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Abstract

Pulse wave attenuation characteristics reflect compliance and resistance properties of the

vessel wall as well as initial pulse generation factors. Recently, it has become possible to

measure and map the retinal vessel wall pulse wave amplitudes. Predictable pulse wave

amplitude distribution may allow inferences to be made concerning vascular compliance

and resistance. Twenty-eight eyes from sixteen subjects (8 male and 8 female) were exam-

ined using modified retinal photoplethysmography with simultaneous ophthalmodynamome-

try. This allowed the assessment of vessel wall pulsation amplitudes under a dynamic range

of intraocular pressures. Pulse amplitudes were calculated using harmonic regression anal-

ysis. The pulse wave attenuation was measured under different ranges of ophthalmodyna-

mometric force (ODF) as a function of distance along the vessel (VDist), which in turn was

calculated in disc diameters (DD) from the center of the optic disc. A linear mixed-effects

model with randomized slopes and intercepts was used to estimate the correlations

between the logarithmically transformed harmonic regression wave amplitude (HRWa) and

the Fourier trigonometric coefficients with the predictors (VDist and ODF). The retinal venous

harmonic regression wave attenuation (coefficient value±standard error) -0.40±0.065/DD,

(p-value < 0.00001, 95% confidence interval (CI) -0.53 to -0.27), which was approximately

twice that of the arterial -0.17±0.048/DD, (p-value < 0.0004, 95% CI = -0.27 to -0.08). There

was a positive correlation between attenuation of the harmonic regression wave and

ophthalmodynamometric force in both vascular systems. The attenuation of all but the sine

coefficient of the second Fourier harmonic (bn2) achieved statistical significance in the corre-

lation with VDist. The cosine coefficient of the first Fourier harmonic an1 was the only coeffi-

cient to achieve statistical significance in the correlation with the predictors VDist and ODF in

both vascular systems. The an1 coefficient value in the correlation with VDist was -3.79±0.78

and -1.269±0.37 (p < 0.0006), while this coefficient value in the correlation with ODF was

0.026±0.0099 and 0.009±0.04 (p < 0.01) in both the retinal veins and arteries respectively.

The predictable attenuation characteristics in normal subjects suggest that this technique

may allow the non-invasive quantification of retinal vascular compliance and other hemody-

namic parameters.
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Introduction

The vascular pulse wave is a mechanical pressure wave propagating in the wall of the blood

vessel at a velocity different to that of blood flow but physiologically coupled to flow through

the radially directed transmural pressure and a shear stress force, which is oriented in a parallel

direction to the blood vessel wall [1, 2]. The retinal venous pulse is a useful parameter in the

management of ophthalmic and systemic disorders such as glaucoma [3–5], increased intra-

cranial pressure [6, 7], thyroid orbitopathy [8], retinal vein occlusion [9–12] and diabetic reti-

nopathy [13, 14]. The physiologic mechanisms of the retinal venous pulse are poorly

understood; being generated by the heart and transmitted via the cerebrospinal fluid space, it

propagates in the wall of the central retinal vein in a retrograde direction to blood flow, enter-

ing the eye through the optic cup, where it attenuates (decays in amplitude) rapidly [13, 15].

The arterial pulse is the result of a wave of vascular wall distention, initiated by the impact of

the stroke volume ejected into a closed system [16]. Amplification of the arterial pulse wave

contour at points downstream is attributable to vessel wall taper. Further modification of the

pulse wave contour occurs as a consequence of pulse wave reflection from junctions and dis-

continuities in the arterial tree [17]. In addition, there may be a frequency-dependent attenua-

tion of the vascular pulse wave amplitude and propagation velocity by the mural viscoelastic

elements. Vascular compliance is the main factor determining pulse wave attenuation through

a positively correlated relationship (i.e. the higher the compliance, the higher the pulse wave

attenuation) [18–21]. Compliance varies with vessel wall viscoelasticity and tension in the wall

of the blood vessel per unit length (T); expressed through Laplace’s law [2, 22–25] as a product

of the transmural pressure (ptm) and the radius (r) of the blood vessel (T = ptm � r).
To date the Dynamic Vessel Analyzer is the only commercially available method to measure

the retinal vascular pulse wave properties synchronized with the cardiac cycle, which theoreti-

cally can measure retinal vascular pulse wave attenuation [26–28]. In principle it assesses reti-

nal vessel diameter by analyzing the brightness profile of the vessel using video sequences

obtained with a conventional fundus camera. To achieve an optimum contrast for vessel visu-

alization, a green filter is inserted into the illumination pathway of the fundus camera. It is

available in two versions: the retinal vessel analyzer (RVA), which is designed for research pur-

poses and the dynamic vessel analyzer (DVA), intended for clinical use and includes a capacity

to provide flicker light stimulation as a provocative test. Its adaptive algorithm, based on varia-

tion in brightness, compensates for reflections during measurement and, additionally, the

instrument can automatically compensate for artifactual movements. Images deemed to be of

poor quality are automatically rejected from the analysis. As with any optical device measure-

ment accuracy is degraded with optical opacity and in patients with limited fixation. However,

the main limitations include the inability to perform measurements where vessels are in close

proximity or when the vessel cross-sectional diameter is<90μm [29]. Retinal vessel diameters

are reported in relative units of measurement as determined by the Gullstrand eye, which can

result in scaling errors if the eye has a refractive error or its dimensions vary from that of a

schematic eye. Although provocative tests are possible with the DVA, there is limited data on

the reproducibility of flicker responses [30].

Chen et al. described an imaging system consisting of a standard Zeiss 30˚ fundus camera

with monochromatic red-free photographs, synchronized with the cardiac cycle using an ECG

monitor connected to the camera through a time delay switch, which was set to release the

camera shutter at a chosen period within 1/8th of the cardiac cycle. The changes in retinal vas-

cular diameter were measured manually at consecutive intervals. They concluded that both

retinal arterial and venous diameters underwent a change concomitant with the events of the

cardiac cycle. The arterial diameter reached a maximum in mid systole, which is just after the
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period of peak aortic pressure, whereas the increase in intraocular pressure during systole, lead

to a reduction in the retinal venous distending pressure and consequently resulted in a passive

reduction of the venous diameter [31]. Limitations of this method include the manual tech-

nique used to measure vessel diameters at the same site in different image sequences and, in

addition, only a single point in each vessel was examined [31]. Kumar et al. modified this tech-

nique using an image analysis method coined “Vesselness Mapping of Retinal Image

Sequence”, which detected and filtered vessel boundaries enhanced by the scale-space analysis

of the eigenvectors of the image Hessian matrix. This technique was used to examine a longer

segment of the vessel and, consequently, several pulsatile features other than spontaneous

venous pulsations were detected including serpentine movements, vessel displacement and

mechanical coupling. However, identification of the pulsatile segment was required before

measurement [32]. Moret et al. used near-infrared slit-lamp ophthalmoscopy (HRA-OCT

Spectralis) and applied principal component analysis to evaluate the image sequence. They

also reported the detection of various forms of vascular pulsation including serpentine move-

ment of the principal arteries, spontaneous venous pulsation, pulsatile movement of the entire

optic nerve head, vessel displacement and mechanical coupling. Although the near-infrared

illuminating light beam precluded the need for mydriasis, the advantage of this technique was

offset by a low frame rate of 9 frames/second [33]. Recently swept-source optical coherence

tomography was used to measure the retinal vascular axial expansion during the cardiac cycle,

by analyzing the increase of the retinal thickness caused by the reversible expansion of the ves-

sels. Using this method, Spahr et al. reported the detection of a separate retinal arterial and

venous pulse wave. They detected the time delay between the two waves and estimated the

pulse wave velocity in the retinal arteries to be 620±50 mm/s [34]. This is about 1,500 times

faster than that measured using the RVA [27]. However, the technique failed to measure the

retinal vein pulse wave velocity [34].

Photoplethysmography (PPG) is a non-invasive optical technique used to detect blood vol-

ume changes in tissue microvascular networks. The basic form of PPG technology consists of a

light source to illuminate the tissue, and a photodetector to measure the variations in the

intensity of transmitted or reflected light associated with changes in perfusion in the tissue vol-

ume of interest [35]. PPG technology has been used in a wide range of commercially available

medical devices including the measurement of oxygen saturation [36], blood pressure [37–39],

cardiac output [40, 41], the assessment of autonomic function [42, 43] and the detection of

peripheral vascular disease [44–46]. The principle of operation is described by the Beer-Lam-

bert Law, which describes the relationship between a uniform medium containing an absorb-

ing substance and light attenuation [36]. We modified this system to objectively measure

vessel pulsation amplitude from sectors of retinal images centered on the optic disc and from

optic disc surface vessels, using retinal video recordings spanning three cardiac cycles [47, 48].

Modified photo-plethysmography (mPPG) allows the estimation of the attenuation of the reti-

nal vascular pulse wave in both the retinal arteries and veins, within one disc diameter of the

optic disc. In addition to being non-invasive and low cost, it offers further advantages by con-

tinuously measuring both the arterial and venous pulsation amplitudes separately. The trans-

parent ocular refractive media allows mapping and display of the spatial distribution of the

mPPG data in two dimensions. Pulse oximetry, recorded simultaneously with the optic nerve

video recording, provides the necessary audio feedback, which is then used for the extracted

rasterized image frames to be timed with the cardiac cycle. Time-series analysis is then used to

quantify the retinal vascular pulse wave parameters. Additionally, ophthalmodynamometry

adds a dynamic aspect, by altering the retinal vascular pulse amplitude over a range of intraoc-

ular pressures [47–49]. The purpose of the study was to estimate the retinal vascular
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attenuation non-invasively and provide the response of the attenuation characteristics to

changes with induced intraocular pressure in a group of normal subjects.

Materials and methods

Healthy adult research participants were recruited from the medical student body and relatives

of patients treated at the Lions Eye Institute. Written consent was obtained from each of the

participants. Study approval was obtained from the University of Western Australia Human

Ethics Committee adhering to the tenets of the Declaration of Helsinki. From the 32 eyes of 16

subjects, 28 were included in the analysis as four eyes were excluded due to poor image quality.

Participants were required to have clear ocular media and a normal retina and optic nerve.

Exclusion of a functional retinal or optic nerve pathology was determined by Humphrey stan-

dard automated perimetry or Frequency Doubling Perimetry (Humphrey Zeiss, Dublin, Ca).

Subjects were not excluded based on smoking history or systemic hypertension. All subjects

rested for half an hour, they had visual field testing, then dilated after another half hour. They

were neither given any caffeine nor was the blood pressure measured during this period.

Ophthalmodynamometry technique

The Meditron ophthalmodynamometer (Meditron GmbH, Poststrasse, Völklingen, Germany)

consists of a three-mirror Goldmann contact lens fitted at the observer end with a ring-shaped

force transducer. The force transducer consists of five parts: (1) a metallic holding grip with

(2) a metallic cover on the outer surface acting to compress flexible structures in the interior

part of the holding grip; (3) the flexible trabeculae composed of copper-beryllium and acting

as the main pressure measuring unit; (4) a metallic structure on which the trabeculae rest and

(5) the plastic ring which is in contact with the contact lens and which is usually taken to hold

the Goldmann contact lens [50]. The sensor ring is connected to a liquid crystal display moni-

tor, on which the force continuously measured by the sensor ring is displayed. A foot pedal is

connected to the display monitor, which is used to communicate the ophthalmodynamometric

force to the display. The examination commenced with the calibration step, the observer end

of the Goldman contact lens was rested on a flat surface and the device was activated. After ini-

tialization, an audio signal indicated a successful calibration. Baseline intraocular pressure was

measured, the subjects’ pupils were dilated with 1% Tropicamide. The Goldmann contact lens

of the ophthalmodynamometer was placed on the topically anesthetized corneal surface. Con-

tact gel was applied to the lens to ensure optical interface continuity with the cornea. The

examination was performed by applying gradual increments in pressure onto the contact lens

up to a constant force at the observers’ discretion; the aim is to induce visible pulsations in the

central retinal vein and maintain a constant force. The force measured by the sensor ring sur-

rounding the Goldmann contact lens was then read by pressing on the foot pedal; the dis-

played reading was noted by a second observer. This was the endpoint of each test run. The

optic nerve head was continuously imaged bio-microscopically during the examination

through a Meditron Ophthalmodynamometer. The examination was repeated between 8 and

10 times for each subject to attain a range of ODF values for each eye. Videos showing exces-

sive motion artifact, reflection from the optical media or decentration of the optic nerve in the

image sequence for less than three consecutive cardiac cycles were rejected from the analysis.

The ophthalmodynamometric force (ODF), displayed as Meditron units (mu), was converted

to grams of force, where 1 mu = 3.33 grams of force and induced IOP = 0.89xODF+Baseline

IOP in mmHg [51].

An imaging slit-lamp (Carl Zeiss, Germany) with a digital camera (Canon 5D Mark III,

Japan) was used for retinal imaging. Several sequences of at least three cardiac cycles in length
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were taken (each at a rate of 25 frames/second). When possible, recordings were taken from

both eyes. A pulse oximeter (Nellcor N65, Covidien, Mansfield, MA) was applied to the right

index finger; the audio signal from the pulse oximeter, captured with the video sequence of the

optic nerve, allowed synchronization of the retinal vascular pulse with the cardiac cycle. The

timing of the cardiac cycle, was generated from the audio signal from the subject’s pulse oxim-

etry recorded on the audio trace of the video segment, enabled the mathematical analysis of

the periodic component from green channel transmittance. A single high quality three cardiac

cycle length video recording was extracted from each raw recording session. Individual video

frames were imported as separate images in (.tif) format into Photoshop (CS6). The portion of

the images containing the optic disc and surrounding retina was cropped to exclude parts of

the image at the boundary of the slit lamp illumination beam (Fig 1).

Principles of image analysis

All images from three cardiac cycles were analyzed in R statistical package [52]. Image analysis

and segmentation are detailed in our previous work [13, 53]. The principle of the optical path

length and the relationship to hemoglobin concentration is described by the Beer-Lambert

Law (Eq 1).

A ¼ εðlÞ � c � d ¼ � lnT ð1Þ

ε(λ) = Extinction coefficient or absorptivity of the medium for a specific wavelength (L/mmol/

cm)

c = Concentration of light absorbing material which is assumed to be a constant (mmol/L)

d = Optical path length through the medium (cm)

T = Transmittance of a material sample

Fig 1. Example of the image zone of analysis. A) Full frame image as viewed through the Meditron ophthalmodynamometer. B)

Inset showing the region of interest after cropping the image.

https://doi.org/10.1371/journal.pone.0232523.g001
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The isosbestic point, defined as the wavelength where light absorbance for both oxy- and

deoxyhemoglobin, is approximately 550 nm (green channel), therefore the green color channel

from each image layer was extracted [54, 55]. To mimic the physiology of the human eye, the

Bayer filter mosaic used on video camera sensors favors the green channel due to the filter pat-

tern arrangement of 50% green, 25% red and 25% blue, [56] The fact that there are twice as

many green filters results in the green channel being the least noisy of the three color channels.

There is a variation of hemoglobin content in a pulsating vessel, resulting in a fluctuating reti-

nal light transmittance during the cardiac cycle [13]. For Eq 1 the uniform absorbance (A), is

proportional to the negative logarithm of transmittance (T), this is approximated in each car-

diac cycle using the green color channel and by assuming an extinction coefficient ε(λ) of 12

L/mmol/cm at 550 nm for both oxy and deoxyhemoglobin and a hemoglobin concentration

(c) of 150g/l [13]. To convert from molar extinction coefficient to absorbance a molar density

of 64,500 g/mol was used and the result divided by 2 as a reflectance method assumed that

light was reflected through the same vessel twice, doubling the optical path length.

A ¼
�ðlÞ � c � d
64; 500

�
1

2
ð2Þ

If the various assumptions are correct and absorption was limited to 550 nm then the calcu-

lated optical path length would be in microns. This value has not been validated empirically

and the mathematical derivation is a marked simplification of the complexities of matching

between hemoglobin transmittance, reflectance, scatter and the charge-coupled device green

channel sensitivity profile. Absolute vessel dimensions would also depend upon knowledge of

the incident light upon the retina to calculate absolute transmission. We substitute this infor-

mation by calculating the difference in these values and their rates of change across the cardiac

cycle, which also gives informative results [13].

Data processing

Image processing was done in Adobe Photoshop CS6. The video-recording was performed

through an ophthalmodynamometer lens system. Individual image frames were extracted

from each video sequence and saved as Tagged Image File Format (TIFF) files. Each of these

images was cropped to an array of pixels with coordinates x, the pixel at location x has an asso-

ciated intensity triple I(x) = (R(x), G(x), B(x)), where R, G, and B respectively describe the red,

green and blue levels [57]. The intensity triples were extracted using the R package jpeg or tiff

[58], with RGB values converted to the standard [0, 255] scale. Following this procedure, the

data for any given video are represented as a sequence I1(x),I2(x). . ..IM(x), where M is the total

number of frames, typically M = 70 for each video clip to include three cardiac cycles. Each

sequence of images was rasterized and aligned. Image segmentation was performed manually,

by creating a set of four vessel templates to isolate portions of each image corresponding to

two parts (A and B) of the lower retinal vein, the upper vein, and the artery. To account for

both noise and the central vessel reflex, pixel RGB intensity appearing as almost pure white [I

= (255, 255, 255)) or black (I = (0, 0, 0))], with RGB mean intensity values within 1% of either

of these extremes, were excluded from the subsequent analysis. (This affected less than

0.00001% of the pixels across our video data). The mean color intensity over a template reflects

the aggregate blood volume in the corresponding section of the retina; for any given template

(T) the information was summarized after excluding pixels with extreme values as outlined

above. The information was summarized by computing means for each of the RGB channels

and plotting the time series of these values: [R(x): x2T], [G(x): x2T] and [B(x): x2T] [47].

Data from the green channel was extracted as outlined above. A darker image was registered as
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having a higher intensity and therefore a thicker blood column with more hemoglobin con-

tent. Therefore, the change in the mean image intensity of the green channel, is proportional

to the change in blood volume. An array of values across the entire optic disk and peripapillary

retina from either 2x2 or 5x5 pixel clusters was then used to generate false-color maps based

upon the values of either the amplitudes, slopes or timing information [13].

Mathematical model

A time series is any metric measured over regular time intervals [59]. In our model each data

point represented by the mean of the green channel intensity (y(t)) at time (t) is measured as a

fraction of the cardiac cycle, rather than in seconds. Eq 3 represents the nominal time for

frame (i) in cycle (c, where c = 1-3).

ti ¼
i
nc
þ c � 1 ð3Þ

where nc = number of frames in the cth cycle.

The components of the series were expressed as a sum of the trend or regular term (f(t))

and the stationary error, irregular or residual term (εt) with a zero mean (Eq 4).

yðtÞ ¼ f ðtÞ þ �t ð4Þ

The trend component was decomposed into periodic f(t)p and non-periodic components

f(t)np, the latter is to account for changes in intensity due to subject movement artifact

(Eq 5).

f ðtÞ ¼ f ðtÞp þ f ðtÞnp ð5Þ

The periodic trend component was modeled as a Fourier series expansion (Eq 6), this

approach is used in the field of computational fluid dynamics of oscillating flow [60, 61].

Fðf ðtÞpÞ ¼ a0 þ
X1

n¼1

an � cosðnptÞ þ bn � sinðnptÞ ð6Þ

a0 = Coefficient representing the mean of f(t)p.

an = Coefficient of the cosine function of f(t)p.

bn = Coefficient of the sine function of f(t)p.

n = Integer 0,1,2. . . etc. representing the harmonic component.

Higher harmonic frequency model comparisons were conducted using the Akaike Infor-

mation Criterion (AIC). In most eyes AIC preferred models with first and second-order fre-

quencies (Eq 6), therefore the final analysis was limited to the first and second harmonics [47].

The non-periodic component of the trend f(t)np was modeled using a linear spline with

knots at times t = 1 and t = 2 (Eq 7). Knot frequency was based on the observation that the

duration of most artifactual movements is at least one second, which in turn is approximately

equal to one cardiac cycle.

f ðtÞnp ¼ b0 þ b1t þ b2ðt � 1Þ
þ
þ b3ðt � 2Þ

þ ð7Þ

where the subscript + indicates truncation below at zero, so that z+ = z for z>0 and z+ = 0 for

z�0 [47]. The error component of the series described by Eq 3 was modeled using a first-

order autoregressive process (i.e. the value of the point in the series is weighted by a value of a

proceeding datapoint, separated by one lag in the time series), so as to account for residual

PLOS ONE Normal retinal vascular pulse wave attenuation

PLOS ONE | https://doi.org/10.1371/journal.pone.0232523 May 7, 2020 7 / 28

https://doi.org/10.1371/journal.pone.0232523


serial dependence in the data.

et ¼ r�t� 1 þ ut ð8Þ

where ut is white noise and ρ is the autoregressive parameter estimated by restricted maximum

likelihood (REML).

The periodic nature of the data and model fit from the green channel from three cardiac

cycles is demonstrated for a single case in (Fig 2), the model fit for the three channels is further

detailed in our earlier work [47]. A summary of the workflow is demonstrated in (Fig 3).

Statistical analysis

The harmonic regression model is a time series (Eq 3), with both a harmonic trigonometric

series and autoregressive error terms. The amplitude of the composite (combined first and sec-

ond harmonic waveforms) was termed the harmonic regression wave amplitude (HRWa) [47],

which was modeled for the arteries and veins separately. As the distribution of the HRWa was

non-normal, the median was used to measure central tendency; range and interquartile range

Fig 2. Harmonic regression model fit in a single case. The periodic nature of the data and harmonic regression

model fit from the green channel from three cardiac cycles is demonstrated in the retinal vein from a single case. The

changes in the harmonic regression waveform with changes in ODF are detailed in Figs 9 to 11.

https://doi.org/10.1371/journal.pone.0232523.g002
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(IQR) were used to measure data dispersion. The Kruskal-Wallis test was used to assess the sta-

tistical significance between the median HRWa of both vascular systems. HRWa was normal-

ized using logarithmic transformation, which is a recommended transformation for data

skewed to the right [62]. In addition, Pearson’s criteria for normality were used to confirm the

appropriate transformation, these values were HRWa-arterial = 1.32 and HRWa-venous = 3.77,

Fig 3. Summary workflow. Schematic of the technical workflow in the data acquisition and image processing.

https://doi.org/10.1371/journal.pone.0232523.g003
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where a value closer to zero confirms the suitability of the methodology. The biological princi-

ple underpinning this transformation is the fact that viscoelastic stress-strain curves in blood

vessel walls are curvilinear [19], which is approximated with a logarithmic function within the

physiologic range. Analysis of variance (ANOVA) was used to estimate the F-statistic and p-

value of the HRWa for the difference in attenuation between vessel type. As the spatial profile

of the pulse wave amplitude distribution is influenced by the point of maximum pulsation

within a vessel, a linear mixed random intercept-random slope model with interaction effects

was used to analyze the correlations of both the HRWa and individual trigonometric harmonic

coefficients [cosine (an), sine (bn)] of the first and second harmonics [cosine (an1,2) and sine

(bn1,2)] with the predictors, both the distance along the vessel (Vdist) and ophthalmodynamo-

metric force (ODF). A p-value of<0.05 was considered statistically significant for all analyses

[63, 64].

To account for the variances of each of the random factors and the residual variance in the

structure of the linear mixed effect model, fit statistics was assessed using conditional R2,

which describes the proportion of variance explained by all factors in the model including the

predictors Vdist and ODF and random factors (subject, age, gender, laterality “right/left”, hemi-

retinal location “superior/inferior”), whereas marginal R2 describes the proportion of variance

explained by the predictors Vdist and ODF alone [65]. Multivariate coefficient effect size was

calculated for the terms in the interaction model using standardized weighted (βσ) coefficients

[66]. In all regression models the coefficients were reported ±standard error. The 95% confi-

dence intervals were calculated for all regression coefficients.

Results

From a sample of sixteen subjects (8 male and 8 female), a total of 28 eyes were examined. The

median age was 48 years (range = 22-69 years). The distribution of the HRWa was skewed to

the right (skewness = 1.58 and 2.03, kurtosis = 3.35 and 4.44) for both the retinal arteries and

veins respectively (Fig 4). The median HRWa in the venous system was 5.11 (range = 0.16–

56.6, IQR = 7.64), compared to the arterial system 3.36 (range = 0.20–28.54, IQR = 3.28), the

difference between the median values was statistically significant (p<0.00001).

Due to the non-normal distribution of the HRWa in the venous and arterial systems, loga-

rithmic transformation was performed (skewness logHRWa-arterial = -0.21, logHRWa-venous =

0.20), normal quantile-quantile plots (q-q plots) in Fig 5 demonstrated a favorable approxima-

tion of the residuals to a normal distribution. The mean logarithmically transformed ±stan-

dard error of the mean (SEM) HRWa was greater in the venous system 0.84±0.034 (95%

confidence interval (CI) = 0.77–0.92), than the arterial system 0.65±0.025 (95% CI = 0.60–

0.70).

The retinal vascular pulse attenuation was estimated by calculating the regression coeffi-

cients correlating log HRWa and Vdist. A higher attenuation was seen in the venous system

-0.40±0.065/DD, (p-value < 0.00001, 95% confidence interval -0.53 to -0.27) as opposed to the

arterial system -0.17±0.048/DD, (p-value < 0.0004, 95% CI = -0.27 to -0.08). The difference in

the attenuation coefficients was compared using ANOVA and was found to be statistically sig-

nificant (F-statistic = 10751.3, p<0.0001). In contrast to the attenuation of HRWa with dis-

tance along the vessel (VDist), there was an increase of the log HRWa with ODF by 0.00099

±0.0005/g force, (p-value<0.03 95% confidence interval 0.000091 to 0.0019) in the venous sys-

tem. In the arterial system a coefficient of 0.00041±0.0003/g force failed to achieve statistical

significance (p-value<0.21, 95% CI = -0.00024 to 0.0011), (Fig 6).
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The equations of the regression lines from Fig 6 can be derived from these correlations:

logHRWa� venous ¼ 1:012 � 0:40 � VDist ð9Þ

logHRWa� venous ¼ 0:738þ 0:00099 � ODF ð10Þ

logHRWa� arterial ¼ 0:713 � 0:17 � VDist ð11Þ

logHRWa� arterial ¼ 0:599þ 0:00041 � ODF ð12Þ

The interaction (inter-dependence) of the predictors (Vdist and ODF) in estimating the out-

come (log HRWa) are demonstrated in the Figs 7 and 8 for the retinal veins and arteries

Fig 4. Density plot of the harmonic regression wave amplitude (HRWa) distribution in the retinal vascular system. The

distribution of the HRWa is non-normal, demonstrating a right skew in both retinal vascular systems. A larger skew in the HRWa

distribution is demonstrated from values from the retinal veins compared to the retinal arteries.

https://doi.org/10.1371/journal.pone.0232523.g004
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respectively. The interaction model yields the following regression equations:

logHRWa� venous ¼ 0:90 � 0:34 � VDist þ 0:0015 � ODF � 0:00084 � VDist � ODF ð13Þ

logHRWa� arterial ¼ 0:66 � 0:13 � VDist þ 0:0007 � ODF � 0:0005 � VDist � ODF ð14Þ

The interaction model coefficients, p-values and standardized (βσ) coefficients are summa-

rized in Table 1, from which the following conclusions could be drawn: 1) although more than

60% of the variance was explained by the combined predictors and the random factors of the

model (conditional R2), the tested predictors alone accounted for less than 21% of the variance

Fig 5. Normal quantile-quantile plot (q-q plot). A normal q-q plot is a graph of the sets of quantiles of the dataset plotted against

the quantiles of a normal distribution. The upper row (a,b) represents non-transformed and the right (c,d) logarithmically

transformed harmonic regression wave amplitude (HRWa). There is an improved approximation to a normal distribution after

transformation.

https://doi.org/10.1371/journal.pone.0232523.g005
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(marginal R2). 2) There was an attenuation of the HRWa with VDist and amplification with

ODF as evidenced by a negative coefficient for distance (CVD) and a positive coefficient for

ODF (CODF), respectively, of which both coefficients were higher in the veins compared to the

arteries. The standardized βσ coefficients (βσVD and βσODF) seen in Table 1 demonstrated this

relationship. 3) From the interaction plots in Figs 7 and 8 it can be noted that the slope of the

attenuation with VDist is more negative with increasing ODF. This could be quantified by the

negative interaction term (CVD�ODF). In both vascular systems this change is maximal at the

center of the optic disc and reduces towards the retinal periphery.

The influence of ODF on the logHRWa spatial distribution profile in the vessel wall and the

point of maximum pulsation (logHRWamax) is demonstrated in a single vascular segment

from a test subject in Fig 9, also demonstrated graphically from a single point in the retinal

veins and arteries in Figs 10 and 11 respectively. From the total of 36,619 data points, logHR-

Wamax for each vascular segment (ntotal = 274, narterial = 138, nvenous = 136) was analyzed at dif-

ferent ODF values, a correlation between the distance of shift in logHRWamax measured from

the center of the optic disc with changing ODF failed to achieve statistical significance

(p = 0.08, 0.9) for both the venous and arterial systems respectively.

The Fourier series coefficients (an and bn) for the first and second

harmonics

The merits of the coefficient sub-analysis are apparent from Eq 6, as the aim of the study was

to investigate amplitude distribution of the HRW in the retinal vascular system, the sub-analy-

sis aimed at investigating if a particular trigonometric wave subset had a favorable correlation

with both VDist and ODF. Table 2 summarizes the numerical statistical properties of the

Fig 6. Effect plots of the retinal vascular system. Effect plot of the retinal veins (a) and retinal arteries (b) highlighting the

correlation between the vascular pulse wave log harmonic regression waveform amplitude (HRWa), distance along the vessel from

the center of the optic disc (VDist) in disc diameter and ophthalmodynamometric force (ODF) in grams force (g). Noted is the

attenuation of the HRWa with distance compared to the amplification by ODF. Demonstrated are the 95% confidence intervals for

the slope and intercept of the regression line. The dashed line is the loess smoothed regression curve, superposition of both the

curve and the regression line indicates a favorable model fit.

https://doi.org/10.1371/journal.pone.0232523.g006
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coefficients for the first and second harmonics, which are summarized graphically in Fig 12. In

addition to the opposed mean coefficient values of an and bn within the individual harmonics

seen in this figure, a disproportionate contribution from the an1 coefficient to the first Fourier

harmonic was noted in the retinal venous system.

The results of the correlation between the cosine (an) and sine (bn) components of the trigo-

nometric series with the predictors Vdist and ODF are summarized in Table 3, which demon-

strated a statistical significance for the correlation with Vdist was achieved for all coefficients

except the bn2 coefficient, in contrast to ODF which failed to achieve statistical significance

Fig 7. The interaction model of retinal venous pulse log harmonic regression waveform amplitude (logHRWa). There was a

positive correlation between HRWa attenuation and increasing ODF characterized by steepening of the slope of the regression

line from -0.36 at 23g force to -0.49 at 180g force with the maximal change in logHRWa occurring at the center of the optic disc.

Demonstrated are the 95% confidence intervals for the slope of the regression line. The sequence commences from the lower left

to the upper right. The dashed line is the loess smoothed regression curve, superposition of both the curve and the regression line

indicated a favorable model fit.

https://doi.org/10.1371/journal.pone.0232523.g007
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with all but the an1 coefficient. Therefore, among the coefficients there exists varying correla-

tion with the predictors, with the an1 coefficient the strongest and the bn2 the weakest linear

correlation for both predictors in both retinal vascular systems.

Discussion

Using mPPG, we described the HRWa distribution and attenuation characteristics of its pulsa-

tile component in both retinal vascular systems non-invasively. The median HRWa was found

to be higher in the retinal veins than in the retinal arteries. This is consistent with clinical

Fig 8. The interaction model of retinal arterial pulse log harmonic regression waveform amplitude (logHRWa). There was a

positive correlation between HRWa attenuation and increasing ODF characterized by steepening of the slope of the regression line

from -0.14 at 23g force to -0.23 at 180g force with the maximal change in log HRWa occurring at the center of the optic disc.

Demonstrated are the 95% confidence intervals for the slope of the regression line. The sequence commences from the lower left to

the upper right. The dashed line is the loess smoothed regression curve, superposition of both the curve and the regression line

indicated a favorable model fit.

https://doi.org/10.1371/journal.pone.0232523.g008
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observations of the retinal venous pulse being visible compared to the arterial pulse in the

physiological state [6, 33]. Although the spontaneous venous pulse has been classically

described as a binary clinical sign (either present or absent) [6], we demonstrated that modi-

fied photo-plethysmography can potentially provide a predictable and quantifiable measure-

ment of the pulse amplitude attenuation. From our previous work, we compared subjective

retinal venous pulsation detection with mPPG, the minimum detectable threshold was found

to be 5 units (95% confidence interval 4.3 to 6.0) and the area under the receiver operator

curve (AU-ROC) was 0.89, which indicated a high accuracy in the detection of pulsatile vascu-

lar segments [53]. The reproducibility of this technique demonstrated a coefficient of variation

of 13% for vessel pulsation amplitude and 4% for pulsation timing [48]. We are unaware of

any other studies in the literature to date that have provided this comparison.

Although it is difficult to detect retinal arterial pulsations clinically, with mPPG we were

able to detect the attenuation of the arterial pulse wave at low ODF values and, although the

amplification with ODF did not achieve statistical significance (Fig 6), a strong negative linear

correlation was detected with VDist. When this attenuation was compared between both vascu-

lar systems, we found the attenuation of the pulse wave in the venous system was almost twice

that of the arterial attenuation. Several factors contribute to this phenomenon: vessel wall

pulse wave attenuation occurs as a consequence of blood viscosity, the transmission of energy

to tissues surrounding the blood vessel, pressure wave reflection particularly at the microvas-

cular bed and most significantly the viscoelasticity of the vessel walls [67–70]. The original

work demonstrating the significance of vessel wall viscoelasticity on pulse wave attenuation

was derived from experimental and theoretical models of pulse wave propagation [71–73]. The

first prediction of attenuation of propagated waves was made by Bergel from the measurement

of complex elastic properties of excised vessels [74, 75]. This was followed by a series of theo-

retical and experimental in vivo and in vitro studies, which mainly compared the linearized

and non-linearized equations in the prediction of the propagation constant, which allowed

Table 1. Linear mixed effects model with interaction of the predictors.

Interaction Model Parameters Retinal Vessels

Veins 95%CI Arteries 95%CI

Model Variance Conditional R2 0.66 0.63

Marginal R2 0.21 0.06

Model Coefficient±SEM I0 0.90±0.06��� 0.78 to 1.02 0.66±0.04��� 0.58 to 0.74

CVD -0.34±0.07��� -0.47 to -0.21 -0.13±0.05� -0.24 to -0.03

CODF 0.0015±0.0005�� 0.0005 to 0.002 0.0007±0.001� 0.0001 to 0.00003

CVD�ODF -0.00084±0.0002��� -0.001 to-0.0005 -0.0005±0.0001��� -0.002 to -0.0008

Standardized (βσ) Coefficient βσVD -0.32±0.06 -0.18±0.07

βσODF 0.15±0.05 0.11±0.05

βσVD�ODF -0.086±0.02 -0.086±0.02

Interaction model coefficients ±standard error (SE) and p-values calculated from of the linear mixed effects model with interaction of the predictors estimating

logHRWa. Distance along the vessel (Vdist) in disc diameter and ophthalmodynamometric force (ODF) in grams force (g). I0 = model intercept, CVD = coefficient of

Vdist,CODF = coefficient of ODF and CVD�ODF = coefficient of the interaction term Vdist:ODF. Multivariate coefficient effect size is calculated for the terms in the

interaction model using standardized Beta coefficients (βσn) expressed in units of standard deviation, where βσVD, βσODF and βσVD�ODF are the effect sizes for CVD, CODF

and CVD�ODF respectively. Conditional R2 = Total explanatory power, Marginal R2 = Predictor explanatory power.

��� = p<0.00001,

�� = p<0.002,

� = p<0.05.

https://doi.org/10.1371/journal.pone.0232523.t001
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attenuation to be expressed in terms of percentage transmission through the systemic vessels

as outlined in Table 4.

A discrepancy between the propagation attenuation coefficient (α) predicted by the theoret-

ical and the experimental models, inexplicable by that derived from the viscosity of blood

alone, lead to the conclusion by McDonald et al. of the contribution of vessel wall viscoelastic-

ity being the major factor accounting for pulse wave attenuation [72, 73]. This was

Fig 9. Composite image from a single subject. The distribution of the harmonic regression waveform amplitude (HRWa) along the retinal vascular tree

for three consecutive cardiac cycles at four ODF values (grams force). (A) Color fundus photograph highlighting the vessel from which graph (F) is

compiled for the superior temporal retinal vein as indicated by the white dotted line. (B-E) Heat map representation. Note the increase in the HRWa

with increasing ophthalmodynamometric force and the decay as a function of distance in the retinal veins. (F) Scatterplot of the superior retinal vein

demonstrating a constant the point of maximum pulsation, in this case 0.38 disc diameter from the optic disc. DD = Disc diameter.

https://doi.org/10.1371/journal.pone.0232523.g009
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demonstrated in subsequent studies, particularly in those studies that analyzed the linearized

models of pulse propagation attenuation [70]. Classical elasticity theory is based on an assump-

tion that material is both homogenous and isotropic; however, in biological tissues, particu-

larly in the walls of blood vessels, which are neither homogenous nor isotropic, this

assumption is violated. Therefore, vascular distensibility (change in cross-sectional area for a

change in pressure) and compliance (change in volume for a change in pressure) both have

non-linear dimension-pressure responses [20, 82]. In the systemic vessels the difference in the

vessel wall structure, accounts for a difference in viscoelastic responses between the arteries

Fig 10. Composite image from the subject from Fig 9. (A-D) The retinal venous pulse harmonic regression waveforms are

represented graphically for ophthalmodynamometric force (ODF) 0, 53, 86 and 136 grams force. (E-F) The decomposed first (blue

line) and second (red line) Fourier harmonic waves at ODF = 0 at (E) and ODF = 136 grams force at (F) calculated from the Fourier

series equation for a single point as highlighted in the central color fundus image. Noted were the increase in the amplitude of the

waveforms and the increase in the y-intercept of the regression line with increasing ODF.

https://doi.org/10.1371/journal.pone.0232523.g010
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and the veins. The vessel wall consists mainly (70%) of water, with the rest comprised of a

material that determines elastic properties (collagen, elastin and smooth muscle) [19]. Conse-

quently, measured arterial compliance curves are curvilinear [83] whereas in the veins this

relationship is sigmoidal [84], resulting in a difference in systemic venous compliance being 19

to 24 times of the arterial for an identical transmural pressure and cross-sectional area [82, 85–

87]. In the retinal microvascular system, this relationship has not been investigated, however,

ultrastructural differences in the vessel walls are well recognized, whereas the retinal arteries

are devoid of elastin and consist mainly of layers of collagen with smooth muscle layers, the

Fig 11. Composite image from the subject from Fig 9. (A-D) The retinal arterial pulse harmonic regression waveforms are

represented graphically for ophthalmodynamometric force (ODF) 0, 53, 86 and 136 grams force. (E-F) The decomposed first (blue

line) and second (red line) Fourier harmonic waves at ODF = 0 at (E) and ODF = 136 grams force at (F) calculated from the Fourier

series equation for a single point as highlighted in the central color fundus image. Noted were the increase in the amplitude of the

waveforms and the increase in the y-intercept of the regression line with increasing ODF.

https://doi.org/10.1371/journal.pone.0232523.g011
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retinal veins being comprised solely of layers of pericytes surrounded by a collagenous layer of

perivascular tissue [88]. This difference in structure is likely to result in a difference in the vas-

cular dimension-pressure response and thereupon a discrepancy in the slopes of attenuation

of the HRWa between the vessels as seen in Figs 6, 7 and 8.

The ophthalmodynamometer allows a graded compressive force to be applied to the globe,

thereby inducing a measured increase in intraocular pressure. This, in turn, steepens the pres-

sure gradient between the intraocular and retro-ocular compartments and leads to an amplifi-

cation of retinal vascular pulsations [89, 90]. This sequence was detailed from a single subject

in Figs 9 to 11. However, the increase in the slope of the regression line (becoming more nega-

tive) with increasing ODF as seen in Figs 7 and 8 and the negative values in the interaction

terms in Eqs 13 and 14 involve complex hemodynamic mechanisms, which are poorly under-

stood. Theoretical [91] and experimental models [92–94] have attempted to investigate the ret-

inal and retrobulbar hemodynamic changes from induced IOP elevation. Harris et al. using

color doppler imaging, reported changes in the central retinal artery (CRA) including reduced

peak systolic velocity, end-diastolic velocity and an increase in the resistive index. Using a

method combining Doppler sonography with laser interferometry, Findl et al. concluded that

a reduction in the choroidal blood flow in response to an induced increase in IOP was the rea-

son behind a measured reduction in fundus pulsations at the macula and optic disc. Neither

investigators detected changes in the hemodynamics of the ophthalmic artery [92, 93]. There-

fore an increase in compliance in both the retinal arteries and the retinal veins consequent to a

reduction in CRA and possibly choroidal blood flow may be a reason behind the steepening of

the regression line with increase ODF observed in Figs 7 and 8. These results are influenced by

other systemic factors on the IOP/ocular hemodynamic relationship, including arterial blood

pressure, cerebrospinal fluid pressure, orbital tissue pressure, the pressure in the cavernous

sinus blood flow, auto-regulation and ocular biomechanics [50], which may make our results

difficult to generalize to a wider population.

Lam et al. reported a strong relationship between venous pulsation amplitude with increas-

ing venous diameter, decreasing absolute cup margin distance and decreasing tissue depth

overlying the vein [90]. In our subjects the location of the point of maximum venous pulsation,

Table 2. Dispersion and central tendency of the coefficients of the first two harmonics of the retinal arteries and veins.

Range Median IQR Skewness Kurtosis

Retinal Veins

an1 -16.08 to 23.38 0.93 2.52 1.97 4.79

bn1 -14.99 to 12.76 -0.81 1.89 -1.16 1.62

an2 -8.75 to 5.39 -0.24 0.82 -1.40 3.96

bn2 -8.10 to 9.74 0.09 0.72 0.14 5.51

Retinal Arteries

an1 -5.93 to 9.73 0.52 1.24 0.94 3.61

bn1 -10.02 to 8.01 -0.75 1.38 -0.61 2.71

an2 -6.08 to 4.85 -0.11 0.54 -0.20 7.71

bn2 -3.85 to 5.09 0.11 0.56 1.01 3.58

There is a higher median pulsation amplitude, skewness and wider range of the coefficients of the retinal veins compared to the retinal arteries. These findings are

demonstrated graphically in Fig 12. IQR = interquartile range, an1,2 = cosine coefficients and bn1,2 = sine coefficients of the first and second Fourier harmonics

respectively.

https://doi.org/10.1371/journal.pone.0232523.t002
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therefore, may be determined by these anatomic characteristics. We found a constant location

of the point of maximum venous pulsation in the retinal veins with increasing ODF. To inter-

pret this finding, it is important to consider some of the physiologic mechanisms of the sponta-

neous venous pulse (SVP). In simplest terms, a variation in the pressure gradient as the vein

traverses the lamina cribrosa is the cause of the SVP [95]. However, the spatial distribution of

the pulse amplitude along the vein involves a more complex relationship best described by a

Starling resistor, which is defined as a collapsible tube in which the pressure external to the

tube exceeds the outflow pressure. It predicts that pulsation amplitude is highest near the Star-

ling resistor exit and is attenuated upstream towards the inlet region, this model predicts an

expansion of the zone and a constancy of the maximal point of deformation in the wall of the

resistor with increasing external force (Fig 9A–9D) [13, 96, 97].

Fig 12. Violin plot of the distribution of the Fourier coefficients of the first and second Fourier harmonics in both vascular

systems classified by trigonometric function. Demonstrating the wider range for both the cosine (an) and sine (bn) coefficients in

the veins, a narrower dispersion of values for the second Fourier harmonics and the disparate distribution, with displacement in the

opposite direction across the axis of reference between the an and bn coefficients in both vascular systems. Numeric values of the

figure are outlined in Table 2.

https://doi.org/10.1371/journal.pone.0232523.g012
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From Eq 6 it is noted that the HRW is a consequence of the summation of the individual

trigonometric sine and the cosine waves. The sub-analysis of these individual trigonometric

wave coefficients demonstrated that the an1 coefficient in both vascular systems was the only

coefficient in the first two harmonics that showed a statistically significant correlation with

both predictors (VDist and ODF). Additionally, this coefficient demonstrated a wider range

compared to the sine coefficient to the first harmonic waveform (Fig 12). The reason under-

pinning the dominance of this waveform is not testable in our current study; however our

hypothesis is that this wave may be in phase with the fundamental harmonic of the CSF pulse

wave (CSFPW), which is the primary driver for the retinal venous pulse [15]. The fundamental

Table 3. Linear mixed effects model of the individual coefficients of the Fourier trigonometric series from the first and second harmonics.

Coefficient Distance 95% CI p-value Coefficient ODF 95% CI p-value

Retinal Veins

an1 -3.79±0.78 -5.320 to -2.268 0.000001 0.026±0.0099 0.006 to 0.045 0.01

bn1 1.98±0.48 1.033 to 2.93 0.00004 0.00083±0.003 -0.005 to 0.007 0.8

an2 0.498±0.13 0.249 to 0.747 0.0001 -0.005±0.003 -0.01 to 0.0009 0.1

bn2 -0.0037±0.17 -0.337 to 0.331 1 -0.004±0.002 -0.008 to 0.0009 0.1

Retinal Arteries

an1 -1.27±0.37 -1.992 to -0.549 0.0006 0.009±0.04 0.002 to 0.02 0.01

bn1 1.026±0.22 0.591 to 1.463 0.000004 -0.0002±0.002 -0.004 to 0.004 0.93

an2 0.21±0.076 0.047 to 0.348 0.01 -0.002±0.002 -0.005 to 0.00091 0.2

bn2 -0.041±0.16 -0.347 to 0.267 0.81 -0.0007±0.001 -0.0032 to 0.0021 0.58

Linear mixed effect model correlating the Fourier coefficients (coefficient value±standard error) with distance along the vessel (VDist) and ophthalmodynamometric

force (ODF) in both retinal veins and arteries. Statistical significance was achieved for the correlation with VDist for all coefficients except the bn2 coefficient. In contrast

ODF failed to achieve statistical significance with a (p< 0.05) limit with all but the an1 coefficient for both vascular systems. an1,2 = cosine coefficients and bn1,2 = sine

coefficients of the first and second Fourier harmonics respectively. 95% CI = 95% confidence interval.

https://doi.org/10.1371/journal.pone.0232523.t003

Table 4. Summary of studies in vascular flow related pulse wave attenuation.

Author Year Method Site Transmission Range (%) Frequency Range(Hz)

Womersley 1957 [71] Theoretical C C = 0.99-0.92 C = 2-15

F F = 1.0-0.96 F = 2-13

Bergel 1961 [76] In vitro A A = 0.98-0.86 2.5-18

T T = 0.97-0.72 2.5-18

F F = 0.97-0.84 2.5-18

C C = 0.97-0.84 2.5-18

Anliker 1968 [77] In vivo T T = 0.7-0.1� 1-3

Mc Donald 1968 [78] In vitro C C = 0.87-0.75 3-14

Mc Donald 1968 [79] In vivo C C = 0.90-0.81 3-11

Mc Donald 1968 [73] In vitro C C = 0.84-0.60 3-11

Wetterer 1968 [75] In vivo C C = 0.98-0.92 3-15

Li 1981 [80] In vivo A, F, C, I C = 0.89-0.47 1-14

Milnor 1975 [25] In vivo F F = 0.85-0.53 3-12

Milnor 1978 [81] In vivo F F = 0.89-0.5 1-13

Arterial flow wave attenuation using various published models and differing methodologies. Transmission was measured as a function of wave frequency/10 cm vessel

length. A = Abdominal aorta, C = Carotid, F = Femoral, T = Thoracic aorta, I = Iliac. The theoretical method was calculated using Womersley’s Theory.

� Transmission measured over a 20cm arterial segment. Adapted from McDonald’s blood flow in arteries: theoretical, experimental and clinical principles [75].

https://doi.org/10.1371/journal.pone.0232523.t004
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harmonic of the CSFPW is derived from the systemic arterial pressure pulse and is therefore

the dominant contributor to this pulse waveform [98]. Consequently, the amplitude and the

contour of the CSFPW are dependent on the radius of the arterioles and the characteristics of

the walls of the vessels in the cerebrovascular bed [98]. We hypothesize that these factors are

likely to be the dominant contributors to the fundamental harmonic of the retinal vascular

pulse waveform and reflect factors that influence this waveform indirectly.

The limitations of our described technique include a relatively small sample size. Whereas

the interaction model described<65% of the variance, the predictors (Vdist, ODF) accounted

for<20%, with a further 35% was not accounted for in the linear mixed-effects model. A larger

sample size would allow assessment of other factors influencing the variance within the model,

particularly age. The limits of the sampling frequency (frame rate), determines the number of

harmonics extractable from the original signal, a frame rate of 25 FPS allowed correlations to

be made on the first two harmonics only. A higher imaging frame rate would theoretically per-

mit the extraction of higher frequency harmonics from the video sequence. Inaccuracies in

measuring the pulse amplitude could arise from differences in tissue biomechanics between

individuals; furthermore, although baseline intraocular pressure was measured, this was not

factored in the analysis. These parameters would influence the ophthalmodynamometric force

applied to some extent. Also, transmural pressure is a significant factor governing and linking

pulsatile amplitude to intravascular blood flow, as this factor can only be measured invasively,

there was no means for this parameter to be factored in our study.

We modeled the attenuation characteristics for the arteries and the veins independently,

therefore our work may provide a benchmark for comparison of attenuation characteristics in

retinal vascular disease involving the vessel wall. These include age related atherosclerosis [99],

hypertension [100], diabetes [101, 102], the influence of pharmacological agents [23] and cere-

brospinal fluid pressure dynamics [103, 104].

Conclusion

Retinal vascular pulse HRWa attenuation was described using modified photo-plethysmogra-

phy. The predictable attenuation characteristics in normal subjects suggest that this technique

may allow the quantification of retinal vascular compliance and other hemodynamic

alterations.
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