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Stroke is a leading cause of death and disability, with a lack of treatments available to
prevent cell death, regenerate damaged cells and pathways, or promote neurogenesis.
The extended period of hours to weeks over which tissue damage continues to occur
makes this disorder a candidate for gene therapy. This review highlights the development
of gene therapy in the area of stroke, with the evolution of viral administration, in
experimental stroke models, from pre-injury to clinically relevant timeframes of hours
to days post-stroke. The putative therapeutic proteins being examined include anti-
apoptotic, pro-survival, anti-inflammatory, and guidance proteins, targeting multiple
pathways within the complex pathology, with promising results. The balance of findings
from animal models suggests that gene therapy provides a viable translational platform
for treatment of ischemic brain injury arising from stroke.
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STOKE: PREVALENCE AND TREATMENT OPTIONS

This review considers the opportunity that gene therapy targeting neuroprotective protein
expression in the brain may lend to development of novel treatments for stroke. Stroke is a
leading cause of death throughout the world, and in Australia, stroke is the leading cause of severe
disability; one in five people die within 1 month of their first infarct and one in three die within
a year. About 88% of stroke survivors live at home and most have a disability (Banks et al., 2010;
Thrift et al., 2014; Mozaffarian et al., 2015). These statistics reflect the need to develop therapeutics
for stroke, whether being an ischemic event, or a hemorrhagic stroke, as there are currently limited
clinical treatment options, rehabilitation often frustrates expectation, and the aging population will
further exacerbate the health burden from stroke-induced brain injury.

The current treatments for acute ischemic strokes [accounting for∼87% of strokes (Mozaffarian
et al., 2015)] are the intravenous administration of recombinant tissue plasminogen activator
(rtPA) to enzymatically digest the thrombi, endovascular therapy to mechanically remove the large
proximal clots, or a combination of both treatment regimes, with the aim to restore blood flow
to the hypoperfused area. However, the proportion of stroke patients that satisfy the criteria to
undergo treatment is low. Approximately 94% of patients are ineligible for treatment with rtPA
(de Los Rios la Rosa et al., 2012; Madsen et al., 2015), due to diminishing benefit and increased
risk when administrating rtPA more than 4.5 h after the ischemic event, in addition to exclusion
criteria which includes those patients >80 years, taking anticoagulants, with a history of previous
strokes in the last 3 months, those with severe or mild strokes, or lacking a penumbral region (de
Los Rios la Rosa et al., 2012; Emberson et al., 2014; Saver et al., 2015). Moreover, the effectiveness
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of rtPA is limited; only ∼10% of patients have a better outcome
with treatment, with the site and nature of the occlusion
appearing to be a factor in efficacy (Paciaroni et al., 2012;
Emberson et al., 2014). Hence this approach addresses <1%
of stroke incidences. There are conflicting reports of clinical
outcomes following endovascular therapy, with trials indicating
mechanical thrombectomy provides benefit when not coupled
with rtPA, the lack of benefit of endovascular therapy with
tPA, or that endovascular therapy improves patient outcomes
when undertaken following tPA treatment (Broderick et al., 2013;
Paciaroni et al., 2015; Saver et al., 2015). In addition to the
low eligibility rate to receive treatment following acute ischemic
stroke, reperfusion may result in ischemia–reperfusion injury or
subsequent hemorrhage (Paciaroni et al., 2012; Emberson et al.,
2014).

To date, there are no therapeutic interventions available
to inhibit neuronal cell death, or to facilitate regeneration or
neurogenesis following a neuronal injury. Research into the
cellular and molecular events following an ischemic event in
the brain provide a key resource for evaluation of putative
therapeutics (Dirnagl et al., 1999; Moskowitz et al., 2010).
Of particular interest is a range of endogenous proteins
whose expression is up-regulated by stroke-induced brain
ischemia, where manipulation of expression may contribute to
neuroprotection, neuroregeneration, or neurogenesis. Clinically,

it is essential that the manipulation of the expression profile
of these proteins is matched to the therapeutic time window
following stroke; for example, targeting necrosis, which occurs
in the minutes following neuronal injury, may be practically
unachievable, whereas manipulation of proteins that have anti-
apoptotic or anti-inflammatory properties presents a far more
realistic timeframe of therapy-delivery in the hours or days
following a stroke (Figure 1).

CONSIDERATIONS AROUND GENE
THERAPY PLATFORMS

When undertaking gene therapy, in addition to the success of the
treatment being dependent upon the gene target, consideration of
the time of delivery in relation to the stroke onset, site of delivery,
cell transduction, and onset and duration of gene expression are
also critical considerations.

Protein Synthesis
An advantage of gene delivery as a tool for administration
of a therapeutic intervention in a disorder with on-going
and delayed cell death is the persistence of synthesis of the
therapeutic protein over a prolonged period of time (Hallek and
Wendtner, 1996); thereby diminishing the need for repeated

FIGURE 1 | Therapeutic target timeline following a stroke. In the minutes to weeks following a stroke the cellular and molecular pathways that are activated
alter, therefore the potential therapeutic targets and possible interventional approaches need to align with this temporal profile.
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and/or frequent pharmaceutical interventions. In the context of
this review, the long-term expression of therapeutic proteins
has been demonstrated in rodent models of stroke (Table 1),
with proteins evident at 7 weeks following ischemia, with an
administration time-point of 3–5 weeks prior to injury, totaling
12 weeks of protein expression (Andsberg et al., 2002; Arvidsson
et al., 2003).

Conversely, the reliance of host-mediated protein synthesis
of the viral-encoded sequences, following an ischemic event,
may be compromised, and, therefore, result in diminished
putative therapeutic efficacy, due to the inherent reduction in
protein synthesis associated with the brain injury (Kleihues and
Hossmann, 1971). Specific to gene delivery, Lawrence et al. (1997)
demonstrated herpes simplex virus (HSV)-mediated expression
increased at 12 h following ischemia in ischemic tissue; however
non-ischemic tissue had increased expression, to a greater extent,
as early as 8 h post-ischemia. These data not only highlight a delay
in peak protein expression, but also a reduction in the extent of
expression with the ischemic brain injury (Lawrence et al., 1997).

Delivery Site
Down-regulation of protein synthesis can be overcome, in part,
by viral delivery into a non-affected region of the brain, or to the
peri-infarct area, as opposed to the ischemic area (Zhao et al.,
2003; Matlik et al., 2014). This approach not only overcomes
potential synthesis suppression, but delivery to striatal peri-
infarct regions of the brain, post-ischemia, has shown to be
an effective means of viral distribution, with viral particles
hypothesized to travel toward white matter tracts during the
period of edema (Matlik et al., 2014). There is also evidence of
virally derived proteins in brain regions remote of the initial viral
delivery site (Hermann et al., 2001b). Alternatively, viral delivery
into sites remote of the brain, such as a stroke-affected limb
may promote corticospinal axonal sprouting in the spinal cord
from the less affected hemisphere driven by the viral expression
of neurotrophin-3 (Duricki et al., 2016). This could present as
an alternative approach to the problem of inhibition of axonal
re-growth in areas with astrocytic scarring. In contrast, studies
have also shown increased striatal neuronal loss following post-
ischemia anterograde delivery of GDNF. Whether this result is
due to the delivery mode, the protein being expressed, the relative
time of expression, or a combination of all of these, as well as
additional factors is yet to be determined (Arvidsson et al., 2003).

An alternative approach to overcome the time-delay of protein
expression is to express the viral-derived proteins in stem cells,
which are then transplanted by intracerebroventricular injection
(Watanabe et al., 2004; Chen et al., 2016). This method has
resulted in reduced infarct volume and increased behavioral
outcomes and may be a viable adjunct to gene delivery, with
clinical trials of stem cell therapy in stroke patients already well
established (Jeong et al., 2014).

Viral Vectors
The design of the viral vector is an important component
in gene delivery, ensuring that the virus is not pathogenic
or induces neurotoxicity, targeted cell-specific delivery can be
facilitated or alternatively the vector can be developed for broad

transduction, and gene expression duration can be appropriately
modulated. The desired expression profile of the protein should
be considered in terms of expression instigation, duration,
and efficacy. The four most commonly used viral vectors are
HSV type-1 (Bloom et al., 1995; Carpenter and Stevens, 1996),
adenovirus (Ad; Akli et al., 1993), recombinant adeno-associated
virus (rAAV; Hallek and Wendtner, 1996), and lentivirus
(Naldini et al., 1996). Each have their own innate attributes and
deficiencies, which must be considered in relation to the size of
the gene sequence to be inserted, the target cell population, and
the protein expression profile. In addition to the innate variations
between viral vector system, viral serotypes will also affect the
target cell specificity and protein expression (Davidson et al.,
2000; von Jonquieres et al., 2013, 2016). As noted below, HSV
vector-mediated expression has been reported with a few hours
(Hoehn et al., 2003), whereas other commonly used viral vectors
exhibit expression profiles that take days or weeks to establish
(Mason et al., 2010). Further alterations in the expression profile
of the protein of interest can be driven with capsid modifications,
as well as the promoter used to drive gene expression, which
can bias glial versus neuronal expression, and the potential to
incorporate gene cassette control elements (von Jonquieres et al.,
2013, 2016). The broad consideration of technical development
of gene therapy platforms for clinical applications, including
non-viral modalities, and use of gene regulatory strategies such
as shRNA are outside of the scope of this review, which is a
perspective on the opportunity and exemplar prospective gene
targets.

THERAPEUTIC PROTEIN CANDIDATES
FOR STROKE TREATMENTS

Bcl-2 Family
In terms of a gene-delivered therapy following stroke, the
anti-apoptotic proteins within the B-cell lymphoma-2 (Bcl-2)
family, including Bcl-2 itself, Bcl-extra long (Bcl-XL), and
Bcl-2-like 2 (Bcl-2l2 or Bcl-w), are an obvious therapeutic
choice due to their intrinsic role in modulating apoptosis
and neurogenesis (Czabotar et al., 2014). Evidence of the
neuroprotective capabilities of Bcl-2 has been demonstrated in
a variety of injury models, with roles including modulation of
intracellular Ca2+ concentration (Zhong et al., 1993; Murphy
and Fiskum, 1999), reducing reactive oxygen species (Kane et al.,
1993), and inhibiting the translocation of apoptosis-inducing
factor (Zhao et al., 2004), all of which are prevalent following
stroke. Furthermore, transgenic mice experiments have shown
that over-expression of Bcl-2 provides neuroprotection following
ischemia (Kitagawa et al., 1998). In addition, the over-expression
of Bcl-2 induces neurogenesis following ischemic injury (Lei
et al., 2012).

The therapeutic effectiveness of Bcl-2 anti-apoptotic proteins,
expressed from viral vectors including HSV (Linnik et al., 1995;
Lawrence et al., 1997; Yenari et al., 2001), Ad (Kilic et al., 2002),
rAAV (Sun et al., 2003), and lentivirus (Wong et al., 2005) has
been demonstrated in middle cerebral artery occlusion (MCAO)
and bilateral common carotid artery (CCA) occlusion models of
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stroke in rodents, as well as a model of excitotoxicity (Table 1).
The administration of the viral vector ranged from 3 weeks
pre-ischemic insult to 4 h post-ischemia, which provide proof-
of-principle data, but are sub-optimal for clinical translation. The

most promising studies utilized administration of a HSV-Bcl-2
construct at 30 and 90 min following MCAO, with significant
neuroprotection achieved (Lawrence et al., 1997; Yenari et al.,
2001). Disappointingly, there was a lack of neuroprotection

TABLE 1 | Viral gene delivery in animal models of stroke.

Protein Viral vector Administration
(pre-/post-injury)

Stroke model Neuroprotective Reference

Bcl-XL Ad 7 days pre- Mouse; 30 min or 2 h MCAO Yes Kilic et al., 2002

Bcl-2 Lentivirus
HSV
HSV
HSV
HSV

3 weeks pre-
24 h pre-
30 mins post-
1.5 h post-
4 h post-

Rat; NMDA in hippocampus
Rat; permanent MCAO
Rat; 1 h MCAO
Rat; 1 h MCAO
Rat; 1 h MCAO

Yes
Yes
Yes
Yes
No

Wong et al., 2005
Linnik et al., 1995
Lawrence et al., 1997
Yenari et al., 2001
Lawrence et al., 1997

Bcl-w rAAV 3 weeks pre- Rat; 1.5 h MCAO Yes Sun et al., 2003

BDNF rAAV
rAAV

4–5 weeks pre-
14 days pre-

Rat; 30 min MCAO
Rat; various MCAO models

Yes
Yes

Andsberg et al., 2002
Zhang et al., 2011

CDNF rAAV 2 days post- Rat; 1 h bilateral CCA and right
MCAO

No Matlik et al., 2014

CNTF Ad 7 days pre- Mouse; 30 min MCAO Yes Hermann et al., 2001b

GDNF Lentivirus
Ad
HSV
HSV

Ad
Ad
rAAV

3 weeks pre-
7 days pre-
4 days pre- and
3 days post-

During and
1 h post-
During

Rat NMDA to hippocampus
Mouse; 30 min MCAO
Rat; 1 h MCAO
Rat; 1 h MCAO

Rat; 1.5 h MCAO
Rat; 1.5 h MCAO
Rat; 1.5 h bilateral CCA and
right MCAO

Yes
Yes
Yes
No, but behavioral
improvement
Yes
No
Yes

Wong et al., 2005
Hermann et al., 2001a,b
Harvey et al., 2003
Harvey et al., 2003

Zhang et al., 2002
Zhang et al., 2002
Tsai et al., 2000, 2006

HB-EGF rAAV 6–7 days post- Rat; 80 min MCAO No, but functional
recovery with
neurogenesis and
angiogenesis

Sugiura et al., 2005

NGF rAAV 4–5 weeks pre- Rat; 30 min MCAO Yes Andsberg et al., 2002

NT3 rAAV 24 h post- Rat; endothelin-1 No, but improved
behavioral and sensory
outcomes

Duricki et al., 2016

HSP-27 HSV
HSV

3 days pre-
30 mins post-

Rat; 30 min MCAO
Rat; 30 min MCAO

Yes
Yes

Badin et al., 2006
Badin et al., 2009

HSP-70 HSV
HSV

3 days pre-
30 mins post-

Rat; 30 min MCAO
Rat; 30 min MCAO

No
No

Badin et al., 2006
Badin et al., 2009

HSP-72 HSV
HSV
HSV
HSV

24 h pre-
17 h pre-
0.5 and 2 h post-
5 h post-

Rat; 1 h MCAO
Rat; 8 min bilateral CCA
Rat; 1 h MCAO
Rat; 1 h MCAO

Yes
Yes
Yes
No

Yenari et al., 1998
Kelly et al., 2002
Hoehn et al., 2001
Hoehn et al., 2001

Gpx HSV 12 h pre-
2 and 5 h post-

Rat; 1 h MCAO
Rat; 1 h MCAO

Yes
Yes

Hoehn et al., 2003
Hoehn et al., 2003

CXCL12 (SDF-1α) Ad
Ad
rAAV
rAAV

3 days pre- and
7 days post-
7 days post -
7 days post-

Rat; 1.5 h MCAO
Rat; 1.5 h MCAO
Mouse; permanent MCAO
Mouse; permanent MCAO

Yes
Yes
Protects myelin sheath
Yes

Yoo et al., 2012
Yoo et al., 2012
Li et al., 2015
Li et al., 2014

IL-1 receptor antagonist rAAV During Rat; 1.5 h bilateral CCA and
right MCAO

Yes Tsai et al., 2003

Netrin-1 rAAV 1 day post- Rat; 1 h bilateral CCA and left
MCAO

No, but increased
vascularisation and
improved behavior

Sun et al., 2011

The efficacy of gene therapy as a treatment option following stroke, to facilitate the expression of various proteins, has been assessed in several animal models of stroke
with the administration of viral vectors tested both pre- and post-ischemia. Outcomes of neuroprotection varied between infarct volume and neuronal cell counts. Ad,
adenovirus; rAAV, recombinant adeno-associated virus; BDNF, brain derived neurotrophic factor; CCA, common carotid artery; CDNF, cerebral dopamine neurotrophic
factor; CNTF, ciliary neurotrophic factor; CXCL – CXC chemokine ligand; GDNF, glial cell-derived neurotrophic factor; Gpx, glutathione peroxidase; HB-EGF, heparin-
binding epidermal growth factor-like growth factor; HSP, heat shock protein; HSV, herpes simplex virus; MCAO, middle cerebral artery occlusion; NMDA, N-methyl
D-aspartate; NT, neurotrophin; SDF, stromal cell-derived factor.
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afforded at the 4 h post-ischemic administration time-point,
which is postulated to be due to decreased protein synthesis
following ischemia (Lawrence et al., 1997).

Heat Shock Proteins
The heat shock proteins (HSP) are stress-related proteins
with chaperone properties. Of particular interest are the HSP-
70 family, comprising of the constitutive HSP-70 and the
homologous inducible HSP-72, which are up-regulated following
cerebral ischemia (Brea et al., 2015). The over-expression of
HSP-72 proteins in transgenic mice has provided evidence
of the neuroprotective role following cerebral ischemia (Xu
et al., 2011). In addition, the smaller HSP-27 (also known as
HSP-25), similarly, provides neuroprotection following ischemia,
when over-expressed in a transgenic mouse model (van der
Weerd et al., 2010). The success of the HSPs in providing
neuroprotection when transduced has been varied (Table 1),
with studies finding neuroprotection evident with HSV-HSP-
72 delivery 3 days pre-insult to 2 h post-insult, but not when
administered 5 h post-ischemia (Yenari et al., 1998; Hoehn
et al., 2001; Kelly et al., 2002). Conversely, HSP-70 did not
confer neuroprotection when administered 3 days pre- or 30 min
post-ischemia, while HSP-27 did with similar administration
and injury models (Badin et al., 2006, 2009). These differences
may, in part, be due to the method in which neuroprotection
is measured, with studies varying from counts of transduced
surviving striatal neurons to infarct volume analysis following
magnetic resonance imaging (Kelly et al., 2002; Badin et al.,
2009). Additionally, the neuroprotective effect of HSP-72 may
lie not only with its innate role in protein chaperoning, but
also in the induction of Bcl-2 expression, possibly enhancing
the neuroprotective effect following ischemia (Lawrence et al.,
1997).

Antioxidant Enzymes
Antioxidant enzymes, such as superoxide dismutase (SOD),
catalase, and glutathione peroxidase (Gpx), are postulated to
reduce brain damage incurred due to increases in reactive oxygen
species following stroke. Transgenic animal studies have shown
that over-expression, or deficiencies, of antioxidant enzymes
affects the outcome following stroke (Murakami et al., 1997; Chan
et al., 1998; Kawase et al., 1999). Gene delivery of Gpx both
pre- and up to 5 h post-MCAO conferred neuroprotection, in
conjunction with an increase in Bcl-2 (Table 1). It is proposed
that the neuroprotective effect seen with administering the gene
therapy at 5 h post-ischemia may be attributed to both the
benefit of the antioxidant action, as well as the anti-apoptotic
properties of Bcl-2, accounting in part for why the Bcl-2
administration alone was not neuroprotective when administered
4 h post-ischemia (Hoehn et al., 2001). The HSV construct was
reported to drive Gpx expression at 4–6 h post-administration,
which indicates the therapeutic time window for the Gpx
action was 9–11 h post-MCAO, in the rat model. This is in
line with the belief that complex pathologies such as stroke
will require therapeutic agents to target multiple pathways for
inhibition and/or activation to be truly efficacious (Moretti et al.,
2015).

Neurotrophins
Neurotrophins have a role in the regulation of neuronal tissue
development and repair, promoting survival, differentiation,
and maintenance in physiological and pathological conditions.
Neurotrophin gene cassettes, therefore, offer broad potential for
therapy following stroke (Lindholm et al., 2007; Machalinski,
2014; Otsuka et al., 2016). Experimentally, various in vitro and
in vivo ischemic injury models have been utilized to demonstrate
the neuroprotective efficacy of neurotrophins, including brain-
derived neurotrophic factor (BDNF; Zhang and Pardridge,
2001; Otsuka et al., 2016), glial cell-derived neurotrophic factor
(GDNF; Yuan et al., 2013), and nerve growth factor (NGF;
Semkova and Krieglstein, 1999; Tabakman et al., 2005). This
has been further translated to delivery of gene cassettes for the
recombinant neurotrophic factors, including BDNF (Andsberg
et al., 2002; Zhang et al., 2011), GDNF (Tsai et al., 2000, 2006;
Hermann et al., 2001a,b; Zhang et al., 2002; Harvey et al.,
2003; Wong et al., 2005), ciliary neurotrophic factor (CNTF;
Hermann et al., 2001a), and cerebral dopamine neurotrophic
factor (CDNF; Matlik et al., 2014). These gene therapy agents
have been shown to provide neuroprotection with viral vector
delivery, including HSV, Ad, and rAAV, in MCAO models
of stroke in rodents (Table 1). When the viral vectors were
administered either pre-ischemia, during, or up to 1 h following
ischemia, the infarct volume was significantly reduced, as was
caspase-3 expression (Hermann et al., 2001a,b; Zhang et al.,
2002; Harvey et al., 2003; Matlik et al., 2014). Further increasing
the therapeutic window to 6–7 days post-injury, with the
administration of heparin-binding epidermal growth factor-like
growth factor (HB-EGF; Sugiura et al., 2005), did not provide
the same reduction in infarct volume. This outcome may be
expected considering the timeline of neuropathological pathways
activated in relation to therapy administration time. However,
there was an increase in angiogenesis and improved functional
recovery, modulated by the gene delivery of HB-EGF. As clinical
outcomes in humans are not measured in terms of infarct
volumes but rather as an improvement of motor function and
cognition, these results in animal models are encouraging for
translation of the gene targets, demonstrating a positive outcome
coupled with a clinically relevant administration timeframe.
Therapeutic targets for the neurotrophin signaling cascade may
be very broad, including the neurotrophins themselves, the
corresponding tropomyosin-related kinase (Trk) receptors (also
referred to as receptor tyrosine kinases), and potentially second
messenger-coupled effectors such as ion channels modulated
downstream of phospholipase Cγ activation.

Chemokines
Chemokines are inflammatory mediators that are up-regulated
following stroke, with a role in recruiting leukocytes to the area
of damage in the brain. The resulting inflammation in the brain
can increase the severity of the stroke, or conversely the recruited
phagocytes aid in cellular debris clearance, or a combination
of both (García-Berrocoso et al., 2014). The expression of
the chemokine CXCL-12, otherwise known as stromal cell-
derived factor-1 (SDF-1), is constitutively expressed in the
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brain, with increased expression occurring following ischemia
(Wang et al., 2012). Studies modulating endogenous CXCL-
12 following stroke provide contrasting results. The inhibition
of CXCL-12 with the receptor CXCR4, by delivery of receptor
antagonist during the acute post-ischemic time period, improved
behavioral recovery and reduced infarct volumes (Ruscher et al.,
2013). Similarly, rAAV gene delivery of the IL-1 receptor
antagonist reduced infarct volume (Table 1) (Tsai et al., 2003).
However, in a study with forced limb use following stroke, the
administration of the CXCR4 antagonist resulted in a deficit
in recovery with worse motor and cognitive outcomes (Zhao
et al., 2015). Gene delivery studies have provided evidence of
the benefit of CXCL-12 following stroke. Adenoviral or rAAV
gene delivery of CXCL-12 into mice and rats, administered
from 3 days pre-ischemia to 7 days post-ischemia reduced
brain atrophy, maintained myelin sheath integrity, increased
oligodendrocyte progenitor cell proliferation and migration, and
the promotion of angiogenesis (Yoo et al., 2012; Li et al., 2014,
2015). Further contrast is seen in clinical studies, with a positive
correlation between increased serum CXCL-12 levels and poor
outcome in stroke patients in a Chinese cohort, but increases in
CXCL-12 serum levels in patients transplanted with autologous
mesenchymal stem cells correlating to improved outcome (Lee
et al., 2010; Liu et al., 2015; Cheng et al., 2016).

Guidance Proteins
In contrast to therapeutic proteins targeting neuroprotection,
gene therapy can also be utilized to express proteins to aid in
regeneration. Netrins are axon and cell guidance proteins, that
are expressed both during neural development and in the mature
nervous system in physiological conditions, with up-regulation of
expression occurring in the peri-infarct region 14 days following
ischemia (Moore et al., 2007; Tsuchiya et al., 2007). Gene delivery

of netrin-1 with rAAV, 1 day following ischemia, resulted in an
increase in peri-infarct vascularisation and immature neuronal
migration. Despite the lack in reduction of infarct volume, there
was an improvement in post-stroke locomotor activity, motor
asymmetry, and exploratory behavior (Sun et al., 2011).

CONCLUSION

Stroke is a complex pathology with a multitude of biochemical,
cellular, and molecular pathways instigated differentially over
time, providing a challenge to target therapeutically, while also
providing multiple opportunities for intervention. The aim for
stroke researchers to develop therapeutics that will increase
survival probability of patients, as well as improve cognitive and
behavioral recovery, whilst ensuring therapeutic delivery within a
clinically relevant timeframe is challenging. However, enhancing
the expression of endogenous proteins or facilitating expression
in areas most susceptible to damage, by gene delivery, provides
promise, with progress being made in both the therapeutic
window for delivery and an expanding range of potential protein
targets. The use of these therapies in conjunction with the
currently available treatments, such as rtPA or mechanical clot
removal, is an additional area of research to be explored.
Despite the promising progress, further research will need to
be undertaken before these therapies reach clinical trials, as
the regulatory challenges for gene therapy trials are particularly
arduous.
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