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Channel catfish farming dominates the aquaculture industry in the United States.

However, epidemic outbreaks of motile Aeromonas septicemia (MAS), caused by virulent

Aeromonas hydrophila (vAh), have become a prominent problem in the catfish industry.

Although vaccination is an effective preventive method, there is no vaccine available

against MAS. Recombinant proteins could induce protective immunity. Thus, in this

work, vAh ATPase protein was expressed, and its protective capability was evaluated

in catfish. The purified recombinant ATPase protein was injected into catfish, followed by

experimental infection with A. hydrophila strain ML09-119 after 21 days. Results showed

catfish immunized with ATPase exhibited 89.16% relative percent survival after challenge

with A. hydrophila strain ML09-119. Bacterial concentrations in liver, spleen, and anterior

kidney were significantly lower in vaccinated fish compared with the non-vaccinated

sham group at 48 h post-infection (p < 0.05). Catfish immunized with ATPase showed a

significant (p < 0.05) higher antibody response compared to the non-vaccinated groups.

Overall, ATPase recombinant protein has demonstrated potential to stimulate protective

immunity in catfish against virulent A. hydrophila infection.
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INTRODUCTION

Aquaculture is an approximately $1.2 billion industry, and catfish production is a mainstay of
the U.S. aquaculture industry, accounting for $386 million in 2016 (1). Disease outbreaks are
among the primary limiting factors in catfish production (2). Infectious diseases account for the
most significant percentage of losses, with around 65% of the fry and fingerlings lost during
production (3). The three bacterial species responsible for most of these losses are Edwardsiella
ictaluri, Flavobacterium columnare, and Aeromonas hydrophila. These pathogens are the causative
agents of enteric septicemia of catfish (ESC), columnaris disease, and motile Aeromonas septicemia
(MAS), respectively (4, 5).

Since 2009, a clonal group of A. hydrophila strains (referred to as virulent A. hydrophila or
vAh) has become a major pathogen of farm-raised channel catfish, causing motile Aeromonas
septicemia (MAS) outbreaks (6). The Aquatic Diagnostic Laboratory at Mississippi State
University has reported a continued increase of vAh for the past 5 years. The disease is
most common in summer months (7). Estimated losses in ponds with disease outbreaks
of vAh infection ranged from 4,000 to 10,000 pounds lost (about 8,000–15,000 fish),
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and pond mortality rates can be very high (close to 100%). vAh is
distinguishable from previousAeromonas catfish isolates, but it is
very similar to an Asian grass carp isolate (8). In the last decade,
$60–70 million in losses to the U.S. aquaculture industry have
been attributed to MAS outbreaks due to mortalities, lost feeding
days, and costs associated with antimicrobial therapy (9).

The lack of preventive measures to control vAh infection
has emphasized the need to develop techniques for disease
prevention. Recombinant protein technology is a promising
technology for development of vaccines against many human and
animal pathogens (10, 11). To select potential vAh recombinant
protein candidates for use as a vaccine, genomic sequences
from vAh strainML09-119 (CP005966.1) were assembled against
the genome of A. hydrophila reference strain ATCC 7966T

(NC_008570), revealing that A. hydrophila ML09-119, along
with all other sequenced vAh strains, contains specific unique
outer membrane and secreted proteins (6). These proteins
include pilin protein, fimbrial biogenesis outer membrane usher
protein, TonB-dependent siderophore receptor protein, TonB-
dependent transferrin receptor, OmpA-like protein, and ATPase.
We postulate that these proteins could be effective in stimulating
protective immunity in catfish against vAh infection.

vAh ATPase has 717 aa and contains two domains. The
AAA (ATPases Associated with diverse cellular Activities)
domain has 284 aa and is found in the AAA superfamily
of ring-shaped P-loop NTPases, which exert their activity
through energy-dependent remodeling or translocation of
macromolecules (12, 13). The AAA superfamily of ATPases
is found in all kingdoms of living organisms and catalyzes
many cellular processes in which energy released from ATP
hydrolysis is used in molecular remodeling functions (14).
In bacteria, ATPases participate in diverse cellular processes
including DNA replication, protein degradation, membrane
fusion, microtubule severing, peroxisome biogenesis, signal
transduction, and regulation of gene expression (15).

The second domain, putative AbiEii toxin domain, is
a Type IV toxin-antitoxin (TA) system belonging to the
nucleotidyltransferase superfamily (16). It is similar to proteins
predicted to be members of the bacterial abortive infection (Abi)
system, which enables bacteria to resist bacteriophage infection.
Resistance strategies include promoting bacterial death, thus
limiting phage replication within a bacterial population. There
are 20 or more Abis, and they are predominantly plasmid-
encoded lactococcal systems. The putative AbiEii domain is a
type of TA system that functions by killing bacteria that lose the
plasmid upon division. AbiE phage resistance systems function as
novel Type IV TAs and are widespread in bacteria and archaea.
Here, we describe the expression and purification of VAh ATPase
protein (AHML_21010) and its immune stimulation properties
to protect channel catfish against vAh infection.

MATERIALS AND METHODS

Ethics Statement
Catfish experiments were performed according to guidelines of
an approved protocol by the Institutional Animal Care and Use
Committee at Mississippi State University.

Bacterial Strains, Media, Plasmid, and
Reagents
Escherichia coli strains NovaBlue (Novagen, Madison, WI, USA)
and BL21 (DE3) (Invitrogen, Carlsbad, CA, USA) were used
for cloning and expression, respectively. E. coli strains were
cultured on Luria–Bertani (LB) agar or broth (Difco, Sparks,
MD, USA) and incubated at 37◦C throughout the study.
A. hydrophila strain ML09-119 was cultured in brain heart
infusion (BHI) agar or broth (Difco) and incubated at 30◦C.
Plasmid pET-28a (Novagen) was used as an expression vector.
When required, isopropyl-β-D-thiogalactopyranoside (IPTG),
kanamycin (Kan, 50µg/ml), ampicillin (Ap, 100µg/ml), and
colistin (Col, 2.5µg/ml) (Sigma–Aldrich, Saint Louis, MO, USA)
were added to culture media.

Cloning and Expression of ATPase Protein
in E. coli
The coding region of ATPase (AHML_21010) was
amplified from A. hydrophila strain ML09-119
genomic DNA by PCR using primers ATPaseF01
(AAGGATCCCAAGAGGGTGTTATGTCAGAGC) and
ATPaseR01 (AAGTCGACCCTGATGTCCAAGTTCATGTAT).
Primers were designed using Primer3 (http://bioinfo.ut.ee/
primer3-0.4.0/) based on the ML09-119 genome sequence and
synthesized by Sigma-Aldrich. Amplified ATPase region was
confirmed by sequencing. For cloning, EcoRI and SacI restriction
sites (bold letters) were incorporated into primers’ 5′ ends. The
amplified ATPase coding region (2,160 bp) was cloned into the
EcoRI and SacI restriction sites in pET-28a. Positive clones were
selected on LB Kan plates and verified by colony PCR. ATPase
sequence was confirmed using T3 and T7 terminator primers. E.
coli BL21(DE3) competent bacteria were transformed by positive
plasmid using chemical transformation and stored at −80◦C in
20% glycerol.

For ATPase protein expression, LB broth containing Kan was
inoculated with E. coli BL21 (DE3) (1:100) and cultured at 37◦C
with shaking at 200 rpm until OD600 reached 0.6–0.8, after which
bacteria were induced with 1mM IPTG and incubated for 8 more
h. Whole bacteria proteins were solubilized in tricine sample
buffer (Bio-Rad Laboratories, Hercules, CA, USA) for 5min at
80◦C, and protein separation was conducted using 12% SDS-
PAGE to confirm expression of ATPase protein. Whole bacteria
proteins from competent E. coli BL21 (DE3) and uninduced E.
coli BL21 with recombinant clone were used as controls.

Purification of Recombinant ATPase
Protein
Recombinant ATPase protein containing six histidine tags (His6)
was purified by His-Bind resin columns (Novagen). IPTG
induced recombinant bacteria were harvested by centrifugation
(12,000 x g for 20min at 4◦C), and pellets were lysed using
Bug Buster protein extraction reagent (Novagen) with benzonase
nuclease and protease inhibitor cocktail set III (Sigma). Soluble
fractions were removed by centrifugation, and recombinant
ATPase protein was purified from inclusion body pellets by
suspending in lysis buffer (Tris-HCl buffer pH 8.0, 6M urea)
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with gentle sonication (4 cycles, 10 s) on ice. After centrifugation,
the recombinant protein was loaded onto a resin column (5
mL/column). The resin was washed with wash buffer (0.5M
NaCl, 60mM imidazole, 20mM Tris-HCl, pH 7.9), and eluted
using elution buffer (1M imidazole, 0.5M NaCl, 20mM Tris-
HCl, pH 7.9). Elution fractions were collected for SDS-PAGE
analysis. Quantification of the eluted ATPase fractions was
determined on a spectrophotometer at 280 nm and Bradford
assay (Bio-Rad) according to the supplier’s instructions. The
identity of recombinant ATPase protein was confirmed by
MALDI-TOF mass spectrometry.

Fish Vaccination
Specific pathogen free channel catfish (n = 300; mean weight:
68.77 g) were randomly stocked in 15 40-L tanks (20 fish/tank)
supplied with flow-through dechlorinated municipal water and
continuous aeration. Fish were acclimated for 1 week by feeding
twice a day and monitoring water temperature (30◦C) and water
quality parameters. Fish were assigned to three groups randomly,
and each group included five replicate tanks. Group A consisted
of intraperitoneal injection of 100 µl of purified ATPase protein
at concentration of 250µg/ml emulsified with non-mineral oil
adjuvant Montanide ISA 763 AVG (Seppic, Paris, France) at a
ratio of 30:70 protein to adjuvant. Group B included fish injected
with 100 µl of sterile phosphate buffered saline (PBS) emulsified
with adjuvant, and group C included fish injected with 100
µl sterile PBS (sham-vaccinated). Fish were anesthetized with
tricaine methanesulfonate (MS-222; Sigma) before handling.

At 3 weeks post-immunization, catfish were experimentally
infected by bath immersion with 2.8 × 1010 CFU/ml of A.
hydrophila ML09-119 for 6 h at 30◦C (17). Bacterial infection
dose was chosen based on previous experimental infection doses
(8, 18). Bacteria numbers (CFU/ml) in the overnight cultures
were determined by plating serial 10-fold dilutions on agar
plates followed by viable colony counts. At 48 h post-infection,
five fish from each group were euthanatized, and liver, spleen,
and anterior kidney tissues were collected aseptically. Tissues
were homogenized in 1ml PBS, and tissue suspensions were
diluted serially and spread in triplicate on BHI agar plates.
Viable bacterial colonies were enumerated after incubating plates
at 37◦C for 48 h. The remaining ten fish in each group were
monitored daily for 2 weeks to assess relative percent survival
(RPS), which is calculated by [1– (% mortality of vaccinated fish
/ % mortality of control fish)]× 100 (19).

Serum Antibody Response
Before and after immunization, blood was collected from the
caudal vein of ten fish per group (two fish per tank), and after
clotting the blood overnight at 4◦C, serum was obtained by
centrifugation at 3500 x g for 10 min.

Antibody titers were determined by enzyme-linked
immunosorbent assay (ELISA) as described (20). In the
whole-bacteria ELISA, 96-well ImmulonTM plates (Bloomington,
MN, U.S.A.) were coated with heat-killed whole bacteria (108

CFU/ml) overnight at 4◦C. For ELISA with purified protein,
96-well plates were coated with 100 µl/well of purified ATPase
protein at a concentration of 20µg/ml in PBS. Subsequently,

wells were washed and blocked with 5% nonfat dry milk (Bio-
Rad) in PBS for 1 h at room temperature. Wells were washed
three times in PBS containing 0.05% Tween-20 (PBS-T). Diluted
serum (1:100) was added to each well (50 µl /well), incubated for
1 h at 37◦C, and washed with PBS-T. Fifty microliters of a 1:4
dilution of monoclonal antibody 9E1 (anti-catfish Ig) (21, 22)
were added to each well. After 1 h incubation at 37◦C, plates were
washed with PBS-T, and goat anti-mouse antibody conjugate
(Fisher Scientific, Pittsburg, PA, USA) was added. Plates were
then incubated at room temperature for 1 h and washed.
Finally, 100 µl of p-nitrophenyl phosphate substrate (Sigma 104
phosphatase substrate) dissolved in 10% diethanolamine buffer
was added to each well, and plates were incubated for 45min
at room temperature. Absorbance at 405 nm was measured
in an ELISA Microplate Reader (CA, USA). Control wells
containing PBS buffer in place of serum were present in each
plate and prepared in the same manner. To standardize, average
background absorbance for each plate was subtracted from
measured absorbance.

Statistical Analysis
The effect of vaccination with ATPase protein on survival of
catfish challenged with vAh was assessed with mixed model
logistic regression using PROC GLIMMIX in SAS for Windows
9.4 (SAS Institute, Inc., Cary, NC, USA). The number of live
catfish in a tank at the end of the trial was the outcome assessed
using an events/trials syntax. Protein was the fixed effect assessed
in the model. Tank within protein was included as a random
effect in the model. The wild-type strain was the referent for
comparisons of protein effect.

Effects of ATPase on the number of CFU in fish tissues and
on antibody response were assessed by analysis of variance using
PROC GLM. Separate models were used to assess CFU in liver,
spleen, and anterior kidney as well as the ELISA results. The CFU
data were transformed by first adding 1 to each CFU value and
then taking the base 10 logarithm. ELISA data were transformed
by taking the base 10 logarithm of each value. The distribution
of the residuals was evaluated for each model to determine the
appropriateness of the statistical model for the data. If the effect
of protein was found to be statistically significant, least squares
means were compared using the Dunnett adjustment for multiple
comparisons with wild-type strain as the referent. A significance
level of 0.05 was used for all analyses.

RESULTS

ATPase Protein Purification
The recombinant protein was purified successfully from soluble
fraction at 0.2 mg/ml concentration, and amino acid sequences
were confirmed by MALDI-TOF mass spectrometry. The SDS-
PAGE result indicated the molecular mass of purified ATPase
protein was approximately 81.5 kDa (Figure 1), which was
the same size as the deduced molecular mass based on
amino acid composition. Protein identification by peptide
sequence using MALDI-TOF mass spectrometry revealed 97%
identity of the purified protein to ATPase sequence (accession
number: AGM45958).
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FIGURE 1 | SDS-PAGE with Coomassie blue stain showing purified

recombinant ATPase. Molecular weights in kilodaltons are shown for the

standard protein marker in the right column. Intervening lanes between the

molecular weight marker and the lane containing recombinant ATPase were

removed.

Fish Vaccination
Catfish fingerlings immunized with recombinant ATPase protein
showed 4.72% mortality (89.16% RPS), which was significantly
lower (p < 0.01) than both non-vaccinated groups: PBS-
adjuvant (29.55% mortality) and PBS-only (43.51% mortality)
groups (Figure 2).

The mean number of viable bacteria in the liver, spleen, and
anterior kidney was significantly lower in fish immunized with
recombinant ATPase protein compared to non-vaccinated fish
(p < 0.005) (Figure 3).

Fish Serum Antibody Response
There was no significant difference (p > 0.05) in antibody
response between recombinant ATPase vaccinated and non-
vaccinated catfish when ELISA plates were coated with whole
bacteria lysate (Figure 4A). In ELISA plates coated with purified
protein, significantly higher antibody titers were detected in
serum of fish vaccinated with ATPase compared with PBS-only
and PBS-adjuvant groups (Figure 4B).

FIGURE 2 | Percent mortalities in catfish vaccinated with recombinant ATPase

protein following experimental infection with A. hydrophila ML09-119 at 3

weeks post-vaccination. Significant differences between treatments are

indicated with asterisks (p < 0.05).

DISCUSSION

This study aimed to determine the potential utility of
recombinant ATPase protein as a possible vaccine against
virulent A. hydrophila, an important pathogen responsible
for MAS in catfish. Several research groups have identified
candidate DNA or recombinant protein vaccines for MAS (23–
28), but to date, there is no protective vaccine available against
MAS caused by vAh. Previously, we purified four fimbrial
proteins (FimA, Fim, MrfG, and FimOM) and three outer
membrane proteins (major outer membrane protein OmpA1,
TonB-dependent receptor, and transferrin-binding protein A)
and assessed their ability to stimulate protective immunity in
channel catfish fingerlings against vAh infection (17, 29). In
the present study, expression and purification of vAh ATPase
protein in E. coli were successful, and purified ATPase protein
was recovered from the inclusion body.

A. hydrophila strain ML09-119 is representative of the
vAh clonal group and exhibits high virulence in channel
catfish (8, 30). Intraperitoneal injection of catfish with
recombinant ATPase protein elicited a higher survival rate
compared with non-immunized fish when challenged with vAh.
Vaccination with recombinant ATPase protein also effectively
reduced colonization of vAh in liver, spleen, and anterior
kidney. No statistically significant difference was observed
for antibody production in vaccinated vs. non-vaccinated fish
when ELISA plates were coated with whole bacterial lysate.
However, significant increase in antibody titer was detected
in vaccinated fish when ELISA plates were coated with the
purified recombinant protein, indicating that ATPase antigen
concentration was insufficient in the whole bacterial lysate to
detect ATPase-specific antibodies. In fish, antibody titers do not
always correlate with protection (31). Protection generated by
ATPase in our experiment could be mediated by antibody, and
other factors could contribute such as cell-mediated immunity
or innate immune components such as complement, lysozyme,
antimicrobial peptides, or acute phase proteins (32–34). Innate
immunity was stimulated in grass carp (Ctenopharyngodon
idella) following immunization with F0F1 ATP synthase subunit
beta. This was supported by a significant increase in the
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FIGURE 3 | Mean bacterial concentrations (CFU/g) in liver, spleen, and anterior kidney of catfish vaccinated with recombinant ATPase protein at 48 h post-infection

with A. hydrophila ML09-119. Data are presented as means ± SE (N = 5). Significant differences between treatments are indicated with asterisks (p < 0.05).

expression of pro-inflammatory cytokine genes in blood plasma,
including IL-1β, IL-10, TNF-a, CRP, IFN, and MHC II (33).
Innate immune response was significantly increased in rainbow
trout (Oncorhynchus mykiss) infected with Yersinia ruckeri (35).

In some fish diseases, a combination of humoral, cell-
mediated, and innate immune responses work in concert to
provide protection. Recombinant outer membrane protein C of
Edwardsiella tarda induced a significant innate immune response
and humoral immune response in flounder (Paralichthys
olivaceus); it also evoked significant protection against E. tarda
challenge (36). Up-regulation of the immune-related genes
encoding lysozyme G, complement factor 4, immunoglobulin
M, β2-microglobulin, major histocompatibility complex I and II,
and interleukin-1β was observed in Indian major carp (Labeo
rohita) vaccinated with rOmpR, indicating that humoral, cellular,
and innate immunity contribute to the protective response
against A. hydrophila infection (34). In channel catfish, genes
encoding iron homeostasis, transport proteins, complement
components, acute phase response, and inflammatory and
humoral immune response were upregulated following E. ictaluri
infection, indicating a multifactorial catfish immune response
against this pathogen (32).

Despite the considerable research on function of proteins in
the AAA ATPases superfamily, there is not much information
about their use as vaccine antigens or contribution to virulence
(37). A few studies have utilized ATPase as a vaccine antigen
against protozoan parasites in animal models. For example, DNA
immunization of mice with Na+-K+ATPase from Strongyloides
stercoralis induced protective immunity and a significant
reduction in larval survival, thus suggesting that the Na+-
K+ATPase may be a good potential target for the immune
response (38). Vaccination with a recombinant chlamydial
ATPase protein combined with Alum adjuvant resulted in
reduction of the number of viable Chlamydophila pneumoniae
in lungs of mice, indicating that chlamydial ATPase induces
protective immunity in mice (39).

Another strategy investigated the use of ATPase for vaccine
development in the form of fusion proteins. For example, a

FIGURE 4 | Antibody response in channel catfish serum at day 21

post-vaccination with recombinant ATPase protein. (A) Plates were coated

with heat-killed whole bacteria. (B) Plates were coated with purified ATPase

protein. Optical densities at 405 nm are means of 10 fish. Vertical bars denote

standard errors of the mean. Significant differences are indicated with asterisks

(p < 0.05).

surface protein (TcSP2) of Trypanosoma cruzi fused to ATPase
(ATP) domains of heat shock protein 70 (TcHSP70) induced
high antibody titers and increased survival in immunized mice
after T. cruzi infection (40). Moreover, TcHSP70, as well as
an internal fragment of 242 amino acids within the ATPase
domain, activated the maturation of dendritic cells macrophages
to produce proinflammatory cytokines and chemokines in a
mouse model (41).
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No information is available on ATPase as a recombinant
antigen in fish or other animals against bacterial pathogen
infections. However, some proteins characterized by ATPase
activity were successfully used as subunit vaccines against
fish bacterial pathogens. For example, heat shock proteins
(HSP 60 and HSP 70) have a N-terminal ATPase domain
and are usually in an ATP bound state (42, 43). Wilhelm
et al. (44) reported protection of salmon (95% RPS) against
Piscirickettsia salmonis following immunization with HSP as
a recombinant vaccine (44), and Sudheesh et al. (45) found
that HSP60, HSP70, and two other proteins (ATP synthase
and thermolysin) were highly immunogenic proteins against
Flavobacterium psychrophilum (45).

In conclusion, ATPase was successfully expressed and purified
using a pET-28a vector. The recombinant ATPase protein
protected catfish against vAh infection and significantly reduced
bacterial quantities in catfish tissue, and it stimulated significant
antibody titers against the protein. This is the first study to report
an ATPase protein as a potential vaccine for a bacterial disease
in fish.
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