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Malignant cerebral edema (MCE) after an ischemic stroke results in a poor outcome

or death. Early prediction of MCE helps to identify subjects that could benefit from a

surgical decompressive craniectomy. Net water uptake (NWU) in an ischemic lesion

is a predictor of MCE; however, CT perfusion and lesion segmentation are required.

This paper proposes a new Image Patch-based Net Water Uptake (IP-NWU) procedure

that only uses non-enhanced admission CT and does not need lesion segmentation.

IP-NWU is calculated by comparing the density of ischemic and contralateral normal

patches selected from the middle cerebral artery (MCA) area using standard reference

images. We also compared IP-NWUwith the Segmented Region-based NWU (SR-NWU)

procedure in which segmented ischemic regions from follow-up CT images are overlaid

onto admission images. Furthermore, IP-NWU and its combination with imaging features

are used to construct predictive models of MCE with a radiomics approach. In total, 116

patients with an MCA infarction (39 with MCE and 77 without MCE) were included in the

study. IP-NWU was significantly higher for patients with MCE than those without MCE

(p < 0.05). IP-NWU can predict MCE with an AUC of 0.86. There was no significant

difference between IP-NWU and SR-NWU, nor between their predictive efficacy for

MCE. The inter-reader and interoperation agreement of IP-NWU was exceptional

according to the Intraclass Correlation Coefficient (ICC) analysis (inter-reader: ICC =

0.92; interoperation: ICC = 0.95). By combining IP-NWU with imaging features through

a random forest classifier, the radiomics model achieved the highest AUC (0.96). In

summary, IP-NWU and radiomics models that combine IP-NWU with imaging features

can precisely predict MCE using only admission non-enhanced CT images scanned

within 24 h from onset.
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INTRODUCTION

Stroke is the leading cause of death and disability, resulting in
5.9 million deaths and 102 million disability-adjusted life-years
worldwide (1). Ischemic stroke accounts for about 85% of the
total incidence (2). A focal occlusion at the middle cerebral artery
(MCA) leads to large hemispheric infarctions in some patients
since the MCA supplies a large amount of blood to the brain.

Progressive cerebral edema usually results in a space-
occupying infarct. The edema increases both brain volume
and intracranial pressure. In the first 1–3 days after the
onset of stroke, an abrupt neurological decline associated with
displacement of midline brain structures may occur in ∼10% of
the patients with ischemic stroke of the MCA (3–5). These tissue
shifts and subsequent brain herniation make the mortality rate
increase to nearly 80% and thus are termed malignant cerebral
edema (MCE) or malignant MCA infarction (6, 7). MCA can be
relieved by decompressive craniectomy performed within 48 h of
stroke onset or before herniation (3, 8).

Early and precise prediction of MCE can help identify
the patients who could potentially benefit from a surgical
decompressive craniectomy. Moreover, it can also help clinicians
prepare for possible deterioration and communicate with
patients and their family members about the goals of care
(5). Compared with MRI, CT is the most favorable imaging
modality for the prediction of MCE due to its fast acquisition
and widespread availability. For example, Minnerup et al. (6)
proposed the use of CT-based cerebrospinal fluid (CSF) volume
as a predictor of MCE. The ischemic lesion volume must be
measured manually from the admission perfusion CT images
(cerebral blood volume, CBV). The clot burden score and
collateral score measured from CT angiography have also been
considered as predictors of MCE (9). Ong et al. developed the
Enhanced Detection of Edema inMalignant Anterior Circulation
Stroke (EDEMA) to predict the risk of lethal malignant edema; it
includes two CT imaging variables at 24 h after the midline shift
and basal cistern effacement (10). The EDEMA score showed a
higher positive predictive value (93%) than the baseline image
markers, such as the Alberta Stroke Program Early CT score
(ASPECTS) or hyperdense vessel sign. Cheng et al. added the
National Institute of Health Stroke Score (NIHSS) into EDEMA
and validated it using a dataset of Chinese patients (11). Two
recent meta-analysis studies summarized additional potential
predictors (12, 13).

Net water uptake (NWU) measured by non-enhanced CT is
useful for predicting malignant infarctions. A CBV map driven
from CT perfusion (CTP) can be used to precisely locate the
early ischemic infarct core and a non-enhanced CT is applied to
quantitatively measure density changes. The NWU is calculated
using the formula 1-DIschemic/DNormal, where DIschemic (HU)
is the density of the ischemic core with hypoattenuation and
DNormal is the density of the area of the contralateral normal
tissue (14–16).

Radiomics aims to extract high-dimensional and quantitative
features from medical images that can be used to build
predictive models with machine learning methods to support
clinical decisions (17, 18). Radiomics has played an important

role in the study of many diseases such as cancers (19, 20).
For stroke management, radiomics have been used to predict
recanalization in ischemic stroke and hematoma expansion (21,
22). However, no study on predicting MCE by radiomics has
been reported.

Regarding NWU and the prediction of MCE, most previous
studies required multimodal CT images including CTP or CTA.
Some dedicated software packages involve tedious semiautomatic
or even manual segmentation. Hence, we propose a new way
of calculating NWU that uses only non-enhanced admission
CT and does not require CTP, CTA, or segmentation of the
ischemic core. We hypothesize that in patients with ischemic
stroke due to MCA occlusion, a non-enhanced admission CT
can be used to predict MCE by calculating NWU through
pre-defined image patches on the affected and non-affected
MCA areas. Moreover, combining NWU with clinical and
imaging features enables the construction of radiomics models
that can predict MCE at an early stage after an ischemic
MCA stroke.

MATERIALS AND METHODS

Participants and the Dataset
This retrospective single-center study was approved by the
Medical Ethics Committee of the General Hospital of Northern
Theater Command and no informed consent was required by
the committee. The selection of patients was carried out in
accordance with inclusion and exclusion criteria. The inclusion
criteria for this study were the following: (1) patients who
were diagnosed with an MCA infarction with the occlusion
at the MCA M1 segment; (2) patients that had both non-
enhanced CT images within 24 h on admission and non-
enhanced CT images after 24 h as the follow-up scan; (3)
demographic information was available from the time of the
stroke onset to the CT scans, including NIHSS score, the use
of interventional thrombectomy (IT), the use of bone flap
surgery, and the outcome (death for stroke or not); and (4) the
development of an MCE was known. Using these criteria, we
selected 125 patients from archive data on patients who were
admitted to the General Hospital of Northern Theater Command
between April 2017 and December 2018. Nine patients were
further excluded due to the poor quality of admission CT
images at 24 h. Finally, a total of 116 patients were included in
the study.

We declared patients to have an MCE if they had infarcts
with a mass effect during the follow-up non-contrast CT after
admission, had clinically experienced a cerebral hernia due to
the mass effect of edema, received bone flap surgery, or died due
to the mass effect. This definition is the same as that given by
Broocks et al. (16).

CT images were acquired with a Discovery CT750HD scanner
(GE Healthcare, Milwaukee, WI, USA) with a tube voltage of
120 kVp, x-ray tube current of 300mA, the protocol of Axial
Head, a slice thickness of 5.0mm, 20mm spacing between slices,
a matrix of 512× 512, and voxel spacing of 0.449/0.449mm. The
CT image data is available upon request after approval from the
General Hospital of Northern Theater Command, China.
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FIGURE 1 | Determination of image patch-based net water uptake (IP-NWU).

(A) The standard reference images with patches of 30 × 30; (B) The

procedure for calculating IP-NWU.

Net Water Uptake Calculated by Image
Patches
Given the fact that an early hypoattenuated infarct (lesion core)
is often not visible or that it can be difficult to precisely locate in
non-enhanced CT images, we propose a new way of calculating
net water uptake using CT patches determined using the standard
reference images. After reviewing all the images, two experienced
neuroradiologists selected four slices as the standard reference
images and marked two mirrored patches of 30× 30 voxels from
the right and left MCA areas at each slice, as shown in Figure 1.

The criteria for determining the reference images included:
(1) that patches should be located in the upper temporal lobe,
the lateral parietal lobe, or the border area of the frontal,
temporal, and parietal lobes; (2) the patches should avoid old
lesions; (3) that patches should be located in the infarct area if
there is an obvious infarct area; and, (4) the regions with CSF
should be avoided to eliminate its effect on NWU. Subsequently,
blinded to any clinical information, two other neuroradiologists
independently located four pairs of patches from the images
of each patient using these reference images and following the
criteria mentioned above simultaneously.

Among each pair of patches, the example with
hypoattenuation was considered to be ischemic and became
density (HU) of DIschemic; the other was the normal patch with
the density of DNormal. Image patch-based net water uptake
(IP-NWU) was calculated with the formula:

IP−NWU = 1−
DIschemic

DNormal
. (1)

Net Water Uptake Calculated by
Segmented Regions
We determined another way of calculating NWU by manually
segmenting the ischemic regions. The result was named
the segmented region-based NWU (SR-NWU). As shown in

Figure 2, first, both the admission CT images (<24 h; Image-
A) and the follow-up CT images (>24 h; Image-F) were aligned
and normalized toMNI-152 space by linear affine transformation
with 12 degrees of freedom. Second, four slices were selected
from Image-F using standard reference images and the ischemic
regions were manually segmented. Finally, these regions were
overlaid onto Image-A to calculate DIschemic from the CT
intensity in Image-A, and DNormal was determined from the
mirrored region.

Histogram Based Imaging Features
To fully utilize the information contained in the selected patches,
we also calculated the voxel-wised IP-NWU maps (DIschemic

DNormal
, four

30 × 30 matrices with elements ranging from 0 to 1.0). Based on
the four maps, the discrete histogram function can be depicted as

h (rn) = Yn (2)

where rn is IP-NWU of the n-th grade, Yn is the number of voxels
with IP-NWU of rn, n =1, 2, .., N. Here N was set at 8.

For univariate data Y1, Y2, ..., YN, five parameters could be
calculated: (1) standard deviation (s); (2) slope; (3) entropy; (4)
skewness (g); and (5) kurtosis. The slope was defined as the
gradient between the minimum and maximum points among the
vector of Y1, Y2, ..., YN. Entropy was defined as

H =

N
∑

n=1

pn log pn (3)

where pn is the ratio of the number of voxels with IP-NWU of rn
to the total number of voxels. H indicates the average amount of
information in the image. The skewness was defined as

g =

∑N
i=1

(

Yi − Y
)3

/N

s3
(4)

where s is the standard deviation andY is themean. The skewness
was near zero for the symmetric data, negative for the data
skewed left, and positive for the data skewed right. The kurtosis
is given as

k =

∑N
i=1

(

Yi − Y
)4

/N

s4
− 3 (5)

Hence, k is zero for the standard normal distribution; it is
positive for a “heavy-tailed” distribution and negative for a
“light-tailed” distribution.

In total, 13 image features including Y1, Y2, ..., Y8, and the
five parameters defined above were employed to construct the
radiomics models for predicting MCE. The calculation of 13
radiomics features was done using the Python code written by
our group.

Machine Learning Algorithms
Three machine learning algorithms including support vector
machine (SVM), logistic regression (LR), and random forest (RF)
were employed as the classifier to predict MCE using IP-NWU,
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FIGURE 2 | The procedure for calculating segmented region-based net water uptake (SR-NWU).

13 image features, and three clinical features (age, gender, and
NIHSS score).

For a training dataset D =
{(

x1, y1
)

,
(

x2, y2
)

, . . . ,
(

xm, ym
)}

,
yiǫ {−1,+1}, the SVM algorithm draws each entity

(

xi, yi
)

in
the dataset as a point in n-dimensional space (n is the number
of features) and each feature is treated as a specific coordinate.
The classification is carried out by finding a hyperplane

(

ω, b
)

that maximizes the margin between two categories (23–25). The
learned parameters ω and b can be determined by solving the
following equations.

min
ω,b

1

2
‖ω‖2 (6)

s.t. yi
(

ωTxi

)

≥ 1, i = 1, 2, . . . , m. (7)

LR is a kind of classic supervised learning method and it models
the log odds (or logit) by linearly combining the independent
variables (26).

ln

(

y
(

1− y
)

)

= ωTx+ b (8)

For a dataset
{(

xi, yi
)}m

i=1, yiǫ {0, 1}, LR estimates ω and b by
maximizing the log-likelihood

l
(

ω, b
)

=

m
∑

i=1

ln p
(

yi|xi;ω, b;
)

(9)

where

p
(

y = 1|x
)

=
ew

Tx+b

1+ ew
Tx+b

(10)

p
(

y = 0|x
)

=
1

1+ ew
Tx+b

(11)

RF is a parallel-style ensemble learning method that uses a
decision tree as the base learner and bagging as the ensemble
strategy (27, 28). Each bootstrap sample generated through
bagging with m observations was used to train one decision
tree and a final consensus estimate was obtained by combining
all individual bootstrap estimates. A subset p of n features was
selected randomly for the partition of each node of the tree, which
effectively reduced the similarity of trees generated from different
bootstrap samples (29). One can refer to the specific literature on
machine learning for more details about SVM, LR, and RF (30).

All three machine learning algorithms were implemented
with Scikit-learn (an open source machine learning library)
with default settings. Regarding the RF classifier, there was
hyperparameter tuning and cross validation. Specifically, the
optimal values of two hyperparameters of random_state
and n_estimators were determined with a grid search: for
random_state, a range of 2–16 with a step of 2 was used, and
for n_estimators, a range of 100–1,000 with a step of 100 was
used. The final optimal parameters were random_state = 10 and
n_estimators= 100.

Frontiers in Neurology | www.frontiersin.org 4 December 2020 | Volume 11 | Article 609747

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Fu et al. Predicting Malignant Cerebral Edema

Statistics and Performance Evaluation of
Predictive Models
The inter-reader agreement for IP-NWU was evaluated with the
intraclass correlation coefficient (ICC). If the ICC is larger than
0.75, then the reliability of the method for calculating NWU is
good. The Bland-Altman statistical method was applied to assess
the agreement between twomethods of calculating NWU. For IP-
NWU, the inter-reader and interoperation agreement were also
assessed with the Bland-Altman method. A p-value of <0.05 was
considered to indicate a significant difference.

The performances of various predictive models were
evaluated with leave-one-out cross validation (LOOCV). It was
implemented with Scikit-learn. In LOOCV, for a dataset with
m samples, only one sample was left for the test and the others
were used for training a model. This process was conducted
for m times. LOOCV has been shown to almost estimate the
generalizability of machine learning models impartially (31).

The receiver operating characteristic curve (ROC), the area
under the ROC curve (AUC), the confusion matrix, accuracy
(ACC), sensitivity (SEN), specificity (SPC), F1-score, positive
predictive value (PPV), and negative predictive value (PPV) were
calculated and compared. DeLong’s method was used to evaluate
whether there was a significant difference between two AUCs
of ROC curves (32). Matthews correlation coefficient (MCC)
was also used to evaluate and compare the performance of
binary classifiers since it considers all fields of the confusion
matrix (33).

RESULTS

Clinical Characteristics
Among all 116 patients, 39 patients (13 female, 33.3%) were
observed with MCE and 77 patients (32 female, 41.6%) were
without MCE. There was no significant difference in NIHSS
scores between groups with MCE and without MCE [median,
12; interquartile range (IQR), 7 vs. median, 15; IQR, 4.5;
p = 0.2288]. The time from stroke onset to the first CT
scan was longer in patients with MCE (mean 8.28 h vs.
mean 5.32 h; p < 0.05). However, the time from stroke onset
to the second CT scan was equivalent for the two groups
(mean 35.42 h vs. mean 36.90 h; p > 0.05). The rate of IT
was only 15.52% (18 of 116, 4 in the MCE group, 14 in
the non-MCE group). Among the 18 patients treated with
IT, 11 had achieved complete perfusion and 7 had achieved
partial perfusion according to the Thrombolysis in Cerebral
Infarction perfusion (TICI) scale (34). The four patients
in the MCE group achieved complete perfusion after IT
treatment. All the above characteristics of patients are listed in
Table 1.

IP-NWU and Its Value With Time
IP-NWU in patients who developed MCE was significantly
higher than that in those without MCE (p < 0.05; Figure 3A).
The average of IP-NWU in these two groups was 18.2 and
8.5%. These values were very close to those given by a previous

study (18.0 and 7.0%) where semiautomatic segmentation of core
lesions was done with the aid of CT perfusion images (16).

IP-NWU in both groups increased from the time of onset to
imaging (Figure 3B). However, the edema rate for the group with
MCE was larger than that of the group without MCE.

IP-NWU as a Predictor of MCE and the
Influence of IT and Time on Predictions
The optimal cut-off value of IP-NWU for discriminating between
the patients with MCE and without MCE was 12.25%. Using this
cut-off value, the predictivemodel could achieve a SEN of 0.64, an
SPE of 0.91, and an ACC of 0.82. Univariate ROC curve analysis
of IP-NWU resulted in an AUC of 0.86 (Figure 4A).

As for ROC curve predictions of MCE by IP-NWU, there was
no significant difference between groups including and excluding
patients who underwent IT (DeLong test, p > 0.05; MCC, 0.58
vs. 0.55; Figure 4A). This result demonstrated that interventional
thrombectomy does not influence the prediction of MCE when
using IP-NWU. These findings are in accordance with previous
observations (16).

The predictive power of IP-NWU/time and IP-
NWU/log(time+1) was not higher than that of IP-NWU,
according to the ROC curves shown in Figure 4B (DeLong
test, p > 0.05). MCC was 0.49 and 0.54 for IP-NWU/time and
IP-NWU/log(time+1), respectively. Broocks et al. reported a
similar result (16).

Image Patches vs. Segmented Regions
As for the value of NWU, there was no significant difference
between the methods of image patches and segmented regions
(Bland-Altman test, p > 0.05; Figure 5A). Most points of
difference (113 of 116) were located within the 95% limits of
agreement (1.96 standard deviation).

In terms of the prediction of MCE, as shown in Figure 5B,
IP-NWU had better performance than SR-NWU (AUC: 0.85 vs.
0.83). However, no significant difference was observed (DeLong
test, p > 0.05; MCC, 0.58 vs. 0.55). Using the comparison of
confusion matrices, one also can find that IP-NWU had higher
SEN (0.64 vs. 0.56), SPE (0.91 vs. 0.90), and ACC (0.82 vs. 0.78)
than SR-NWU (Figures 5C,D).

Inter-reader and Interoperation Agreement
of IP-NWU
As for the method of IP-NWU, there was an exceptional inter-
reader agreement (ICC is 0.92). The Bland-Altman method
also indicated that there was no significant difference between
Researcher A and Researcher B regarding the measurement
of IP-NWU (p > 0.05; Figure 6A). Most points were located
within the 95% limits of agreement. Meanwhile, as shown in
Figure 6B, no significant difference was observed between the
twomeasurements by the same reader (p> 0.05), indicating good
reproducibility of the image patch method. The ICC of the two
measurements was 0.95.

Radiomics Model for Predicting MCE
As shown in Table 2, for all three machine learning algorithms,
SVM, LR, and RF adding the clinical information of age, gender,
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TABLE 1 | Characteristics of patients with a middle cerebral artery ischemic stroke.

Characteristic Patient with MCE,

n = 39

Patients without

MCE, n = 77

p

Demographics –

Age, year, mean (SD) 64.23 (±11.39) 65.79 (±12.05) 0.5993a

Women, No. [%] 13 [33.3%] 32 [41.6%] 0.3059b

NIHSS score 0.2288a

Median (IQR) 12 (±7) 15 (±4.5) –

Mean (SD) 11 (±6.83) 15 (±2.94) –

With IT, No. [%] 4 [21.1%] 14 [18.2%] 0.2654b

Time from stroke onset to the first CT

scan (within 24 h), hour, mean (SD)

8.28 (±6.53) 5.32 (±4.11) 0.0038a

Time from stroke onset to the second

CT scan (beyond 24 h), hour, mean (SD)

35.42 (±8.83) 36.90 (±10.70) 0.4600a

MCE, Malignant cerebral edema; CT, Computed tomography; IT, Interventional thrombectomy; NIHSS, National Institutes of Health Stroke Scale; SD, Standard deviation; IQR,

Interquartile range.
aTwo-sample t-test; bChi-squared test.

FIGURE 3 | Image patch-based net water uptake (IP-NWU) and its relationship with time. (A) IP-NWU comparison between patients with MCE and without MCE; (B)

The relationship between IP-NWU and time from stroke onset to imaging.

FIGURE 4 | Prediction of malignant cerebral edema (MCE) by IP-NWU and its confounders. (A) ROC curve of prediction of MCE by IP-NWU for groups including

patients who underwent interventional thrombectomy (IT) and excluding patients who underwent IT; (B) ROC curve by IP-NWU/time and by IP-NWU/log(time+1).
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FIGURE 5 | Comparison between IP-NWU and SR-NWU and their predictive performances for malignant cerebral edema (MCE). (A) Consistence of IP-NWU and

SR-NWU; (B) ROC curves of MCE prediction by IP-NWU and SR-NWU; (C) The confusion matrix of MCE prediction by IP-NWU; (D) The confusion matrix of MCE

prediction by SR-NWU.

and NIHSS scores of the patients onto IP-NWU did not improve
prediction of MCE. For SVM and LR, compared with the
prediction when only using IP-NWU, neither features of “NWU
+ Imaging” nor “NWU + Clinical + Imaging” improved the
performance of predicting MCE.

However, as for RF, the features of “NWU + Imaging” can
significantly increase the ACC to 0.91, SEN to 0.85, SPE to 0.94,
AUC to 0.96, F1-score to 0.90, PPV to 0.87, NPV to 0.92, and

MCC to 0.79 (Table 2, Figure 7; DeLong test, p < 0.05). When
adding the clinical information, no significant improvement
was observed (DeLong test, p > 0.05; MCC, 0.80 vs. 0.79).
This means that the performance of the radiomics model for
predicting MCE depends on both the classifiers and features.
In the current study the combination of RF and features of
“NWU + Clinical + Imaging” had the best performance. For
this model, 73 of 77 patients who did not develop MCE were
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FIGURE 6 | Inter-reader and interoperation agreement for image patch-based net water uptake (IP-NWU). (A) The inter-reader agreement, evaluated by the

Bland-Altman method; (B) The interoperation agreement, evaluated by the Bland-Altman method.

accurately predicted and 33 of 39 patients who developed MCE
were accurately predicted.

DISCUSSION

The aim of this study was to calculate net water uptake (NWU)
using admission non-enhanced CT image patches scannedwithin
24 h from stroke onset and build predictive models for MCE by
combiningNWUwith other features using a radiomics approach.
Themain findings had four aspects: (1) NWUcan be estimated by
using the standard reference images and patches; (2) the results

for IP-NWU showed no significant difference with results when
using segmented regions; (3) IP-NWU is a predictor of MCE;
and, (4) radiomics models using IP-NWU and other imaging
features can predict MCE rather precisely.

Standard Reference Images and Patches:
An Exceptional Method for Calculating Net
Water Uptake
Net water uptake in the ischemic regions was originally proposed
to identify patients with stroke onset within 4.5 h (the time
window of thrombolysis) and extended to predict malignant
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TABLE 2 | Performance comparison of different radiomics models for predicting MCE.

Classifier Features ACC SEN SPE AUC F1-score PPV NPV

SVM NWU + Clinical 0.80 0.62 0.88 0.85 0.72 0.72 0.82

NWU + Imaging 0.84 0.64 0.94 0.84 0.85 0.83 0.84

NWU + Clinical + Imaging 0.83 0.62 0.94 0.84 0.80 0.83 0.83

LR NWU + Clinical 0.80 0.59 0.91 0.85 0.72 0.77 0.81

NWU + Imaging 0.80 0.59 0.91 0.83 0.72 0.77 0.81

NWU + Clinical + Imaging 0.81 0.62 0.91 0.81 0.73 0.78 0.82

RF NWU + Clinical 0.77 0.62 0.84 0.83 0.74 0.67 0.81

NWU + Imaging 0.91 0.85 0.94 0.96 0.90 0.87 0.92

NWU + Clinical + Imaging 0.91 0.85 0.95 0.96 0.91 0.89 0.92

FIGURE 7 | ROC curves and confusion matrices of three random forest (RF) radiomics models for the prediction of malignant cerebral edema (MCE). (A) ROC curves

of three RF radiomics models with different features; (B) The confusion matrix for a model with RF and features of “NWU + Clinical;” (C) The confusion matrix for a

model with RF and features of “NWU + Imaging;” (D) The confusion matrix for a model with RF and features of “NWU + Clinical + Imaging”.

infarction in 2018 (15, 16). It relies on the high sensitivity
of CT perfusion to precisely locate the infarct core and
the high specificity of non-enhanced CT to measure density.
However, for many stroke centers and patients, the CTP and
its postprocessing for quantitative perfusion maps, including
cerebral blood volume, cerebral blood flow (CBF), mean transit
time (MTT), and time to drain (TTD), are not accessible.

The early hypoattenuation of the ischemic core in non-
enhanced CT images is uncertain or difficult to detect. However,
the anatomic location of the MCA (the potential target
of infarction) is known. Therefore, we proposed a way of
calculating NWU using the standard reference images and
patches. Our results showed that this method enables presenting
a significant difference in NWU between patients with MCE
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and without MCE. Further study of the inter-reader agreement
in NWU calculation demonstrated that the method had good
reproducibility. In summary, using the standard reference images
and patches is an exceptional way of calculating net water uptake.
It is easy to implement, reliable, and does not require the aid of
CTP, CT angiography, or manual segmentation.

Recently, NWUhas been used to quantify the treatment effects
for ischemic stroke; e.g., thrombectomy and adjuvant drugs,
especially for the cases with uncertain indications for treatment,
such as low ASPECTS (35). Therefore, IP-NWUmay be extended
to similar applications.

Reference Images and Patches vs.
Segmented Ischemic Regions
Locating the infarct core by overlaying segmented ischemic
regions from follow-up CT images (>24 h after stroke onset) is
an alternative method compared to the standard method of using
a CBV map from CTP. No significant difference was observed
between IP-NWU and SR-NWU, which supports the evidence
that IP-NWU is accurate.

However, it is still not clear to what extent the follow-up
CT images can work as surrogates of CTP. The ischemic core,
penumbra, and benign oligemia cannot be differentiated from
the follow-up CT images (36). The registration error between
Image-A and Image-F may have a further detrimental effect on
NWU calculations.

Predictor of MCE and Other Confounders
IP-NWU can be a predictor of MCE for middle cerebral artery
stroke patients with an AUC of 0.85. Moreover, the prediction
was not influenced by interventional thrombectomy, which is in
agreement with a previous study (16). The decision to take IT
is based on an early infarct and hypoattenuation. Specifically,
patients with a large volume of early infarct and visually evident
areas of hypoattenuation are potentially excluded from IT.
However, the recanalization status and its influence on IP-
NWU and MCE are unknown and need further investigation
(37, 38). Complete recanalization does not directly indicate
a good clinical outcome (39). It has been noted that the
prediction of MCE is different from that of cerebral edema
(40, 41). Moreover, the rate of IT in our current study (15.52%,
18 of 116) might be lower than that in developed countries
due to the high economic cost and late presentations at
the hospital.

The relationship between IP-NWU and time in patients
with MCE and without MCE is also in accord with that
reported in a previous study (16); i.e., NWU increases with time
from stroke onset. However, there was no significant difference
in the AUC for MCE prediction among NWU, NWU/time,
and NWU/log(time+1).

Radiomics Leverages Machine Learning
and Features to Predict MCE Precisely
Our radiomics model using RF and features of
“NWU+Clinical+Imaging” had a comparable performance
with the model reported by Broocks et al. (AUC: 0.96 vs.
0.93) (16). This indicated that using more imaging features

might be superior to only using NWU. Moreover, the possible
reason may rely on two aspects: (1) CTP was not used to
locate the ischemic core; and (2) our data consisted of 33.6%
(39 of 116) of patients with MCE, which was higher than
that in a study by Broocks et al. (18.2%) (16). Our model
also showed a higher AUC than that of EDEMA scores
(AUC = 0.72) (10) and that of modified EDEMA scores
by adding NIHSS scores for 478 Chinese patients (AUC =

0.80) (11).
Radiomics leverages machine learning and quantitative

imaging features to improve the prediction of clinical outcomes
(18). For the prediction of MCE in our current study, radiomics
worked well. By adding 13 imaging features from histogram
analysis of voxel-wised IP-NWU maps, the AUC of the classifier
by RF can increase from 0.86 to 0.96. This improvement may
be due to the fact that: (1) multivariate analysis by machine
learning has more predictive power than the univariate ROC
analysis; and, (2) IP-NWU is only the mean of IP-NWU maps,
and more measures from these maps represent the characteristics
of the core lesions better. The lesion volume, texture features,
penumbra pattern, and other high-level abstract features may
be helpful and should be included in radiomics models of MCE
predictions in the near future.

All 13 imaging features extracted from histogram analysis
were used without selection in our current study. Unlike
the application of the PyRadiomics Python package in tumor
imaging, more than 1,000 features are extracted (https://
pyradiomics.readthedocs.io/). Hence feature selection must be
done to reduce overfitting. During feature selection, the
importance of features can be obtained (42). Since we only
used 13 imaging features, feature selection, and importance
analysis were not undertaken in this study. The reason why
the PyRadiomics Python package was not used to extract more
than 1,000 features is that the voxel-wised IP-NWU map has a
small size of 30 × 30 voxels. This map does not contain rich
information such as the locations of tumor lesions.

For the predictive radiomics model, there is a danger of
overfitting if the number of features is very large. In our study,
the largest number of features was 19 (IP-NWU, 13 imaging
features, and 3 clinical features) and 116 samples or patients were
included. According to a rule of thumb in radiomics, each feature
requires 10 samples (18). Therefore, the overfitting in our study
should be minimal.

In the present study, RF performed better for MCE prediction
than SVM and LR. For example, the model using RF and “NWU
+ Clinical + Imaging” had an AUC of 0.96, while the model
using LR and SVM had an AUC of 0.81 and 0.84, respectively.
RF usually performs best in situations where the output is highly
sensitive to small changes in input (29). Thismay indicate that the
prediction of MCE is highly sensitive to small changes in NWU
and imaging features.Moreover, RF is one ensemble or consensus
estimator, and thus has the merit of mitigating both underfitting
and overfitting (29). Underfitting and overfitting may exist in the
current study given the fact that the sample size was small.

Adding the clinical information of age, gender, and NIHSS
scores did not significantly improve the prediction of MCE,
which agreed with another previous report (16).

Frontiers in Neurology | www.frontiersin.org 10 December 2020 | Volume 11 | Article 609747

https://pyradiomics.readthedocs.io/
https://pyradiomics.readthedocs.io/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Fu et al. Predicting Malignant Cerebral Edema

Limitations and Future Works
Our study has some limitations that could provide direction
to future studies. First, our study was retrospective and limited
to one single center. The relevance of the resulting radiomics
models is unknown for data from other hospitals. Second, the
number of patients (116) was relatively small, which limits the
statistical power of the study. Third, the selection of slices and
patches was done by experts, making IP-NWU depend on expert
conditions, such as preferences, experiences, and mood. To set
image patches in the cortex orientated by ASPECTS regions
may further improve the presented method. It is noted that the
cortex regions with CSF should be avoided to eliminate the effect
of CSF on NWU. This criterion may make some early infarcts
in the cortex not represented in the image patches. Finally, we
used three machine learning algorithms and manually designed
histogram-based imaging features.

A prospective and multi-center study with CTP and non-
enhanced CT scans should be carried out in the near future,
before the proposed IP-NWU and radiomics models are
introduced as clinical applications. The automatic and machine
learning based detection of early infarctions from non–contrast-
enhanced CT images should be used to help calculate NWU
and predict MCE (43, 44). Other features such as texture and
high-level abstract representation can be included. As a state-of-
the-art example of deep learning, a deep convolutional neural
network (DCNN) may help predict MCE directly according to
the image patches or infarction regions (45–47). Given the fact
that a stroke is a dynamic process, using both admission and
follow-up CT images to characterize the temporal and spatial
development of infarcts and edema volume may further improve
the final prediction of clinical outcomes.

CONCLUSION

Net water uptake can be calculated based on mirrored patches
that are selected by senior neuroradiologists from admission
non-enhanced CT images that were scanned within 24 h after
stroke onset using standard reference images. The resulting IP-
NWU values showed a significant difference between patients
with MCE and without MCE and thus it is an effective predictor
of MCE. The inter-reader and interoperation agreement for
IP-NWU are exceptional. Through integrating IP-NWU and

other imaging features by machine learning, the radiomics
models further improved the prediction of MCE. In summary,
this study demonstrated the feasibility of predicting MCE
using only admission non-enhanced CT images scanned within
24 h after onset, even without the aid of CT perfusion
or follow-up CT scans. This will potentially help clinicians
make decisions about performing a surgical decompressive
craniectomy or employing other intensive monitoring to benefit
stroke patients.
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