noise level σε =  0.5 on the potential map y(s, t) of the outer sphere.
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and L1_1st can address the spatial correlations to some extent in the regular two-sphere geometry, but will lead 
to incorrect approximations in the complex heart geometry. As such, this causes additional errors to the solution 
in the prediction model. The proposed STRE model effectively addresses both spatial and temporal regularities 
of the solution, thereby yielding the smallest RE and increasing the model robustness to measurement noises or 
real-world uncertainties.

Conclusions
Advanced sensing and imaging technology lead to the proliferation of spatiotemporal data x(s, t) and y(s, t). 
This poses significant challenges for high-dimensional predictive modeling (i.e., y(s, t) =  Rx(s, t) +  ε) in complex 

Figure 8. (a) The comparisons of relative error (RE) between the proposed STRE model and other regularization 
methods (i.e., Thikhonov zero-order, Tikhonov first-order and L1 first-order methods) in the realistic torso-heart 
geometry when there is no extra noise on the potential map y(s, t) of the body surface; (b) The comparisons of RE 
between the proposed STRE model and other regularization methods (i.e., Thikhonov zero-order, Tikhonov first-
order and L1 first-order methods) for different noise levels σε =  0.005, 0.01, 0.05, 0.1, 0.2 on the potential map  
y(s, t) of the body surface.

Figure 9. (a) Reference potential mapping on the heart surface x(s, t), t = 50 ms, in the realistic torso-heart 
geometry. (b) The comparisons of predicted potential mappings on the heart surface x(s, t), t =  50 ms, between 
the STRE model and other regularization methods (i.e., Thikhonov zero-order, Tikhonov first-order and L1 
first-order methods) when there is no extra noise on the potential map y(s, t) of the body surface. (c) The 
comparisons of predicted potential mappings on the heart surface x(s, t), t =  50 ms, between the STRE model 
and other regularization methods (i.e., Thikhonov zero-order, Tikhonov first-order and L1 first-order methods) 
with the noise level σε =  0.005 on the potential map y(s, t) of the body surface.
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systems (e.g., solving the inverse ECG problem). First, inferring x(s, t) needs a better knowledge of parameter 
matrix R that characterizes the physics-based interrelationship between x(s, t) and y(s, t). Second, ill-conditioned 
systems make the predictions more sensitive to measurement noises and approximation errors in R. Third, very 
little has been done to develop new spatial regularization methods that handle approximation errors, as well as 
new temporal regularization methods to increase model robustness to measurement noises. Thus, there is an 
urgent need to tackle these research challenges and address ill-conditioned problems in high-dimensional pre-
dictive modeling.

In this paper, we developed a physics-driven spatiotemporal regularization (STRE) model for predicting 
dynamic behaviors in space-time systems. First, we developed realistic models of torso-heart geometry, and 
utilized the boundary element method and physics-based principles (i.e., divergence theorem, Green’s the-
orem) to derive the parameter matrix R. Second, we developed a physical-statistical approach that integrates 
physics-derived parameter matrix R with a spatiotemporal regularization method to build the high-dimensional 
predictive model. Third, we designed a new method of dipole multiplicative update, inspired by the dipole 
assumption in electrodynamic physics, to solve the generalized spatiotemporal regularization problems.

The proposed STRE model is implemented to predict potential distribution on the heart surface using BSPM 
data. The model performance is evaluated and validated in both a simulated two-sphere geometry and a realistic 
torso-heart geometry. Experimental results show that our method not only effectively tackles the ill-conditioned 
problems in high-dimensional predictive modeling, but also outperforms those regularization models widely used 
in current practice (i.e., Tikhonov zero-order, Tikhonov first-order and L1 first-order regularization methods).  
The present research work provides a new and effective approach to investigate disease-altered electric potentials 
on the heart surface in healthcare systems.
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