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Purpose of review

Treatment with tumor-infiltrating lymphocytes (TILs) has shown remarkable clinical responses in patients with
advanced solid tumors. Although the TIL production process is very robust, the original protocol stems from
the early nineties and lacks effective selection for tumor-reactivity and functional activity. In this review we
highlight the limitations of the current production process and give an overview of improvements that can
be made to increase TIL efficacy.

Recent findings

With the recent advances in single cell sequencing technologies, our understanding of the composition and
phenotype of TILs in the tumor micro environment has majorly increased, which forms the basis for the
development of new strategies to improve the TIL production process. Strategies involve selection for
neoantigen-reactive TILs by cell sorting or selective expansion strategies. Furthermore, gene editing
strategies like Clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas9) can be used to
increase TIL functionality.

Summary

Although combining all the possible improvements into a next generation TIL product might be challenging,
it is highly likely that those techniques will increase the clinical value of TIL therapy in the coming years.
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Since the first reports describing treatment with in
vitro expanded tumor-infiltrating lymphocytes
(TILs) in 1986, many patients have been treated
with this therapy in clinical trial settings [1–3].
The majority of these trials were phase I/II trials
showing the potential of TIL therapy for patients
with advanced stages of cancer, mostly melanoma.
However, in the current era in which immunother-
apy with immune checkpoint inhibitors (ICI) dom-
inates treatment of especially solid cancers, the role
of adoptive T-cell therapies still needs to be estab-
lished. Recently, our group published the results of a
randomized controlled phase III trial comparing TIL
therapy to ipilimumab in patients with mostly anti-
programmed death-1 resistant metastatic mela-
noma. This study showed a statistical significant
and clinically relevant progression-free survival ben-
efit of TIL therapy over ipilimumab, and an overall
response rate of 49% with 20% complete remission
rate, thereby for the first time establishing a position
of a cell therapy in the current melanoma treatment
landscape [4
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likely responsible for its treatment success, is the
polyclonal character of the TIL products. TIL ther-
apy is a highly personalized treatment with unique
properties for every individual patient [5,6

&

]. How-
ever, precise definition of its content remains chal-
lenging [3]. With the recent advances in single cell
sequencing technologies, our understanding of
tumor resident TILs has majorly increased. In this
r Health, Inc. www.co-oncology.com



KEY POINTS

� The original TIL production protocol lacks selective
outgrowth of tumor-reactive cells and the end products
contain T cells with different functional activities.

� TIL reactivity can be improved by increasing the
number of neoantigen-specific T cells in the final TIL
products, for example by selective expansion or
selection strategies.

� TILs can be modified in vitro to become less susceptible
to immunosuppressive mechanisms, for example, by
inhibition of suppressor molecules like tumor growth
factor-b or interference with downstream T-cell
receptor signaling.

Melanoma and other skin neoplasms
review we provide first a summary of the limitations
of current TIL therapy. Subsequently, we will make
suggestions on how to improve the TIL production
process, eventually leading to better TIL products
(summarized in Fig. 1).
CURRENT STATE OF TUMOR-
INFILTRATING LYMPHOCYTES THERAPY
AND ITS LIMITATIONS

The process of TIL manufacturing starts with isolat-
ing TILs from freshly obtained tumor tissue by
enzymatic digestion and/or fragmentation and sub-
sequent culturing as single cell suspensions or as
small tumor fragments in culturemediumwith high
concentrations of interleukin-2 (HD-IL-2). Follow-
ing an initial outgrowth of TILs, that is accompanied
by clearance of malignant cells, the TILs are
expanded to very high cell numbers in a rapid
expansion protocol using polyclonal T-cell stimula-
tionwith soluble anti-CD3 antibodies and irradiated
allogeneic feeder cells, in the presence of HD-IL-2.
This manufacturing process lasts about 4 to 6weeks
and yields between 5�109 to 2�1011 cells, mostly
containing CD3þ T cells. Prior to intravenous infu-
sion of the expanded TILs, patients undergo lym-
phodepleting chemotherapy, which aims to remove
endogenous cytokine sinks consuming homeostatic
cytokines IL-7 and IL-15 and to make physical space
for the survival and expansion of the transferred
TILs [3,5,7]. It is likely that the chemotherapy also
impacts the myeloid compartment, but to date little
is known about these consequences. Finally, follow-
ing infusion of TILs, patients receive intravenous
boluses of IL-2 to further support outgrowth of the
infused cells [3,5].

Although this manufacturing protocol is robust,
recent studies have shown that final TIL infusion
products remain rather heterogeneous in terms of
108 www.co-oncology.com
antigen specificities and T-cell differentiation stages
[5,6

&

]. Three important observations have been
made: (1) Several groups, including ours, have
shown that only a fraction of tumor resident TILs
in human cancers can recognize autologous tumor
cells and that a substantial part of TILs recognize
antigens unrelated to cancer, so called ‘bystander’
TILs [8,9]. (2) TILs have hallmarks of tissue residency
and prior antigenic stimulation, and exist in differ-
ent states of T cell dysfunction, expressing elevated
or high levels of inhibitorymolecules, including PD-
1, LAG-3 and TIGIT. Alternatively, they belong to
the so-called progenitor dysfunctional T cells with
self-renewing capacity [10,11]. (3) Spatial transcrip-
tomics and proteomics have revealed that tumor-
reactive TILs may cluster in tertiary lymphoid struc-
tures or are in close proximity to other immune and
tumor cells. This knowledge will be important to
design novel production protocols aiming for TIL
products enriched for tumor-reactivity and optimal
functional states, which we think are required to
overcome some of the current limitations of
TIL therapy.
TUMOR REACTIVITY

To improve TIL efficacy by increasing the number of
tumor-reactive cells, we first need to better under-
stand which antigens may trigger antitumor reac-
tivity. Tumor associated antigens (TAA) can be
subdivided into different subclasses. A frequently
used classification divides TAA in shared and private
antigens. The first group contains antigens derived
from cell-lineage specific proteins, cancer/testis
gene products and overexpressed self-antigens
[12]. The latter category contains antigens that are
classified as neoantigens. Neoantigens are mutant
epitopes, resulting from tumor-specific mutations
[12,13]. Unlike most tumor-associated shared anti-
gens, neoantigens are foreign to the immune sys-
tem, and therefore T cells specific for these antigens
have not been subjected to negative thymic selec-
tion, thereby increasing the likelihood of finding
high affinity TCRs against these antigens [12,14,15].
The potential to have high affinity T cells against
these antigens and the absence of expression on
normal cells makes neoantigens attractive targets
for T-cell therapy. The contribution of T cells target-
ing shared antigens in the clinical response upon TIL
therapy remains poorly understood and is perhaps
underestimated. Findings that the frequency of neo-
antigen-specific T cells in TIL products is associated
with improved response after TIL therapy may sug-
gest that selection for neoantigen-specific T cells can
be used to increase the tumor-reactive potential of
TIL therapy [15,16

&

]. One of the difficulties of such a
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FIGURE 1. Schematic overview of the current TIL production process and potential improvements. TILs are isolated from single
cell suspensions or tumor fragments generated from freshly resected tumor material and initially grown in the presence of high
dose IL-2. Subsequently, the cultured TILs go through a rapid expansion phase using polyclonal T-cell stimulation with soluble
anti-CD3 antibodies, irradiated allogeneic feeder cells and high dose IL-2. Prior to intravenous infusion of the expanded TILs,
patients are treated with lymphodepleting chemotherapy. Finally, following infusion of the TILs, patients receive intravenous
boluses of high dose IL-2. The original TIL production protocol lacks selective outgrowth of tumor-reactive cells and as a result
TIL products contain T cells with different functional activities. Potential improvements are aimed at enriching the final TIL
product for tumor-specificity and optimal functional states, which we think are required to overcome some of the current
limitations of TIL therapy. CISH, cytokine-induced SH2 protein; IL-12, Interleukin-12; IL-2, Interleukin-2; PBMCs, peripheral
blood mononuclear cells; TGF-b, tumor growth factor-b; TILs, tumor-infiltrating lymphocytes.
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strategy is that the identification of suitable neo-
antigens based on algorithms predicting binding to
HLA-molecules of the patient currently does not
take factors like translation and processing into
account. A recent study of Parkhurst et al. demon-
strated that T-cell responses are elicited against less
than 2% of the predicted neoantigens in tumors,
which supports the need for validation of T-cell
responses against these predicted neoantigens, but
may also provide relevant insight in the breadth of
the T-cell repertoire against these antigens [17].

More recently,newmethodshavebeendeveloped
to identify tumor-reactive T cells directly in the tumor
micro environment (TME) based on phenotypic
markers. Multiple studies report that CD8þ TILs
expressing PD-1, CD39 and CD103, are enriched for
tumor-specific reactivity, especially targeting
neoantigens [18–20,21

&

]. Selection for tumor-resident
T cells bearing these hallmarks may be sufficient to
improve the tumor-reactivepotential of aTILproduct.
1040-8746 Copyright © 2023 The Author(s). Published by Wolters Kluwe
Selective outgrowth strategies for tumor-
reactive tumor-infiltrating lymphocytes
A strategy to selectively expand neoantigen-specific
TILs is currently being tested in two clinical studies
with a product named ATL001 for patients with
non-small cell lung cancer (NCT04032847) andmel-
anoma (NCT03997474) [13]. In this manufacturing
process (VELOSTM), TILs are isolated from a patient’s
tumor and co-cultured with autologous dendritic
cells loaded with peptides corresponding to the
patient’s identified neoantigens. By recognizing
their cognate antigen on dendritic cells, neoanti-
gen-reactive TILs are selectively expanded to high
numbers and re-infused into the patient [13]. Alter-
natively, one could sort tumor-reactive TILs based
on predefined phenotypic markers described earlier
and expand these T cells for the manufacturing of
TIL products. One such a marker is PD-1, which is
highly expressed on tumor-reactive cells. Several
groups have tried to improve antitumor reactivity
r Health, Inc. www.co-oncology.com 109
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by enriching for CD8þPD1þ TILs utilizing flow
cytometry or magnetic bead-based cell sorting
[22,23]. A disadvantage of this approach is that
PD-1þ TILs appeared to reside in a more dysfunc-
tional state, thereby limiting subsequent in vitro
outgrowth potential and possibly further in vivo
expansion as well [22]. These studies focused on
selective outgrowth of CD8þ cells. However, the
importance of CD4þ T cells in the final TIL products
to provide CD8 T-cell help, and to contribute to
antitumor reactivity, should not be neglected [24].

Costimulatorymolecule 4–1BB is another candi-
date for selective outgrowth as its expression on T
cells is restricted to cells that are recently activated by
TCR engagement and signalling [25,26]. Seliktar-Ofir
et al. developed a successful method to generate TIL
products by co-culturing TILswith autologous tumor
and subsequent magnetic bead separation to select
for 4–1BB-expressingT cells [26]. Finally,Duhen et al.
sorted the CD39þCD103þ TIL fraction from tumor
digest, expanded them in vitro and found that for six
melanoma patients, the median percentage of
tumor-reactive cells in the expanded TIL products
was 51% [18]. Data showing which of these enrich-
ment strategies improves current TIL therapy efficacy
most efficiently and should be further developed for
clinical application are currently lacking.
CREATING AN IMMUNE INFLAMMATORY
ENVIRONMENT

A very different approach to improve the outcome of
TIL therapy could be to reshape the immune suppres-
sive TME [27]. By modifying TILs to secrete an
immune stimulatory cytokine, such as IL-12, adop-
tive transfer of these T cells could induce stronger
antitumor immune responses [28–31]. A clinical trial
with T cells engineered to produce IL-12 elicited
strong antitumor efficacy, but showed an unaccept-
able safety profile, because IL-12 production could
not be controlledwell after adoptive cell transfer and
was not confined to the TME, leading to toxic levels
in the circulation [32]. More recent studies tried to
overcome this by engineering TILs to transiently
produce IL-12 [33] or to tether the cytokine to the
surface of tumor-reactive cells by making fusion pro-
teins of cytokines and cell surface receptor-specific
antibodies, resulting in a better safety profile and
enhanced cytolytic activity of the TILs [34].

Another strategy to attract more T cells to the
TME is by direct modification of the TME itself, for
example, by combining intratumoral delivery of
oncolytic viruses (OV) with TIL therapy [35,36]. In
a first study, an herpes simplex virus-1 based OV
encodingOX40L and IL-12 was administered shortly
before TIL infusion, resulting in complete tumor
110 www.co-oncology.com
regressions in patient-derived xenograftmousemod-
els [35]. In a second study, an oncolytic poxvirus was
given intratumorally, which led to attraction of
tumor-specific T cells into the tumor tissue. These
tumors appeared a great source for TIL harvest. TILs
isolated from these tumors contained fewer Tregs,
had a less exhausted phenotype and showed
improved survival after adoptive transfer [36].

Lastly, more direct ways to recruit TILs to the
TME, and thereby creating an immune inflamma-
tory environment, involve the use of chemokines.
Chemokines can improve migration of adoptively
transferred TILs to reach the tumor sites, a strategy
which is currently being tested in a clinical trial
(NCT01740557) where CXC motif chemokine
receptor 2 and Nerve Growth Factor Receptor are
transduced into TILs for treatment of metastatic
melanoma patients, after it showed increased in vivo
homing capacity in a melanoma mouse model [37].
IMPROVING T-CELL FUNCTION

The combination of checkpoint inhibitors being read-
ily available for cancer treatment and the finding that
efficacy of anti-PD1 therapy is mediated by TILs
present in the tumor micro-environment, lead to
several clinical trials exploring the possibility of TIL
therapy in combination with anti-PD1 therapy
[38,39]. Although this strategy was found feasible
and safe in those trials, a recent study found that
the efficacy of TIL therapy in combination with ICI
might mainly be the consequence of improved func-
tionof endogenousTcells, rather thananeffect on the
transfused T cells [40]. This has to be taken into con-
siderationwhen deciding on the timing of the combi-
nation of checkpoint inhibitors with TIL therapy.

Other strategies to improve TIL function already
focus on the start of TIL culture, by improving the
dysfunctional state of TILs at the time of tumor
harvest. Approaches involve counteracting immu-
nosuppression on one hand or improving T-cell
fitness on the other hand.
Overcoming immunosuppression

Besides studies combining TIL therapy with ICI, TILs
can be modified to become less susceptible to immu-
nosuppressive mechanisms. An interesting target is
Tumor Growth Factor (TGF)-b, a pleiotropicmolecule
with key immunosuppressant features in the TME
[41]. TGF-b normally binds to the TGF-b receptor
present on TILs, preventing them from cytokine pro-
ductionand tumorcell killing [41,42]. Fix et al.utilized
Clustered regularly interspaced short palindromic
repeats-Cas (CRISPR-Cas9) to knock out (KO) the
TGF-b receptor 2 (TGFBR2) in TILs from ovarian
Volume 35 � Number 2 � March 2023
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cancer patients. Expanded TGFBR2 KO TILs demon-
strated improved cytotoxicity compared to wild type
TILs. Additionally, CRISPR/Cas-modification did not
alter the ex vivo TIL expansion and TCR clonal diver-
sity, nor did it have significant off-target effects [43].
Preventing T-cell exhaustion

Negative regulators responsible for TIL exhaustion are
mostly located downstream of the TCR [44]. Interfer-
ence with those mechanisms can help to maintain T-
cell function of TILs upon recognition of their anti-
gens. A recent study by Palmer et al. demonstrated
GMP-compliant CRISPR/Cas-mediated KO of cyto-
kine-induced SH2 protein (CISH), a member of the
family of Suppressor of Cytokine Signalingmolecules,
and a marker associated with T-cell maturation, acti-
vation and exhaustion. The function of in vitro gen-
erated CISH KO TILs was tested with or without PD-1
blockade in a preclinicalmouse tumormodel (C57BL/
6) and itwas found that combination therapy resulted
in impressive tumor regression [45]. Another suppres-
sor of T-cell activation is cbl-b, a ubiquitin ligase,
which is upregulated in dysfunctional TILs with high
expression of PD-1 and TIM3. KO of cbl-b chimeric
antigen receptor-expressingTcellspreventeddysfunc-
tion, as shown by lower TIM3 expression and an
increased tumor killing capability compared to cbl-b
wild type T cells [46]. These T-cell modifications may
lead to TIL products with a lower propensity to
immune dysfunction and possibly a better cytolytic
function in vivo.

Another key regulator of T-cell activation and
proliferation following TCR triggering is the Phos-
phoinositide 3-kinase - protein kinase B pathway
[47]. Activation of this pathway upon TCR signaling
eventually leads to quiescence of T cells. Therefore,
modulating this pathway with the purpose to rein-
vigorate activation and proliferation of T cells could
be of interest [48]. Two strategies have been used so
far, either by growing TILs in the presence of AKT1/2
inhibitors or by knocking out AKT1/2 using CRISPR/
Cas in TILs. With both methods, TIL products with
less features of dysfunction, with stem cell memory
characteristics and with improved killing capacity
have been generated, without compromising TIL
expansion [49–53].
Interleukin-2 alternatives

Already since the development of TIL therapy, IL-2
hasplayedacentral role in theTILproductionprocess
as it is required for effector T-cell expansion, survival
and function [3]. Also after TIL administration, IL-2 is
essential, as demonstrated by the increased survival
rates of patients that were treatedwith high dose IL-2
1040-8746 Copyright © 2023 The Author(s). Published by Wolters Kluwe
compared to low dose IL-2 [2]. Nevertheless, TIL
culture with HD-IL-2 leads to significant limitations
as well, for example, driving TILs towards a more
differentiated phenotype and in vivo IL-2 administra-
tion is associated with significant toxicities
[52,54,55]. Finding alternatives for recombinant
IL-2 has therefore been amongst one of the strategies
to improve TIL stemness and reduce treatment-
related toxicity.Ofparticular interest is a recent study
describing the use of an IL-2 variant that binds in cis
to PD-1 [55]. This study builds on the finding that
differentiation of PD-1þ T cells is mediated by IL-2
binding to the IL-2 receptor a-chain [56]. The PD-1
cis-targeted IL-2variant consistsof anengineered IL-2
that can initiate signaling by binding to the IL-2 b-
and g-chain of the IL-2 receptor, thereby preventing
the differentiation fate of PD-1þ T cells associated
with binding to the IL-2R a-chain. Using this IL-2
variant insteadof recombinant IL-2during in vitroTIL
outgrowth can potentially restore effector functions
of otherwise exhausted PD-1þ T-cells. Furthermore,
administration of cis-targeted PD-1 IL-2 instead of
recombinant IL-2 after in vivo TIL administration
could be of great interest, as CD25 is present on
endothelial cells, leading to severe side effects like
capillary leak syndrome [54]. Lastly, an alternative to
recombinant IL-2 that could reduce IL-2-related in
vivo toxicity is the use of orthogonal IL-2/IL-2 recep-
tor mutant pairs, described by Sockolosky et al. [57

&

]
Conceptually, this could be incorporated in the TIL
production process by transducing TILs with the
orthogonal IL-2 receptor during in vitro outgrowth,
so that treatment with the orthogonal IL-2 after TIL
administrationwill solely act on the transferred TILs,
limiting effects of IL-2 on other cells and thus poten-
tially decrease toxicity.
CONCLUSION

TIL therapy has shown promising results in multiple
clinical trials, and now even shows to be better than
standard of care in patients with advanced stage
melanoma failing first-line immunotherapy [2,4

&

].
In this review, we provided an overview of methods
to improve the final TIL products with regards to
tumor reactivity and TIL functionality. The decision
on which strategy or combination of strategies
should be implemented into a next generation TIL
product should be partly based on the evaluation of
TIL product potency. Unfortunately, to date the
availability of robust potency assays for TIL products
is lacking. Furthermore, it should be taken into con-
sideration that the production process - which is
already complex and warranting highly specialized
production staff – should not become even more
difficult and time consuming. Nevertheless, it is
r Health, Inc. www.co-oncology.com 111
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highly likely thatwithin this rapidly developing field
of technologies, the clinical value of TIL therapy will
increase in the coming years.
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