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Antiapoptotic Bcl-2 family members have recently (re)emerged as key drug targets in cancer,

with a tissue- and tumor-specific activity profile of available BH3 mimetics. In multiple

myeloma, MCL-1 has been described as a major gatekeeper of apoptosis. This discovery has

led to the rapid establishment of clinical trials evaluating the impact of various MCL-1

inhibitors. However, our understanding about the clinical impact and optimal use of MCL-1

inhibitors is still limited. We therefore explored mechanisms of acquired MCL-1 inhibitor

resistance and optimization strategies in myeloma. Our findings indicated heterogeneous

paths to resistance involving baseline Bcl-2 family alterations of proapoptotic (BAK, BAX, and

BIM) and antiapoptotic (Bcl-2 and MCL-1) proteins. These manifestations depend on the BH3

profile of parental cells that guide the enhanced formation of Bcl-2:BIM and/or the dynamic

(ie, treatment-induced) formation of Bcl-xL:BIM and Bcl-xL:BAK complexes. Accordingly, an

unbiased high-throughput drug-screening approach (n 5 528) indicated alternative BH3

mimetics as top combination partners for MCL-1 inhibitors in sensitive and resistant cells

(Bcl-xL.Bcl-2 inhibition), whereas established drug classes were mainly antagonistic (eg,

antimitotic agents). We also revealed reduced activity of MCL-1 inhibitors in the presence of

stromal support as a drug-class effect that was overcome by concurrent Bcl-xL or Bcl-2

inhibition. Finally, we demonstrated heterogeneous Bcl-2 family deregulation and MCL-1

inhibitor cross-resistance in carfilzomib-resistant cells, a phenomenon linked to the MDR1-

driven drug efflux of MCL-1 inhibitors. The implications of our findings for clinical practice

emphasize the need for patient-adapted treatment protocols, with the tracking of tumor- and/

or clone-specific adaptations in response to MCL-1 inhibition.

Introduction

Direct modulation of antiapoptotic molecules holds great promise as a novel treatment strategy in multiple
myeloma (MM). The introduction of BH3 mimetics enables the direct inhibition of major antiapoptotic
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Key Points

� Acquired MCL-1
inhibitor resistance
represents a
heterogeneous adap-
tation process that is
overcome by
concurrent Bcl-xL or
Bcl-2 inhibition.

� MCL-1 inhibitors are
novel MDR1
substrates.
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proteins (Bcl-2, MCL-1, Bcl-xL) because of their close structure
homology with BH3-only proteins, which leads to the release and acti-
vation of proapoptotic molecules (eg, BAX, BAK, and BIM), permea-
bilization of the mitochondrial outer membrane, and induction of
apoptosis.1 Pioneering studies have already demonstrated the bene-
ficial activity of venetoclax in myeloma, particularly in patients carrying
the translocation t(11;14).2,3 This subgroup-specific sensitivity has
been linked to higher BCL-2/MCL-1 and BCL-2/BCL-xL expression
ratios in patients bearing t(11;14)3-6 and, more recently, to reduced
mitochondrial respiration in MM cells.7 Irrespective of the promising
activity of venetoclax in a fraction of patients with myeloma, com-
pounds that specifically target myeloid cell leukemia 1 (MCL-1) are
proposed to have the highest potential in the future therapy of MM.

MCL-1 appears to surpass the impact of Bcl-2 inhibition in MM for
several reasons: first, it has been identified as a key antiapoptotic
factor in most myeloma cells;4,8,9 second, the bone marrow (BM)
microenvironment further promotes MCL-1 dependency in MM
cells;10 third, MCL-1 dependency increases during the course of
the disease.5 Several clinical-gradeMCL-1 inhibitors have been devel-
oped that demonstrate impressive preclinical activity in a diverse set of
disease models,11-13 leading to the rapid translation of these candi-
date drugs into ongoing clinical trials (www.clinicaltrials.gov,
NCT03218683, NCT02992483, and NCT02675452).

However, there are several unresolved issues regarding the therapeu-
tic use of MCL-1 inhibitors in MM and other malignancies. Presently,
we have no information about the putative mechanisms of acquired
drug resistance. Recent studies have linked intrinsic MCL-1 inhibitor
resistance to alternative Bcl-2 family dependencies and have demon-
strated favorable activity of MCL-1 inhibitors in combination with ven-
etoclax.9,14-16 There is currently no information on whether alternative
mechanisms of resistance appear after prolonged MCL-1 inhibitor
treatment of sensitive cells (eg, complete shutdown of key apoptotic
molecules). Unbiased strategies to define optimal combination part-
ners are likewise not available. Moreover, it is currently unknown
whether certain frontline treatment approaches would affect the out-
come of BH3 mimetic-based therapies. Although prior studies sug-
gest that MCL-1 dependency increases with disease progression,5

this possibility has not been analyzed with individual treatment modal-
ities. Given that proteasome inhibitors (PIs) induce MM cell apoptosis
via modulation of MCL-1,17 one may speculate that this will affect the
efficacy of subsequent MCL-1 inhibitor treatment. The relevance of
these points is exemplified by data obtained from the use of veneto-
clax.18-21

In this study, we sought to address several of these open issues to
advance our understanding of the mechanism of action of MCL-1
inhibitors in MM and lay the groundwork for their future use in preci-
sion medicine strategies. Our findings emphasize the importance of
identifying tumor/clone-specific adaptations to therapeutic interven-
tions and the need for careful selection of drug combinations for indi-
vidualized treatment concepts.

Materials and methods

Cell culture

Human myeloma and stromal cell lines were cultured, as previously
described.22 S63845 and the carfilzomib (CARF)- and ixazomib
(IXA)-resistant cell line variants were obtained after prolonged culture
in the presence of serially increasing doses of the drug of interest.

Short tandem repeat profiles and the absence of mycoplasma con-
tamination were verified regularly. Bone marrow mononuclear cells
were isolated by Ficoll-Hypaque density sedimentation, and MM cells
were purified with the EasySep Human CD138 Positive Selection Kit
(Stem Cell Technologies, Cologne, Germany) and used for coculture
experiments, as previously described.22 Written informed consent for
the use of material for scientific studies was obtained from all patients
according to institutional guidelines. This study was approved by the
Ethics Committee of the City of Vienna and was conducted in accor-
dance with the Declaration of Helsinki.

High-throughput drug screening

Drug screenings with 528 annotated compounds were performed in
the presence or absence of a single S63845 concentration (10 nM in
sensitive variants and 100 nM in resistant variants) on top of the 528
compounds, each having 5 different concentrations (supplemental
Table 1). The 528 compounds were first preplated onto 384-well
plates (Corning, Corning, NY) with the aid of an acoustic liquid han-
dling device Echo 550 (Labcyte, Sunnyvale, CA). KMS12BM- and
OPM2-S63845 cells were plated on the 384-well plates at 5000 cells
per well (25 mL). The plates were gently shaken for 5 minutes and
placed in a humidified environment at 37�C and 5% CO2 and incu-
bated for 72 hours. Cell viability was assessed with the CellTiter-
Glo assay (Promega, Madison, WI) on a PHERAstar microplate
reader (BMG-Labtech, Offenburg, Germany).

Single-agent sensitivity evaluation

The measure of single-drug sensitivity, relative inhibition (RI), is esti-
mated as the area under a log10-scaled dose-response curve with
the lower boundary chosen at the first nonzero concentration. To
make this measure relative we divided it into the area under the max-
imal possible dose-response curve starting from the same point.23We
considered a cell line to be sensitive to a drug if the corresponding RI
score was .40. Besides, we found that there is an increased/
decreased sensitivity when one compares condition A sensitivity
(RIA) with condition B (RIB) if the absolute difference in the RI scores
(RIdiff 5 RIA 2 RIB) is greater/smaller than 15.

Drug combination sensitivity and synergy scoring

For the drug combination experiment where a drug was tested at
multiple concentrations, with S63845 being added at a fixed dose,
we computed the drug combination sensitivity and synergy scores
as in Malyutina et al.23 The combination sensitivity score (CSS)
was obtained using the same strategy as for single drugs (supple-
mentary Methods), but the dose-response curve was originated
from the combination (Figure 2A). Meanwhile, we estimated the
degree of interactions in a drug combination as the S synergy
score,23 defined as the difference between half the CSS and RI
scores, which is a robust metric for synergy evaluation. We consid-
ered a drug combination to be synergistic/antagonistic if its S syn-
ergy score was greater/less than 5.23 For the drug-combination
experiment where the full dose-response matrices for 2 drugs
were tested, we determined the zero interaction potency synergy
scores,24 using the SynergyFinder R package.25

Statistical analysis

A 2-tailed unpaired Student t test was performed for the comparison
of 2 means, and 1-way analysis of variance followed by the Tukey post
hoc test was used to compare multiple samples, unless otherwise

4126 BOLOMSKY et al 26 OCTOBER 2021 • VOLUME 5, NUMBER 20

http://www.clinicaltrials.gov


indicated (Prism 6; GraphPad Software Inc., La Jolla, CA). P , .05
were considered to be statistically significant. All graphs represent
the mean6 standard deviation of 3 independent biological replicates
(each based on 3 technical replicates), unless otherwise indicated.

A detailed description of previously reported methods can be found in
the supplemental Information.

Results

Characterization of MCL-1 inhibitor-resistant cells

reveals heterogeneous drug resistance profiles

To obtain insights into acquired MCL-1 inhibitor-resistance
mechanisms, we selected 2 cell line models with different genomic
background and high baseline sensitivity to MCL-1 inhibitors and
generated S63845-resistant variants (OPM2-S63845 and
KMS12BM-S63845) and their corresponding S63845-sensitive,
long-term culture control variants (OPM2-dimethyl sulfoxide
[DMSO] and KMS12BM-DMSO). Both resistant variants demon-
strated a.10-fold shift in the S63845 50% inhibitory concentration
(IC50; Figure 1A) and cross-resistance to other MCL-1 inhibitors
(AZD5991, AMG-176, and A-1210477; .5-10-fold shift in IC50,
respectively; supplemental Figure 1). BAK activity after S63845
treatment was completely diminished in resistant cells, as deter-
mined by coimmunoprecipitation analysis and flow cytometry (Figure
1B; supplemental Figure 2). No impact was observed on the efficacy
of established anti-MM therapeutics or alternative BH3 mimetics
(supplemental Figures 3 and 4).

Surprisingly, baseline Bcl-2 family protein levels pointed to heteroge-
neous mechanisms of drug resistance in both model systems. We
observed significant downregulation of proapoptotic proteins (BAK,
BAX, and BIM) in OPM2-S63845, whereas prominent upregulation
of the antiapoptotic molecules MCL-1 and Bcl-2 was found in
KMS12BM-S63845 (Figure 1C). No baseline alterations were
observed in the protein levels of other Bcl-2 family members (BAD,
BID, NOXA, and PUMA; supplemental Figure 5A). Coimmunoprecipi-
tation experiments confirmed an increased presence of Bcl-2:BIM
complexes in KMS12BM-S63845 cells. However, binding patterns
of MCL-1 to BIM, BAK, BAD, or NOXA were not affected in
S63845-resistant cells, nor did we detect any other baseline altera-
tions in either cell line (Figure 1D; supplemental Figure 5B-D). RNA-
sequencing (RNA-seq) analysis further supported the presence of
tumor- or clone-specific resistance paths. Although we observed mul-
tiple significantly deregulated pathways in resistant vs sensitive cells
(66 pathways with adjusted P , .05), which mainly involve cell-cell
cross talk and metabolic pathways, the differential gene expression
analysis did not reveal significant genes (adjusted P . .05). Both
resistant cell lines associated more closely with their sensitive parental
control rather than with their resistant counterpart in hierarchical clus-
ter analysis (Figure 1E-F; supplemental Tables 4-7).

High-throughput drug screenings reveal BH3

mimetics to be major combination partners for

MCL-1 inhibitors

Based on the heterogeneous resistance profiles, we performed high-
throughput drug screening analysis as an alternative, unbiased
approach to reveal common vulnerabilities and optimal combination
partners that boost and/or overcome MCL-1 inhibitor activity and
resistance, respectively.

Single-agent relative inhibition (RI) scores of 528 tested compounds
uncovered no drug with increased activity in S63845-resistant vs
-sensitive cells (supplemental Table 2). Seven and 17 drugs showed
reduced activity in KMS12BM-S63845 and OPM2-S63845, respec-
tively. Among those, 2 drugs overlapped: S63845 and the Eg5 inhib-
itor litronesib, which was the only compound with reduced activity in
both resistant cell lines that displayed RI values outside the range of
additionally screened “control” MM cell lines (n 5 8); however,
S63845-resistant cells were still classified as sensitive to this drug
(RI 5 45.9 and 45.2 for KMS12BM- S63845 and OPM2-S63845,
respectively). The categorization of drugs with reduced activity in
S63845-resistant cells into drug classes indicated an enrichment of
cell cycle–targeting agents, such as CDK or mitotic inhibitors (n 5
9/n 5 4 in OPM2- S63845 and KMS12BM-S63845 cells, respec-
tively). Moreover, the heterogeneous picture persisted, as evidenced
by an exclusive loss of activity of FGFR inhibitors in t(4;14)1

OPM2-S63845 cells (supplemental Figure 6).

Drug combination screening of the compound library with S63845
clearly showed that BH3 mimetics were major synergy partners in
both S63845-sensitive and -resistant cell lines (Figure 2A, supple-
mental Figure 7, supplemental Table 1). Interestingly, Bcl-xL inhibitors
were more potent than other Bcl-2 family inhibitors in potentiating the
activity of S63845 in sensitive MM cells. This finding was indepen-
dently validated by testing the combination partners at broader
dose ranges (Figure 2B-C; supplemental Figures 8 and 9). In
OPM2-S63845, synergy scores for Bcl-xL inhibitors (but not veneto-
clax) increased even further when compared with sensitive cells, but
the opposite was true in KMS12BM-S63845 cells: synergy scores
for Bcl-xL inhibitors fell below those of Bcl-2-targeting drugs (navito-
clax, venetoclax), which was independently confirmed at broader
dose ranges and via BAK activation assays (Figure 2C-D; supple-
mental Figures 8 and 9). Direct comparisons of combination screen-
ing results in sensitive vs resistant cells demonstrated a strong
correlation (OPM2-DMSO vs OPM2-S63845: R 5 0.86, P ,
2.2e-16; KMS12BM: R5 0.81, P, 2.2e-16; eg, strong antagonism
of S63845 in combination with HDAC, BET, CDK, and mitotic inhib-
itors; Figure 3A), but also revealed key differences. First, the dual Bcl-
xL/Bcl-2 inhibitor navitoclax was the only compound with increased
synergy scores in both resistant cell lines (Figure 3B). Second, Bcl-
xL inhibitors including A-1331852 and A1155463 were the most
potent combination partners for S63845 (exception, KMS12BM-
S63845; Figure 3). Third, cell line and status-specific results (sensi-
tive vs resistant) support the role of heterogeneous drug-resistance
profiles. For instance, strong synergism of S63845 with IGF1R/
PI3K/AKT inhibitors was exclusively noted in OPM2-S63845 cells
(Figure 3B). These results suggest the existence of clone-specific
therapeutic options, but overall define BH3mimetics as major combi-
nation partners for MCL-1 inhibitors in MM.

Dynamic regulation of Bcl-xL binding patterns in

MCL-1 inhibitor–resistant cell line variants

We next investigated the molecular basis of the differential activity of
BH3 mimetic combinations in S63845-resistant cells. Given the lack
of major steady-state alterations in the Bcl-xL expression or binding
affinity status, we speculated that dynamic responses after MCL-1
inhibitor treatment are the cause of the observed synergism.
Importantly, we noted no persisting MCL-1:BAK and only minor
MCL-1:BIM complexes (in sensitive and resistant cells), as well as pre-
viously reported MCL-1 stabilization11,13 with S63845 treatment,
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Figure 1. Characterization of S63845 resistant cells reveals heterogeneous resistance profiles. (A) Dose-response curves of S63845-sensitive vs -resistant cells

indicate a .10-fold shift of IC50 values. Viability was assessed 72 hours after treatment (n 5 3 biological replicates). (B) Lack of BAK activation after treatment with S63845 in
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indicating that the key mechanism of action of MCL-1 inhibitors was
not affected (supplemental Figure 10; Figure 4C). Protein expression
levels of Bcl-2 and Bcl-xL were downregulated and appeared in their
short, proapoptotic forms in sensitive cells, but were not affected by
S63845 treatment in resistant cells. This result suggests that dynamic
fluctuations of total protein levels of Bcl-2, Bcl-xL, and MCL-1 associ-
ate with apoptosis induction in sensitive cells (supplemental Figure
11). In contrast, we observed increased binding of Bcl-xL to BIM in
OPM2-S63845 cells as early as 90 minutes after treatment. With
KMS12BM-S63845, elevated Bcl-2:BIM complexes persisted during
treatment, but we also detected treatment-induced binding of Bcl-xL
to BAK (Figure 4A-C). In addition, minimal formation of Bcl-xL:BAD
complexes after S63845 treatment was observed in both resistant

cell line variants (supplemental Figure 12). This dynamic formation
of Bcl-xL:BAK and Bcl-xL:BIM complexes was also confirmed in
MM cells with doxycycline-inducible Bcl-xL expression, which likewise
rescued them from MCL-1 inhibitor treatment (Figure 4D-E; supple-
mental Figure 13A-B). Moreover, confirmatory coimmunoprecipitation
experiments with alternative primary antibodies (anti-Bcl-xL and anti-
BAK) validated our findings in S63845-resistant cells (Figure 4B-C;
supplemental Figure 13C).

Subsequent drug combination studies with venetoclax and
A-1331852 further demonstrated the dual importance of Bcl-xL and
Bcl-2 in KMS12BM- but not OPM2-S63845 cells, as evidenced by
high S synergy scores in comparison with other BH3 mimetic combi-
nations (supplemental Figure 14). The modular use of Bcl-2 and
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Bcl-xL in response to S63845 therefore explains the discrepant drug
combination results in our S63845-resistance models and supports
the existence of clone-specific Bcl-2 family adaptation processes.

Concurrent Bcl-xL inhibition is effective in the

presence of stromal support

The MCL-1 inhibitor AZD5991 has recently been shown to display
reduced activity in the presence of stromal support.14 We therefore
decided to validate our screening hit candidates in the presence of
stromal support and examined whether the identified hits overcome
this phenomenon as they have in the published combination studies
of venetoclax.14,21 The protective effect of bone marrow stromal cells
was confirmed with the MCL-1 inhibitors S63845 and A-1210477, in
2 independent stromal cell lines (MSCT1 and HS-5) in 5 of 7 MM cell
lines tested (Figure 5A-C; supplemental Figure 15), indicating that
stromal protection is a drug class effect. Stromal rescue effects
were cell-cell–contact dependent in our model systems (Figure 5D),
and concurrent Bcl-xL and Bcl-2 inhibition overcame the protective
environment. Of note, the Bcl-xL inhibitor A-1331852 outperformed
venetoclax (Figure 5E). No rescue effect was observed with any of
the Bcl-2 family-independent hit candidates of our drug combination
screening (eg, bexarotene, BMS-754807, and prednisone; data not
shown). In line with our findings in MM cell lines, we observed a com-
plete loss of activity of S63845 in CD138-purified primary MM cells in
coculture, but concurrent Bcl-xL blockade completely overcame this
protective effect and outperformed venetoclax in all patient samples
tested (Figure 5F). This result was independent of the genetic back-
ground of patients with MM (supplemental Table 3).

Concurrent loss of MCL-1 inhibitor activity in

CARF-resistant myeloma cells

Having identified BH3 mimetics as the top combination partners for
MCL-1 inhibitors, we continued to evaluate the impact of prolonged
PI exposure on the efficacy of BH3 mimetics. As outlined earlier, PIs
were chosen to model prior frontline treatments because of their
known impact on MCL-1 regulation.17 Intriguingly, we demonstrated
a striking loss of activity of 3 of 4 MCL-1 inhibitors (S63845,
AZD5991, and A-1210477) in 4 cell line models with acquired
CARF resistance. AMG-176 was the only compound that showed
similar efficacy in sensitive and resistant cells (median IC50: 422 nM
vs 272 nM; Figure 6A; supplemental Figure 16). Alternative BH3mim-
etics (venetoclax, navitoclax, and A-13381852) showed reduced
activity in KMS12PE-CARF, but in none of the other CARF-resistant
cell line variants (supplemental Figure 17).

Next, we wanted to confirm the impact of prior PI treatment on MCL-1
inhibitor activity in an independent panel (n 5 4) of IXA-resistant cell
lines. Surprisingly, MCL-1 inhibitors were comparably effective in
IXA-resistant vs -sensitive cells (Figure 6B; supplemental Figure 18).
This result suggests that specific CARF-induced alterations induce
MCL-1 inhibitor cross-resistance.We therefore analyzed baseline pro-
tein levels of Bcl-2 family members, but the analysis revealed a hetero-
geneous picture of cell line–specific rather than common alterations
(Figure 6C). Similarly, baseline binding patterns of proapoptotic and
antiapoptotic proteins assessed via coimmunoprecipitation experi-
ments revealed no common changes in CARF-sensitive vs -resistant
cells. Although we detected increased binding of Bcl-2 to Bim in
KMS12PE-CARF cells (which may explain their reduced sensitivity
against non-MCL-1–targeting BH3 mimetics), neither Bcl2:Bim, Bcl-

xL:Bim, or MCL-1:Bim nor MCL-1:Bak complexes were significantly
changed in any of the other cell lines (Figure 6D; supplemental Figure
19). Results of experiments combining BH3 mimetics with CARF like-
wise did not explain and/or reverse PI or MCL-1 inhibitor resistance
(not shown). Considering the importance of BAK for the activity of
MCL-1 inhibitors, we also excluded the presence of an inactive
BAK variant. Although S63845, AZD-5991, and A-1210477 failed
to activate BAK in CARF-resistant cells, AMG-176 significantly
increased BAK activity, which reached similar levels in CARF-
sensitive and -resistant cells. This finding excludes the possibility of
BAK inactivation as the underlying cause of the observed MCL-1
inhibitor resistance (Figure 6E).

Drug efflux via MDR1 mediates MCL-1

inhibitor resistance

Given the lack of consistent alterations of Bcl-2 family members and
the maintained functionality of the apoptotic signaling cascade (ie,
BAK activity) in CARF-resistant cell lines, we speculated that the
CARF-induced upregulation of MDR1 causes MCL-1 inhibitor
cross-resistance. In accordance with prior reports,26,27 we observed
a striking upregulation of MDR1 in CARF- but not in IXA-resistant
MM cells (Figure 7A). Treatment of CARF-resistant cells with estab-
lished MDR1 inhibitors (nelfinavir, tariquidar, verapamil, and reserpine)
restored MCL-1 inhibitor sensitivity in all the tested cell lines, thus
strongly supporting our hypothesis (Figure 7B; supplemental Figures
20 and 21). To corroborate this finding, we established a mass
spectrometry–based assay that enabled us to measure intracellular
concentrations of S63845. This analysis demonstrated significantly
reduced S63845 levels in CARF-resistant vs -sensitive cell line var-
iants 6 hours after treatment, which was reversed by the concurrent
treatment with tariquidar or verapamil (Figure 7C; supplemental Figure
22). Moreover, concurrent treatment of CARF-resistant cells with
MCL-1 inhibitors and nelfinavir (or tariquidar) restored BAK activation,
thereby emphasizing the potential of a ready-to-use drug class (HIV
protease inhibitors) to reinduce the apoptotic machinery (Figure 7D).

Finally, we confirmed the postulated role of MDR1 in a previously
reported AMO-1-CARF-MDR1–knockout model.27 In accordance
with our findings, AMO-1-CARF cells displayed cross-resistance to
both MCL-1 inhibitors (S63845 and A-1210477). Similar to nelfinavir,
we were able to show that the HIV protease inhibitor lopinavir restored
the activity of the tested MCL-1 inhibitors in this cell line model (sup-
plemental Figure 23). Importantly, CRISPR/Cas9-mediated knockout
of MDR1 in CARF-resistant cells likewise overcame the observed
cross-resistance (Figure 7E). This result establishes MCL-1 inhibitors
as novel MDR1 substrates and drug efflux as another level of defense
among a diverse set of resistance mechanisms that enable myeloma
cells to escape MCL-1 inhibition (Figure 7F).

Considering the dominant effect of MDR1 on intracellular S63845 lev-
els, we also examined a potential role for MDR1 in theMCL-1 inhibitor-
resistant cell lines. There was no change in MDR1 surface expression,
nor did any of the tested drug efflux inhibitors (tariquidar, nelfinavir,
verapamil, or reserpine) overcome S63845 resistance (supplemental
Figure 24A-B). Surprisingly, however, intracellular S63845 levels
were moderately decreased in KMS12BM cells 6 hours after treat-
ment (43% reduction; supplemental Figure 24C). This was not the
case in resistant OPM2 cells and other compounds prone to drug
efflux (eg, CARF and panobinostat), which showed similar activity in
KMS12BM-sensitive and -resistant variants in the drug-screening
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data. Analysis of the complete set of ABC transporters in our RNA-seq
data set did not define any significant changes or trends (supplemen-
tal Figure 24D). Our data therefore suggest that drug efflux may
contribute to acquired MCL-1 inhibitor resistance, but not as a
stand-alone mechanism of action. This phenomenon is probably
driven by the combined activity of several nonspecific pumps or pres-
ently undisclosed interactors that influence the intracellular accumula-
tion of S63845.

Discussion

Tumor cells impress by their extensive ability to develop novel survival
strategies under therapeutic pressure. This ability is shown by mye-
loma cells as well, and available results on drug resistance inMMpoint
to a plethora of evasion strategies, such as an increase in the muta-
tional load of drug target pathways,28,29 deregulation of target mole-
cules,30 metabolic adaptations,31 environmental support32 and
dynamic mechanisms of drug escape.5 BH3 mimetics bypass the
need for overcoming upstream antiapoptotic mechanisms, raising
the hope that MM cells will not be able to rely on these modes of resis-
tance. We therefore aimed to define key resistance mechanisms to
MCL-1 inhibitors with the prospect of overcoming potential barriers
and restoring their activity.

The positive findings show that myeloma cells with acquired S63845
resistance did not shift to an apoptosis-refractory state (eg, complete
loss or mutation of key apoptosis-inducing molecules). The negative
observation, however, is that, similar to other established anti-MM
drugs, a diverse set of defense modes enabled myeloma cells to
evade MCL-1 inhibition. We therefore used an unbiased high-
throughput drug-screening approach that revealed common vulner-
abilities and demonstrated that BH3 mimetics are the most promising
combination partners. Such an approach has already been success-
fully exploited in several studies by concurrent inhibition of MCL-1,
together with Bcl-2 blockade with venetoclax.9,14-16 Our results, how-
ever, revealed that Bcl-xL inhibitors are the most effective compounds
for potentiating the activity of MCL-1 inhibitors. This effect was also
maintained in the presence of stromal support, thereby confirming pre-
vious results with AZD599114 and clearly demonstrating that reduced
efficacy of MCL-1 inhibitors is a drug class effect that is effectively
overcome by concurrent Bcl-xL or Bcl-2 inhibition. No other screening
hits overcame stromal protection, and Bcl-xL outperformed Bcl-2
inhibition.

Our results are supported by previous data showing that Bcl-xL is
involved in intrinsic MM cell line resistance (ie, in non-MCL-1–depen-
dent cell lines) to A-1210477.5 Moreover, Bcl-xL expression levels

and ectopic overexpression of Bcl-xL were linked to reduced activity
of dual S63845 and venetoclax treatment.9 We showed that cells
with high S63845 baseline sensitivity (OPM2, MCL-1 dependent;
and KMS12BM, Bcl-2/MCL-1 codependent) similarly use Bcl-xL to
handle prolonged MCL-1 inhibition. Analogous shifts of Bcl-2 family
binding patterns have been reported in ABT-737–resistant MM
cells.33 Surprisingly, Bcl-xL binding patterns differed as evidenced
by the formation of increased Bcl-xL:BIM complexes in OPM2-
S63845 and Bcl-xL:BAK complexes in KMS12BM-S63845 cells
after treatment, which is in support of a dynamic regulation of the con-
formation and affinity status of Bcl-xL.34 The additionally observed
complex formation between Bcl-xL and the proapoptotic sensitizer
protein BAD demonstrates that future research studies should con-
centrate on the exploration of the functional relevance of different
Bcl-xL binding partners in the establishment of MCL-1 inhibitor resis-
tance. However, these are not the only factors that affect MCL-1 inhib-
itor resistance in view of the very heterogeneous alterations observed
in this study.

Acquired resistance was associated with the deregulation of Bcl-2
family members. Both upregulation of antiapoptotic molecules and
downregulation of proapoptotic molecules were observed. Upregula-
tion of Bcl-2 in concert with Bcl-2:BIM complexes in KMS12BM-
S63845 suggests that baseline BH3 dependencies drive the path
to resistance. This possibility is also corroborated by similar Bcl-2 fam-
ily adaptations in t(11;14)1 KMS12BM-S63845 and KMS12PE-
CARF cells. The heterogeneous S63845 drug-resistance profile
was supported by RNA-seq and drug screening results, which dem-
onstrated a close association between parental and resistant cell
lines. Only 1 compound (the dual Bcl-2/Bcl-xL inhibitor navitoclax) dis-
played significantly higher synergy scores in both resistant variants.
This result demonstrated the dynamic interplay between all 3 major
antiapoptotic molecules and was verified by the efficacy of dual Bcl-
2/Bcl-xL targeting. On the contrary, several cell line– and status-
specific combination partners were observed, such as an increased
synergy of S63845 with IGF1R/PI3K/mTOR inhibitors in OPM2-
S63845 cells. Concurrent treatment of OPM2-S63845 cells with
autophagy inhibitors indeed surmounted resistance, but we were
not able to link it to deregulation of autophagic flux (data not shown).

Our results demonstrating MCL-1 inhibitor cross-resistance in CARF-
resistant cells add another level of complexity to the activity profile of
MCL-1 inhibitors. This phenomenon is clearly linked to CARF-induced
MDR1 expression and activity. Although MDR11 MM cases are infre-
quently observed at diagnosis (,10% of patients), a striking increase
of up to 80% positive cases after treatment with vincristine- and/or

Figure 7 (continued) CARF-resistant cells treated with single-agent DMSO or S63845 at the indicated concentrations. *P , .05; **P , .01; ***P , .001. (C) Intracellular

S63845 concentrations were determined 6 hours after treatment via a mass spectrometry–based assay in RPMI8226-sensitive (DMSO) and CARF-resistant cells in the presence

or absence of established MDR1 inhibitors (tariquidar and nelfinavir; n 5 3 biological replicates). **P , .01; ***P , .001. (D) BAK activity status in CARF-sensitive and -resistant

cells 4 hours after treatment with MCL-1 inhibitors in the presence or absence of MDR1 inhibitors (tariquidar and nelfinavir; n 5 3 biological replicates. *P, .05; ***P, .001. (E)

Dose-response curves of A-1210477 and S63845 in CARF-sensitive, CARF-resistant, and CARF-resistant-MDR1-knockout cells. Viability was assessed 72 hours after treat-

ment. Graphs represent the mean 6 SD of 3 independent experiments performed in triplicate. (F) Proposed mechanisms of MCL-1 inhibitor resistance in myeloma. In sensitive

cells, MCL-1 inhibitors disrupt the binding between MCL-1 and proapoptotic molecules (BIM and/or BAK), which leads to the activation and oligomerization of BAK, release of

cytochrome c and induction of apoptosis. Multiple modes of resistance exist in MCL-1 inhibitor insensitive cells. Downregulation of proapoptotic molecules (BAK, BAX, and BIM)

or upregulation of antiapoptotic molecules (MCL-1, Bcl-2, and Bcl-xL) raise the threshold for apoptosis induction. The same is true of drug efflux–driven resistance, which limits

the availability of intracellular MCL-1 inhibitors. In addition, altered binding patterns of pro- and antiapoptotic molecules (eg, Bcl-2:BIM . MCL-1:BIM complexes) affect MCL-1

inhibitor sensitivity levels, which are also mediated via dynamic responses such as treatment-induced sequestration of BAK and BIM via Bcl-xL.
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doxorubicin-based protocols, as well as strong expression of MDR1 in
circulating plasma cells, has been reported.27,35 It is currently
unknown whether certain agents of today’s MM treatment protocols
lead to an upregulation of functional MDR1 in vivo. In addition,
MCL-1 inhibitors are intensively tested in acute myeloid leukemia,
which is marked by a high fraction of MDR11 cases at diagnosis.36,37

Given the ease of MDR1 assessment via flow cytometry, we strongly
recommend evaluating MDR1 surface expression (and activity) status
before MCL-1 inhibitor therapy. In cases with MDR1 efflux, MCL-1
inhibitors that lackMDR1 substrate specificity (eg, AMG-176) or com-
bination treatments that impair MDR1 activity should be considered.

Although our in vitro findings point to numerous novel modes of resis-
tance, there is no doubt that our study was limited by the lack of ade-
quate in vivo validation. Aside from the exploration of acquired MCL-1
inhibitor resistance in recently developed mouse models,13,38

in-depth analysis of patient samples is needed to determine the clin-
ical impact of our results. If the ongoing early-phase testing of MCL-1
inhibitors in myeloma turns out to be successful, subsequent trials
should analyze Bcl-2 family alterations in MM cells, modifications of
stromal cells, and MDR-1–driven drug efflux after prolonged MCL-1
inhibitor treatment. Although MDR-1 was not upregulated in our
S63845-resistance models, drug efflux appeared to contribute to
the resistance observed in KMS12BM cells. Interestingly, the activity
of other drug efflux–sensitive compounds (eg, CARF and panobino-
stat) was not affected in this cell line variant, suggesting a role for
undisclosed drug pumps. Unbiased approaches, such as CRISPR/
Cas9 screenings, are currently planned in our model systems to elu-
cidate these additional, so far unrecognized, mediators of MCL-1
inhibitor resistance in myeloma.

All evidence taken together, we showed that baseline BH3 profiles
drive acquired MCL-1 inhibitor resistance that leads to a heteroge-
neous deregulation of Bcl-2 family proteins. Interestingly, both
steady-state alterations (eg, increased Bcl-2:BIM complexes) and
dynamic alterations (Bcl-xL binding after S63845 treatment) are
involved. BH3 mimetics are the most promising combination partners
to enhance the efficacy of (or overcome resistance to) MCL-1 inhibi-
tors, and Bcl-xL inhibitors typically outperform venetoclax. In addition,
most MCL-1 inhibitors are prone to drug efflux–mediated resistance.
This arsenal of evasion strategies by myeloma cells stresses the
importance of identifying tumor-specific adaptations for the future
implementation of optimized, precision medicine–guided treatment
approaches.
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