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Abstract

Breast cancer cells were reported to up-regulate human prolactin receptor (PRLR) to assist

their growth through the utilization of prolactin (PRL) as the growth factor, which makes

PRLR a potential therapeutic target for breast cancer. On the other hand, advanced cancer

cells tend to down-regulate or shed off stress signal proteins to evade immune surveillance

and elimination. In this report, we created a fusion protein consisting of the extracellular

domain of MHC class I chain-related protein (MICA), a stress signal protein and ligand of the

activating receptor NKG2D of natural killer (NK) cells, and G129R, an antagonistic variant of

PRL. We hypothesize that the MICA portion of the fusion protein binds to NKG2D to activate

NK cells and the G129R portion binds to PRLR on breast cancer cells, so that the activated

NK cells will kill the PRLR-positive breast cancer cells. We demonstrated that the MICA-

G129R fusion protein not only binds to human natural killer NK-92 cells and PRLR-positive

human breast cancer T-47D cells, but also promotes NK cells to release granzyme B and

IFN-γ and enhances the cytotoxicity of NK cells specifically on PRLR-positive cells. The

fusion protein, therefore, represents a new approach for the development of breast cancer

specific immunotherapy.

Introduction

Breast cancer is the most common diagnosed and cause-of-death cancer in women all over the

world [1]. Most breast cancer targeting therapies aim at the three receptors: estrogen receptor

(ER), progesterone receptor (PR), or epidermal growth factor receptor 2 (HER2). ER and PR

are hormone receptors. Tumors expressing ER or PR can be targeted though hormone ther-

apy, either using hormone antagonists to block the receptors, e.g. tamoxifen [2], or inhibitors

to block the production of the hormones, e.g. anastrozole or letrozole [3]. HER2 is a breast

cancer biomarker. Its overexpression associated with the increased disease recurrence and a

poor prognosis of certain aggressive types of breast cancer and can be targeted by antibodies

or HER2 inhibitors, e.g. trastuzumab, pertuzumab and lapatinib [4]. However, breast cancer is
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a heterogeneous disease. Fifteen to 20% of breast cancers do not express these receptors. They

are classified as triple negative breast cancer which is the most lethal subtype of breast cancer

because of its high heterogeneity, high metastasis frequency, early relapse after standard che-

motherapy, and lack of efficient treatment options [5,6]. Finding new target is an urgent need

to broaden the therapeutic spectrum in breast cancer. Prolactin (PRL) produced primarily by

the anterior pituitary is a polypeptide hormone promoting mammary gland development and

milk production [7]. Many studies linked PRL to the pathogenesis and invasion of breast and

gynecologic cancers [8–10]. Prolactin receptor (PRLR), structurally homologous with growth

hormone receptor, was reported to have a high level of expression in more than 80% of human

breast cancer cells and tissues, and contribute to the development of breast cancer [8,11–13],

which implicates PRLR could be used as a potential target for breast cancer treatment. G129R

is a variant of PRL with a single amino acid substitution mutation which converts it to a PRL

antagonist. Instead of sending promoting signals, binding of G129R to PRLR blocks the signal

transduction and induces apoptosis in breast cancer cells, and prolonged treatment with

G129R induces the accumulation of redundant autolysosomes in 3D cancer spheroids, result-

ing in autophagy-related cell death [14,15].

Natural killer (NK) cells are a subset of innate cytotoxic lymphocytes serving a critical role

in tumor immunosurveillance. NK cells integrate the signals from its activating and inhibitory

receptors to target malignant and virus infected cells [16]. The natural killer group 2, member

D (NKG2D) receptor is a major type of activating receptors on NK cells and functions in both

innate and adaptive immunities [17,18]. When binding to its ligands, NKG2D triggers activa-

tion of NK cells to secrete cytokines (e.g. IFN-γ) to recruit and activate other immune cells and

release the contents in the cytotoxic granules of NK cells (e.g. granzymes and perforin) to

directly kill target cells [19]. Perforin forms pores on the membrane of the target cells. Gran-

zymes diffuse through the pores into the target cells and trigger reactive oxygen species (ROS)

mediated cell death. To block granzymes can suppress the cytotoxicity mediated cell death

[20–22]. Ligands of NKG2D are a group of stress-induced proteins expressed on virally

infected or malignant cells and rarely expressed on healthy cells [23]. They are all homologous

to major histocompatibility complex (MHC) class I proteins and belong to two families in

humans: MHC class I chain-related proteins (MIC, e.g. MICA, MICB) and UL16-binding pro-

teins (ULBP, e.g. ULBP1-6) [24,25]. Cells expressing these ligands will be detected by NK cells

and eliminated by the immune system. However, advanced tumor cells tend to down-regulate

or shed off NKG2D ligands to evade immune elimination [26].

Many strategies have been developed to target NKG2D receptor or NKG2D ligands in can-

cer immunotherapy, including up-regulation of NKG2D or NKG2D ligands, grafting NKG2D

or NKG2D ligands with antibodies, cytokines, death receptor or signaling domains of activat-

ing receptors [27]. For example, MICA has been overexpressed [28], fused with antibodies

[29–32] and cytokines [33] in cancer therapeutic studies.

In this study, we created a novel fusion protein consisting the extracellular domain of

MICA and the PRL variant G129R. We hypothesized that the fusion protein MICA-G129R

will bridge NK cells and PRLR-positive breast cancer cells. When binding to PRLR, the fusion

protein labels the breast cancer cells with MICA, which attracts and activates NK cells to kill

the breast cancer cells.

Materials and methods

Construction of vectors

The MICA extracellular domain sequence (c.-23 to c.894) was amplified by PCR from a

pcDNA3.1_MICA/IL-12 vector constructed in our lab [33] with the 5’ primer
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CCCaagcttGAGAGGGTGGCGACGTCGGGG and the 3’ primer TCTggatccAGAACCACCA
CCAGAACCACCACCAGAACCACCCCCAGAGGGCACAGGGTG that contained a (GGGS)×3

linker and cloned into vector pcDNA3.1/Zeo(+) (ThermoFisher Scientific, V86020). The

G129R sequence (c.85 to c.681) without the signal peptide (p.1-28) and stop codon, was ampli-

fied by PCR from a pCR3.1_G129R plasmid provided by Dr. Wen Y. Chen as a gift with 5’

primer CCggatccTTGCCCATCTGTCCCGG and the 3’ primer CGCctcgagGCAGTTGTTG
TTGTGGATGATT and cloned into vector pLenti7.3 (ThermoFisher Scientific, K5325-20).

Then the sequences of G129R with the V5 tag and the 6×His tag in the pLenti7.3 vector were

amplified by PCR with the 5’ primer CCggatccTTGCCCATCTGTCCCGG and the 3’ primer

TGAgcggccgcTCAATGATGATGATGATGATGACCGGTACGCGTAGAATC containing a stop

codon in the 3’ primer and cloned into the vector pcDNA3.1/Zeo(+) at the 3’ end of MICA.

The sequence of the fusion gene MICA-G129R with the V5-tag and 6×His tag was confirmed

by DNA sequencing.

To make control vectors, MICA extracellular domain (c.-23 to c.894) was cloned into the

pcDNA3.1/Zeo(+) vector using 5’ primer CCCaagcttGAGAGGGTGGCGACGTCGGGG and

the 3’ primer TGAgcggccgcTCACCCAGAGGGCACAGGGTG containing a stop codon;

G129R sequence (c.1 to c.684) with signal peptide (p.1-28) and stop codon was directly cut

from the pCR3.1_G129R plasmid and inserted into pcDNA3.1/Zeo(+) vector. To make a

PRLR expression vector, the full length cDNA sequence of PRLR long isoform was amplified

by PCR from a PRLR cDNA plasmid (Sino Biological, HG10278-UT) with 5’ primer

tggCTTAAGccaccATGGAGGAAAATGTGGCATCTGC and 3’ primer AAGActcgagTCAG
TGAAAGGAGTGTGTAAAACATGC, and cloned into pcDNA3.1(+) (ThermoFisher Scientific,

V790-20). All these inserted sequences in the vectors were confirmed with DNA sequencing.

Cell culture

T-47D, NK-92, 293 and HeLa cell lines were obtained from the American Type Culture Collec-

tion (ATCC, Manassas, VA, USA) and cultured following the methods recommended by

ATCC at 37˚C in a 5% CO2 humidified incubator. All the media, fetal bovine serum and

donor horse serum were purchased from Corning (NY, USA); other supplements were from

ThermoFisher Scientific (MA, USA). Two hundred units per ml of recombinant human IL-2

from PeproTech (NJ, USA, Cat. 200–02) was used in NK-92 culture.

Transfection and establishment of stable clone

All the cell transfections were carried out using Lipofectamine 2000 (ThermoFisher Scientific)

following the instruction of the manufacturer. To obtain stable clones, the transfected cells

were cultured in selecting media containing 400 μg/ml of zeocin (InvivoGen, ant-zn-5) for

pcDNA3.1/Zeo(+) vector transfection or 500 μg/ml of Geneticin (ThermoFisher Scientific,

10131035) for pcDNA3.1(+) vector transfection. After selection, 3 to 5 cell clones in each

transfection were picked and respectively cultured. The protein expression of the transfected

gene was verified with Western blot for each clone. The clone expressing the most protein of

the transfected gene was used in the study.

Conditioned media

To test the production of MICA-G129R fusion protein by the transfected cells, 4 × 106 cells of

293/MICA-G129R stable clone were cultured in a T75 flask with 12 ml of culture media with-

out zeocin. A 50 μL sample of the conditioned media was collected from the culture every 24

hours from day 1 to day 5. The media were centrifuged at 1000 g for 15 minutes, then 40 μl of

supernatant was collected and froze at -80˚C until examination. Forty microliters of fresh
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medium were used as the conditioned medium of day 0. For preparation of conditioned

media, 4 × 106 of 293 cells without transfection (for control conditioned media), 293/

MICA-G129R cells (for MICA-G129R conditioned media), 293/MICA cells (for MICA condi-

tioned media) or 293/G129R cells (for G129R conditioned media) were respectively cultured

in 12 ml culture media without zeocin for 72 hours. The supernatants were collected, centri-

fuged at 1000 g for 15 minutes, passed through 0.22 μm filters and stored at -80˚C until use.

Western blot

The conditioned media or the conditioned media diluted with fresh completed media to the

desired concentrations were mixed with protease inhibitor cocktail (Cell Signaling Technol-

ogy, #5871) with a final concentration of 1% and loading buffer (10% SDS, 500mM DTT, 50%

Glycerol, 250mM Tris-HCL and 0.5% bromophenol blue dye, PH6.8) with a final concentra-

tion of 20%, and then boiled for 10 minutes. All the prepared loading samples was loaded to

the gel with the same volume if not specified. The proteins in the samples were separated by

SDS-PAGE (10% or 12% polyacrylamide gels) and then transferred onto 0.45 μm pore-size

nitrocellulose membranes (Bio-Rad). The proteins on the membrane were stained with pon-

ceau S to confirm that the samples were loaded equally across all lanes. The membranes were

then blocked with 5% non-fat dry milk in TBST (10 mM Tris, pH 8.0, 150 mM NaCl, 0.05%

Tween-20) overnight. The proteins were detected with primary antibodies followed by second-

ary antibodies conjugated with horseradish peroxidase (HRP). Blots were developed using

enhanced chemiluminescence (ECL) detection reagents (ThermoFisher Scientific, 32209) and

exposed to X-ray films. The films were scanned and quantified using ImageJ (National Insti-

tutes of Health). The following antibodies were used in Western blot: monoclonal mouse anti-

human MICA (sc-137242), PRL (sc-46698), PRLR (sc-377098) antibodies, mouse IgG light

chain binding protein conjugated to HRP (mIgG BP-HRP) (sc-516102) as secondary antibody

(purchased from Santa Cruz Biotechnology, CA, USA) and monoclonal mouse anti-V5 anti-

body (#80076) (purchased from Cell Signaling Technology, MA, USA).

Immunofluorescent staining

Two hundred thousand T-47D cells were seeded on two glass coverslips in two 35 mm dishes

with culture media and cultured overnight. After the media were removed, one coverslip was

covered with control conditioned media, and the other one was covered with MICA-G129R

conditioned media. After incubation for two hours, the slides were washed with PBS, fixed

with 4% formaldehyde, blocked with 1% BSA for 30 minutes, incubated with mouse anti-

human MICA (Santa Cruz Biotechnology, sc-137242) primary antibody for one hour, and

then chicken anti-mouse IgG secondary antibody conjugated with Alexa Fluor 488 (Thermo-

Fisher Scientific, A-21200) for one hour. The slides were mounted using mounting buffer with

DAPI and observed with a fluorescence microscope (LEICA DMi8).

Flow cytometry

One million NK-92 cells were collected and equally separated into two groups. They were

respectively incubated with control conditioned media or MICA-G129R conditioned media

for two hours. The cells were then harvested, washed with PBS on ice, blocked with 1% BSA

for 10 minutes, incubated with mouse anti-human PRL (Santa Cruz Biotechnology, sc-46698)

primary antibody for 20 minutes, and incubated with chicken anti-mouse IgG secondary anti-

body conjugated with Alexa Fluor 488 (ThermoFisher Scientific, A-21200) for 15 minutes.

After three times PBS wash, the cells were pelleted and resuspended in PBS, and then analyzed

using flow cytometer (BD Accuri C6).
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Cytotoxicity assay

The target cells including T-47D cells, HeLa cells, 293 cells, 293/PRLR cells were seeded in

96-well plates and incubated overnight. Then the media was removed and replaced with 50%

Alpha Minimum Essential Medium and 50% of conditioned media with NK-92 cells at the

effector/target ratios of 5:1, 2:1, 1:1 and 1:2. The co-cultures were incubated in a 37˚C, 5% CO2

humidified incubator for 24 hours. After centrifugation at 500 g for 5 min, 50 μl of supernatant

was collected from each well for determining the cytotoxicity using the CytoTox 96 nonradio-

active cytotoxicity assay (Promega, G1780) following the manufacturer’s protocol. The assay

determines the cytotoxicity by measuring the lactate dehydrogenase (LDH), a stable cytosolic

enzyme, released by the lysed cells. For each conditioned media treatment, many control wells

were set at the same time for the calculation of the cytotoxicity: NK cells only (for effector cell

spontaneous LDH release), target cells only (target cell spontaneous LDH release), target cells

with lysis solution (for target cell maximum LDH release) and medium only (background).

MICA-G129R fusion protein purification

Fusion protein MICA-G129R in supernatant of 293/MICA-129R stable clone was purified

from the conditioned media using nickel sepharose beads (Ni Sepharose™ 6 Fast Flow, GE

Healthcare, 17-5318-02). Five hundred microliters of beads were mixed with 90 ml

MICA-G129R conditioned media and rotated overnight at 4˚C. The slurry was applied to a

column to allow the beads to pack. The MICA-G129R conditioned media was collected after

passing through the column twice. Then the column was washed with 10 ml high salt Buffer A

(20 mM K2HPO4 pH 7.5, 10% glycerol, 0.5 mM EDTA, 0.01% IGEPAL and 1 mM DTT) con-

taining 1 M KCl and 25 mM imidazole followed by a wash with 10 ml low salt Buffer A con-

taining 150 mM KCl and 25 mM imidazole. The bound MICA-G129R protein was eluted by

adding 0.5 ml of Buffer A containing 150 mM KCl and 500 mM imidazole to the beads, incu-

bated for 5 min, then the column was drained and the elution buffer containing MICA-G129R

protein was collected. This elution step was repeated for two more times. The three elution

fractions containing the purified MICA-G129R were pooled, passed through a 0.22 μm filter

and stored at -80˚C until use.

High-performance liquid chromatography (HPLC)

The MICA-G129R conditioned media and the purified MICA-G129R protein solution were

diluted with PBS at 1:20 and 1:5 ratios, and then analyzed using reversed-phase HPLC. Poly-

propylene trilobal capillary-channeled polymer (C-CP) fibers were packed as the HPLC col-

umn as previously described [34]. The separation procedures were carried out following a

method built previously [35].

Protein quantification

The proteins in the purified MICA-G129R solution were quantified using Pierce BCA Protein

Assay (ThermoFisher Scientific, 23227) according to the manufacture’s introduction. The pro-

vided albumin (BSA) in the assay was made serial dilutions as the protein standards.

ELISA

To examine the release of granzyme B and IFN-γ of NK-92 cells, NK-92 cells were cultured

with or without T-47D cells at the ratio of 1:1 in the presence of the purified MICA-G129R

protein at a final concentration of 125 nM (equivalent to the MICA-G129R concentration in

the mixed media with 50% MICA-G129R conditioned media used in the cytotoxicity assays)
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or the elution buffer in the protein purification as control. After 6 hours incubation and a

quick spin, the supernatant was collected for ELISA. Human granzyme B ELISA kit (B&D Sys-

tems, DY2906-05) and Human IFN-γ uncoated ELISA kit (Invitrogen, 88–7316) were used for

the ELISA measurements according to the manufacture’s protocols.

Caspase-3 activity measurement

T-47D cells alone or with NK-92 cells at the ratio of 1:1 were cultured with the purified

MICA-G129R protein at the final concentration of 125 nM or the elution buffer from the pro-

tein purification as control for 6 hours. After removal of the media or media with the floating

NK-92 cells, the T-47D cells of each treatment were washed with PBS and lysed. The total pro-

teins in the cell lysate of each sample were measured using BCA assay. The same amount of

total proteins from each sample was used for detecting the caspase-3 activity using the Cap-

spase-3 fluorometric kit (R&D Systems, BF1100) according to the manufacture’s instruction.

Statistical analysis

In all the experiments, each treatment was performed in three replicates unless otherwise indi-

cated and the experiments were repeated at least twice. The results were expressed as the

mean ± standard deviation (SD). The significant differences were evaluated using either two-

tailed Student’s t-test (for comparisons between two groups) or one-way analysis of variance

(ANOVA) (for comparisons between three or more groups) and then Tukey’s HSD test.

P< 0.05 was considered to indicate a statistically significant difference.

Results

Construction of MICA-G129R fusion gene in expression vector

The gene sequences encoding the extracellular domain of MICA and the PRL mutant, G129R

were cloned and inserted into the mammalian expression vector pcDNA3.1/Zeo(+). A

(GGGS)×3 linker sequence was added to hinge the MICA and G129R and provide flexibility.

A V5 tag and a His tag were aligned downstream of the MICA and G129R segments in the

open reading frame in the vector (Fig 1A). The gene sequences encoding the extracellular

domain of MICA or G129R were also cloned respectively into the vector pcDNA3.1/Zeo(+) as

the MICA vector or G129R vector (Fig 1A). All the insertions and junctions within the vectors

were confirmed by DNA sequencing. There are signal peptides at the N-terminus of both the

MICA and G129R which lead the MICA and G129R to be secreted outside of the cells. The sig-

nal peptide of MICA was kept for the secretion of fusion protein MICA-G129R and the signal

peptide of G129R was removed.

Expression of MICA-G129R fusion protein

The MICA-G129R expression vector was transfected into 293 cells that do not express detect-

able MICA or PRL proteins. Clones resistant to the antibiotic zeocin were selected and

expanded. The MICA-G129R fusion protein in the conditioned media from the clones was

confirmed using anti-MICA, anti-PRL and anti-V5 antibodies (Fig 1B). The clone with the

highest MICA-G129R protein expression was chosen to produce the fusion protein for subse-

quent studies. The accumulation of the MICA-G129R protein in the conditioned media was

also investigated (Fig 1C and 1D). We found that fusion protein MICA-G129R was linearly

produced and accumulated in the culture media in the 5-day culture. Considering the accumu-

lation of cellular waste and the depletion of the nutrients in the media, we did not conduct a

longer culture.
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Fig 1. Expression of MICA-G129R fusion protein. A. Gene constructs of the MICA-G129R fusion protein, MICA protein and G129R protein. The gene

sequences encoding the extracellular domain of MICA and G129R (without signal peptide), were cloned, linked together with a (GGGS)×3 hinge and inserted

into the expression vector. A V5 tag and a His tag were added to the 3’ end of the MICA-G129R sequence. The gene sequences of the extracellular domain of
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Expression vectors for MICA alone and G129R alone were respectively transfected into 293

cells. Stable clones were established and the expression of the MICA protein or G129R protein

was confirmed by Western blot analysis (Fig 1E and 1F).

MICA-G129R binds to T-47D cells and NK-92 cells

To investigate if fusion protein MICA-G129R can bind to breast cancer cells, PRLR-positive

breast cancer cell line T-47D cells were incubated with control or MICA-G129R conditioned

media and then stained with mouse anti-MICA primary antibody followed by an anti-mouse

secondary antibody conjugated with green fluorescent dye Alexa Fluor 488. The T-47D cells

incubated with MICA-G129R conditioned media showed strong green fluorescence, while the

cells with control conditioned media did not (Fig 2A), demonstrating that the fusion protein

MICA-G129R in the conditioned media binds to PRLR-positive breast cancer T-47D cells.

A human NK cell line, NK-92, was also incubated with the control and MICA-G129R con-

ditioned media and stained with mouse anti-PRL primary antibody followed by an anti-mouse

secondary antibody conjugated with Alexa Fluor 488. The NK-92 cells were then analyzed by

flow cytometry. The result shows that the curve of NK-92 cells incubated with the

MICA-G129R conditioned media shifted to the right compared to NK-92 cells incubated with

the control conditioned media, demonstrating that the MICA-G129R protein also binds to

NK-92 cells (Fig 2B).

MICA-G129R enhances cytotoxicity of NK-92 cells on PRLR-positive

breast cancer cells

To investigate if fusion protein MICA-G129R could enhance the cytotoxicity of NK cells on

PRLR-positive breast cancer cells, the control and MICA-G129R conditioned media were

added to the co-culture of NK-92 cells and T-47D cells at different effector/target ratios (5:1,

2:1, 1:1, and 1:2) for 24 hours and the cytotoxicity on T-47D cells was measured using a lactate

dehydrogenase (LDH) cytotoxicity assay. Compared to control conditioned media, the

MICA-G129R conditioned media induced 21%, 21%, 15% and 13% more T-47D cell death at

the different effector/target ratios of 5:1, 2:1, 1:1 and 2:1 (Fig 3A). To confirm that the MICA

or G129R alone cannot induce an increased T-47D cell death in the co-culture, MICA condi-

tioned media or G129R conditioned media were applied to the co-culture of NK-92 and T-

47D cells. The result revealed that those conditioned media failed to significantly enhance the

cytotoxicity of NK-92 cell on T-47D cells (Fig 3B).

To validate that PRLR on the target cells is necessary for fusion protein MICA-G129R’s

enhancement of cytotoxicity, PRLR-negative cell lines HeLa cells, 293 cells (S1A Fig), and

PRLR long isoform ectopically expressed 293/PRLR cells (S1B Fig) were co-cultured with NK-

92 cells in control or MICA-G129R conditioned media. The results indicated that the

MICA-G129R conditioned media could not promote the cytotoxicity of NK cells on PRLR-

negative HeLa or 293 cells, however the 293/PRLR cells were effectively killed by NK-92 cells

in the MICA-G129R conditioned media (Fig 3C).

MICA or the G129R (with signal sequence) were also respectively cloned into the expression vectors as controls. The vectors were transfected into 293 cells,

and the highest productive stable clone was selected. B. The presence of MICA-G129R fusion protein in the conditioned media was confirmed using anti-

MICA, anti-PRL and anti-V5 antibodies. The same volume of conditioned media collected from the untransfected 293 cells was used as the control. C. The

MICA-G129R protein in the conditioned media was detected using anti-MICA antibody in Western blot from day 0 to day 5. The loading volumes of the

conditioned media from each day were the same and well controlled. D. The qualification of the Western blot in (C). All the MICA-G129R protein levels were

normalized to the MICA-G129R protein level of day 1. The MICA expression vector and G129R expression vector were also transfected into 293 cells and the

stable clones were selected. E and F. The MICA protein and the G129R protein in the respective conditioned media were detected using Western blot beside

the MICA-G129R conditioned media. SP, signal peptide.

https://doi.org/10.1371/journal.pone.0252662.g001
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Fusion protein MICA-G129R purification

Fusion protein MICA-G129R was designed with a His tag to assists its purification and con-

centration. Using the nickel resin chromatography, fusion protein MICA-G129R was success-

fully purified from the conditioned media. HPLC analysis of the purified MICA-G129R using

a C-CP fiber column [34,35] revealed that the peak representing MICA-G129R (indicated with

the white arrow in Fig 4A) dramatically increased to 70.0% of the total area under the curve,

meaning that the purity of MICA-G129R in the purified solution was 70.0%. The other peaks

dampened or disappeared after the purification, which reflected that most of other proteins in

the conditioned media were removed. The analysis of the purified MICA-G129R protein using

PAGE and Coomassie blue staining (S2 Fig) also showed that the band of MICA-G129R pro-

tein was augmented whereas the other bands were diminished or disappeared after

Fig 2. Fusion protein MICA-G129Rbinds to T-47D cells and NK-92 cells. Control or MICA-G129R conditioned media were incubated with (A)

T-47D cells or (B) NK-92 cells for two hours. T-47D cells were fixed and first stained with mouse anti-human MICA primary antibody followed by

anti-mouse IgG Alexa Fluor 488 secondary antibody and DAPI, and observed with fluorescence microscope. NK-92 cells without fixation were

stained with mouse anti-PRL primary antibody followed by an anti-mouse IgG Alexa Fluor 488 secondary antibody. The stained NK-92 cells were

analyzed with flow cytometry. FL1 indicates the 530/30 nm standard interference filter.

https://doi.org/10.1371/journal.pone.0252662.g002

PLOS ONE Fusion protein MICA-G129R bridges NK cells and breast cancer cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0252662 June 2, 2021 9 / 19

https://doi.org/10.1371/journal.pone.0252662.g002
https://doi.org/10.1371/journal.pone.0252662


purification. The concentration of the total proteins was 1007.5 ± 10.0 μg/ml in the purified

solution measured by BCA assay. As 70.0% of the protein was MICA-G129R, the concentra-

tion of MICA-G129R protein was 705.3 μg/ml. Based on the amino acid sequence, the molecu-

lar weight of fusion protein MICA-G129R (including the V5 tag and His tag, without the

signal peptide) was calculated to be 59.2 kDa using an online bioinformatic tool (https://www.

bioinformatics.org/sms/prot_mw.html). Therefore, the molar concentration of MICA-G129R

protein in the purified solution was 11.9 μM.

To further quantify fusion protein MICA-G129R in the purified solution, the purified solu-

tion was serially diluted. The MICA-G129R in the dilutions was detected using Western blot,

quantified and analyzed (Fig 4B and 4C). Result shows that fusion protein MICA-G129R was

Fig 3. MICA-G129R fusion protein enhances the cytotoxicity of NK-92 cells on PRLR-positive T-47D cells. The cytotoxicity of NK-92 cells on T-47D cells was

measured at different conditions. A. T-47D cells were co-cultured with NK-92 cells at different effector/target ratios 5:1, 2:1, 1:1, and 1:2 for 24 hours with control

or MICA-G129R conditioned media. B. The co-culture of T-47D cells and NK-92 cells at the ratio of 1:1 was treated with the control, MICA-G129R, MICA or

G129R conditioned media for 24 hours. C. The NK-92 cells were co-cultured with T-47D cells, HeLa cells (PRLR-negative), 293 (PRLR-negative) or PRLR ectopic

expressed 293 cells at the ratio of 1:1 with control or MICA-G129R conditioned media for 24 hours. Data are presented as mean ± SD (n = 3). � indicates P<0.05;
�� indicates P<0.01.

https://doi.org/10.1371/journal.pone.0252662.g003
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concentrated 47.6 times in the purification. Base on this, it is calculated that the fusion protein

MICA-G129R in the conditioned media was approximately 14.8 μg/ml (250.0 nM). As the vol-

ume of the MICA-G129R conditioned media was decreased 60-fold in this purification, the

recovery rate was 79.3%.

Fusion protein MICA-G129R activates NK-92 cells

To determine if purified fusion protein MICA-G129R activates NK-92 cells, granzyme B and

IFN-γ released by NK-92 were measured in NK-92 alone or NK-92 cells co-cultured with T-

47D cells with or without the purified MICA-G129R fusion protein. The elution buffer in the

protein purification was used as control. It was found that purified MICA-G129R significantly

stimulated NK-92 cells to release granzyme B and IFN-γ in both NK-92 cells alone and co-

Fig 4. Fusion protein MICA-G129R purification from conditioned media. Nickel resin chromatography was used to purify the fusion protein

MICA-G129R from conditioned media. A. HPLC analysis of the MICA-G129R conditioned media and the purified MICA-G129R protein solution. The

white arrow indicates the peaks of MICA-G129R protein. B. Fusion protein MICA-G129R in the conditioned media and serial dilutions of the purified

protein were detected using anti-MICA antibody in Western blot. The purified protein was diluted with fresh culture media of 293. CM indicates the lane

loaded with the conditioned media before purification. The numbers on the lanes indicate the dilution factors. There is an empty lane between the lane of

conditioned media and the lanes of the purified protein dilutions. C. Quantification of the Western blot in (B). All the bands were quantified based on the

average relative densities using ImageJ. The serial dilutions of the purified MICA-G129R protein solution were quantified and modeled by a regression line

logarithmically. The red dot shows where the original MICA-G129R conditioned media is on the regression line based on its average relative density.

https://doi.org/10.1371/journal.pone.0252662.g004
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culture of NK-92 cells with T-47D cells (Fig 5A and 5B). While co-culture with T-47D cells sig-

nificantly elevated the release of granzyme B and IFN-γ of NK-92 cells, adding MICA-G129R

promoted NK-92 cells to release IFN-γ to the level as co-cultured with T-47D cells.

MICA-G129R protein also pushed the granzyme B release of NK-92 cells to such a high level

that there was no difference between with and without T-47D cells.

To investigate if apoptosis was induced in T-47D cells by the granzyme B and other con-

tents released from the granules of NK cells, the activity of caspase-3 in the T-47D cells was

measured using a fluorometric assay after carefully removing the NK-92 cells. The caspase-3

activity in the T-47D cells co-cultured with NK-92 cells and MICA-G129R protein was found

significantly higher than that observed in the T-47D cells co-cultured with NK-92 cells but

without MICA-G129R. Without NK-92 cells, the activity of caspase-3 in T-47D cells was very

low, and MICA-G129R protein could not induce any remarkable difference (Fig 5C).

Fig 5. Purified fusion protein MICA-G129R fusion protein activats NK-92 cells. NK-92 cells, T-47D cells, or NK-92 cells with T-47D cells at the ratio of

1:1 were cultured in the media with or without the purified MICA-G129R. After 6 hours, the media were collected for (A) ELISA of granzyme B or (B)

ELISA of IFN-γ. C. The activity of caspase-3 in T-47D cells from T-47 cells alone or T-47D cells co-cultured with NK-92 cells was measured using caspase-3

fluorescence assay. D. Purified MICA-G129R were evaluated in inducing the cytotoxicity in the co-culture of NK-92 cells and T-47D cells at the ratio of 1:1

for 24 hours. Data are presented as mean ± SD (n = 3). � indicates P<0.05; �� indicates P<0.01; ��� indicates P<0.001.

https://doi.org/10.1371/journal.pone.0252662.g005
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When the same level of purified MICA-G129R as the conditioned media was added to the

co-culture of NK-92 cells and T-47D cells, it induced a significantly increased target cells death

(Fig 5D).

Discussion

Fusion protein MICA-G129R was confirmed not only able to bind to PRLR-positive breast

cancer cells and NK cells (Fig 2), but also enhance cytotoxicity of NK cells on PRLR-positive

cells (Fig 3A and 3C). When compared with MICA or G129R proteins, the fusion protein

MICA-G129R promoted more robust cytotoxicity (Fig 3B) suggesting MICA-G129R may help

in bridging the effector cells and target cells. In addition, by comparing T-47D cells with

PRLR-negative HeLa cells, and 293/PRLR cells with 293 cells in the co-culture with NK-92

cells, PRLR on the target cells was demonstrated necessary for MICA-G129R to induce the kill-

ing from NK cells (Fig 3C). Granzyme B and IFN-γ are two of the major effector proteins in

the cytotoxicity procedure of NK cells. Granzyme B released from the granules of NK cells

enters target cell via pores formed by perforins and induces apoptosis of target cells. IFN-γ is

secreted by activated NK cells to stimulate and regulate other immune cells, like macrophages

and T cells, to destroy the target cells. Granzyme B and IFN-γ were both found to be elevated

by the MICA-G129R fusion protein (Fig 5A and 5B). Since granzymes released by NK cells

can directly cleave and activate caspase-3 to trigger ROS mediated apoptosis [22], caspase-3

activity in the target cells was measured and found significantly elevated when MICA-G129R

presented in the co-culture, which further supported that MICA-G129R enhanced cytotoxicity

(Fig 5C).

To quickly confirm the concept that fusion protein MICA-G129R induces cytotoxicity of

NK cells on PRLR-positive breast cancer cells, conditioned media containing MICA-G129R

were initially used in the study. Fusion protein MICA-G129R was then purified and quantified

(Fig 4). Very few multimers and truncated proteins were found in the purified proteins. While

the calculated molecular weight was 59.2 kDa, MICA-G129R showed a larger molecular weight

in the protein gel, which may be due to protein glycosylation or the denatured protein struc-

ture especially it is a fusion of two proteins. The purified protein induced the same level of

cytotoxicity in the co-culture as the MICA-G129R conditioned media (Figs 3A and 5D). In the

results, the reasons for that MICA-G129R showed a larger molecular weight in protein gels

than the calculated molecular weight may be due to protein glycosylation or irregular dena-

tured protein structure of the fusion protein.

Different from most of bispecific proteins that typically use antibodies for targeting, fusion

protein MICA-G129R uses the antagonistic G129R to specifically target PRLR-positive cells.

The PRL/PRLR pathway has been studied for decades because of its etiological role in breast

cancer [36]. While PRL tends to be elevated in the serum of breast cancer patients, breast can-

cer cells also synthesize PRL locally as an autocrine/paracrine growth factor and overexpress

PRLR to utilize PRL to promote their growth [37]. Due to the wide expression of PRLR in

almost all types of breast cancers, fusion protein MICA-G129R can be used for many types of

breast cancers regardless the common classification with ER, PR, HER2 or triple negative

breast cancers. PRLR could be another promising antigen to be targeted in breast cancers,

especially the ones lacking effective targets, like triple negative cancers. NK cells were also

reported expressing PRLR and PRL could stimulate NK cells’ proliferation and cytotoxicity

through IL-2 and IL-15 pathways [38]. The effect of G129R or MICA-G129R on NK cells is an

open question and will be considered in future studies.

G129R as an antagonist has the great potential to target the PRL/PRLR pathway since its

binding to PRLR does not promote growth of breast cancer cells, instead, induces autophagy-
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related cell death [15]. The G129R conditioned media did not induce significant cell death in

this study (Fig 3B), which may due to the short incubation time. G129R also has been well doc-

umented as a single agent, in combination with other agents, such as Trastuzumab (anti-

HER2) [39], and as fusion proteins with IL-2 [40], endostatin [41] or exotoxin [42]. In addi-

tion, as G129R and MICA are either a variant or a part of the intrinsic protein in the body,

fusion protein MICA-G129R is less likely to cause unwanted immune problems compared

with antibodies and other fusion proteins.

MICA has been reported to be shed from advanced cancer cells to evade NKG2D-mediated

immune detection and elimination. The shedding of MICA results in its release into the circu-

lation. Soluble MICA was found significantly elevated in the sera of patients with leukemia

[43,44], colorectal cancer [45], prostate cancer [46], lung cancer, ovarian cancer, prostate can-

cer, breast cancer [47], pancreatic cancer [48,49], oral squamous cell cancer [50,51] and hepa-

tocellular cancer [52]. Shedding of MICA is the result of proteolytic cleavage in the stalk of the

ectodomain [53], which has been removed in our fusion protein design. The soluble MICA

may complete with MICA-G129R to bind the NKG2D on NK cells, and was reported to be

correlated with the NKG2D down-regulation [54]. Fusion protein MICA-G129R when circu-

lating into breast tumor will adhere the MICA back to the surface of breast tumor cells through

the binding of the G129R to PRLR. It becomes immobilized and enriched in breath tumor just

like the MICA expressed on cancer cell surface, which will attract and activate NK cells and

other effector cells into the tumor. The fusion protein may be affected by soluble MICA or

itself may suppress the NKG2D expression when not bound to breast cancer cells. However,

other factors, such as blocking TGF-β and applying cytokines like IL-2 or IL-18, can overcome

the inhibition to NKG2D expression regardless of the soluble MICA in sera [55,56]. In vivo
study has to be done to answer these questions.

Since NKG2D is also expressed on NKT cells, CD8+ T cells, γδ T cells, and some activated

CD4+ T cells [57], fusion protein MICA-G129R may also attract and activate these cells to

fight against breast cancer. The interaction between MICA-G129R and the other NKG2D-

expression cell types will be evaluated in the future in vivo study with a particular focus on γδ
T cells because of their ability to infiltrate solid tumors [58]. The infiltration of immune cells

into solid tumors is always a critical challenge for cancer immunotherapy [59,60]. The activa-

tion of MICA-G129R to γδ T cells may benefit the treatment to breast cancer.

Direct cell-cell contact between NK cell and the target cell to form an interface structure,

immunological synapse, is required in the cytotoxicity of NK cells [61,62]. The results that

fusion protein MICA-G129R binds to NK-92 cells and T-47D cells, and it did not affect the

viability of T-47D or NK-92 cells, but when induced into the co-culture of T-47D and NK-92

cells, it induced more the T-47D cell death suggest that MICA-G129R helps the formation of

immunological synapse and bridges NK-92 and T-47D cells.

One of the limitations of this study is that T47D was the only cell lines used, so more breast

cancer cell lines with different PRLR expression levels will be included in future study. In vivo
mice models will also be included in the study of MICA-G129R for its circulation, tumor-tar-

geting, NK cell-infiltration, efficacy and safety in inducing cytotoxicity and combination with

other therapeutics. The in vivo interaction of human NK cells and MICA-G129R can be inves-

tigated in immunodeficiency mice xenografted with human PRLR-positive breast cancer cells.

MICA also binds to mouse NKG2D and activates mouse NK cells [63], so the mouse intrinsic

NK cell may be activated and redirected by the fusion protein. The physiological ratios of NK

cells to cancer cells in solid tumors could be as low as 1:35 [64], which is quite different from

the ratios in in vitro studies. This is a big challenge for all the solid tumor immunotherapies.

Maybe combination of MICA-G129R with NK cell transfer is a possible way in the in vivo
studies.
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Heterogeneity of tumor-targeted antigens is one of the hallmarks of cancer and one of the

obstacles in cancer immunotherapy, especially in solid tumors. Drug-resistance often develops

when only one antigen is targeted. The strategy of fusing with MICA can be extended to

become a universal strategy. Different antibodies, like Trastuzumab, Pertuzumab (anti-HER2),

Matuzumab (anti-EGFR) can all be respectively fused with MICA and used together as a cock-

tail, so that multiple antigens in cancer can be targeted at the same time. NK cells can be

derived from health donors, umbilical cord blood or induced pluripotent stem cells (iPSCs)

and engineered to minimize the antigenicity and expand to be allogenic and off-the-shelf, and

used together with the MICA fusion proteins. MICA and NKG2D can be engineered to bind

more specifically with higher affinity to avoid the interaction with the soluble MICA and the

intrinsic NK cells. This platform is like a “multi-bit screwdriver”. The handle of the screw-

driver is the engineered allogenous off-the-shelf NK cell, while the MICA fusion proteins are

the bits targeting different “screws” on cancer cells.

In conclusion, a novel fusion protein MICA-G129R was created and demonstrated able to

bind to PRLR-positive breast cancer cells and NK cells, promote the release of granzyme B and

IFN-γ by NK cells and enhance the cytotoxicity to PRLR-positive breast cancer cells.

Supporting information

S1 Fig. PRLR protein expression in HeLa, T-47D and PRLR ectopically expressed 293 cells.

A. Western blot of PRLR with cell lysates of HeLa and T-47D cells. B. Western blot of PRLR

with cell lysates of PRLR transfected 293 cells. The PRLR protein in three stable clones of

PRLR transfected 293 cells were detected. The untransfected 293 served as the control. The

clone 2 was used for the flowing study as the PRLR ectopically expressed 293 cells.

(TIF)

S2 Fig. Coomassie blue stained protein gel with MICA-G129R conditioned media and

purified MICA-G129R. The white arrow indicates the bands of MICA-G129R. CM indicates

the lane with the MICA-G129R conditioned media. M indicates the lanes with the protein

standard marker. P indicates the lanes with the purified MICA-G129R protein solution. The

loading volume of each sample was indicated above each line.

(TIF)

S1 Raw images.

(PDF)
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