

Received 13 February 2017 Accepted 20 February 2017

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; seselin; bromination; hydrogen bonding; offset π - π interactions.

CCDC reference: 1533622

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of a photobiologically active brominated angular pyranocoumarin: bromo-hydroxy-seselin

A. K. Bauri,^a Sabine Foro^b and A. F. M. Mustafizur Rahman^{c*}

^aBio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India, ^bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and ^cDepartment of Applied Chemistry & Chemical Engineering, University of Dhaka, Dhaka, Dhaka-1000, Bangladesh. *Correspondence e-mail: mustafizacce@du.ac.bd

The title compound, $C_{14}H_{13}BrO_3$ [systematic name: rac-(9*S*,10*R*)-9-bromo-10hydroxy-8,8-dimethyl-9,10-dihydro-2*H*,8*H*-pyrano[2,3-*f*]chromen-2-one], is a substituted pyranocoumarin, obtained by bromination of seselin [8,8dimethyl-2*H*,8*H*-pyrano[2,3-*f*]chromen-2-one], which was isolated from the Indian herb *Trachyspermum stictocarpum* (Aajmod). The pyrano ring has a distorted half-chair conformation and its mean plane is inclined to the coumarin mean plane by 1.6 (2)°. In the crystal, molecules are linked by pairs of O– H···O hydrogen bonds, forming inversion dimers with an $R_2^2(16)$ ring motif. The dimers stack along the *a*-axis direction and are linked by offset π - π interactions, forming columns [intercentroid distance = 3.514 (4) Å].

1. Chemical context

The title compound, rac-(9S,10R)-9-bromo-10-hydroxy-8,8dimethyl-9,10-dihydro-2H,8H-pyrano[2,3-f]chromen-2-one, is a substituted product of the angular pyranocoumarin seselin, with a bromine atom and a hydroxy group at the asymmetric carbon atoms C3 and C4 in the pyrano ring (see Fig. 1). This class of pyranocoumarins have absorption bands in the near UV region due to the presence of an extended conjugated enone system and exhibit photomutagenic (Appendino et al., 2004) and photocarcinogenic properties, binding with purin bases of DNA in living cells to yield photoadducts (Filomena et al., 2009). Based on this property, these compounds are employed to treat numerous inflammatory skin diseases such as atopic dermatitis and pigment disorders such as vitiligo and psoriasis on exposure to ultraviolet (UV) radiation in photodynamic therapy (PDT). As a result of their strong ability to absorb UV radiation, this class of molecules are also utilized as photoprotective agents to prevent the absorption of harmful UV radiation by the skin in the form of a variety of sun-screening lotions, widely used in dermatological applications in the cosmetic and pharmaceutical industries (Chen et al., 2007, 2009). In addition, in vitro antiproliferative activity and in vivo phototoxicity of the parent molecule has been reported against numerous cancer cell lines, including HL60, A431 (Conconi et al., 1998). These classes of coumarins have been used successfully in combination with ultraviolet irradiation to treat psoriasis and vitiligo and have been found to inhibit proliferation in human hepatocellular carcinoma cell lines (March et al., 1993). Experimental results revealed that their phototoxicity is exerted via Diels-Alder reactions,

research communications

binding to the double bond of a purin base of DNA in living cells with double bonds of the coumarin, to yield mono- and di-adducts (Conforti *et al.*, 2009). Recently, this type of molecule has been combined with a porphyrin to obtain a scaffold-type macromolecule and employed to study of its interaction (host–guest interaction) with fullerenes, such as C_{60} and C_{70} in supramolecular chemistry (Banerjee *et al.*, 2014; Ghosh *et al.*, 2014). The molecular tweezers containing a coumarin moiety showed better quantum yield and fluorescence absorption due to the presence of the extended conjugated enone of pyranocoumarin. As part of our studies in this area, we now describe the synthesis and structure of the title compound.

2. Structural commentary

The title compound, Fig. 1, belongs to a class of naturally occurring pyranocoumarins, known as psoralenes. It is an angular isomer of the substituted pyranocoumarin seselin [8,8-dimethyl-2*H*,8*H*-pyrano[2,3-*f*]chromen-2-one], whose crystal structure has been reported (Kato, 1970; Bauri *et al.*, 2006). It is composed of three different ring systems, *viz.* benzene, pyrone and pyrano, with $(CH_3)_2$, Br and OH substituents located at the C2, C3 and C4 positions, respectively, see Fig. 1. The C5-C6-C10-C9 and O2-C6-C10-C11 torsion

Figure 1

The molecular structure of the title compound, with the atom labelling and displacement ellipsoids drawn at the 50% probability level

Table 1Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O3-H3O\cdots O4^{i}$	0.81 (2)	1.95 (3)	2.734 (7)	162 (8)

Symmetry code: (i) -x, -y, -z + 1.

angles are almost the same, *viz.* 178.6 (6) and 178.3 (5)°, respectively, indicating that these rings are almost coplanar. The pyrano ring (O1/C1–C5) has a distorted half-chair conformation [puckering parameters: amplitude (Q) = 0.443 (7) Å, θ = 132.7 (9)°, φ = 91.7 (11)°], probably due to ring flexibility and the presence of the substituents. Its mean plane is inclined to the mean plane of the coumarin ring by 1.6 (2)°. There are two asymmetric centres at positions C3 and C4 in the molecule (Fig. 1). The present study of the title racemic compound revealed that the relative configuration of atoms C3 and C4 to be *S* and *R*, respectively.

3. Supramolecular features

In the crystal, molecules are linked by pairs of $O-H\cdots O$ hydrogen bonds, forming inversion dimers with an $R_2^2(16)$ ring motif (Table 1 and Fig. 2). The dimers stack along the *a*-axis direction and are linked by offset $\pi-\pi$ interactions, forming columns $[Cg2\cdots Cg2(-x + 1, -y, -z + 2) = 3.514 (4) \text{ Å}$, interplanar distance = 3.422 (3) Å, slippage = 0.798 Å; Cg2 is the centroid of the O2/C6–C10 ring].

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.38, last update November 2016; Groom *et al.*, 2016) gave more than 25 hits for the pyranocoumarin structure. They include two reports of the crystal structure of seselin [CSD refcodes AMYROL (Kato, 1970) and AMYROL01 (Bauri *et al.*, 2006)], and a number of structures with various substi-

A view along the a axis of the crystal packing of the title compound, with hydrogen bonds shown as dashed lines (see Table 1).

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{14}H_{13}BrO_4$
$M_{ m r}$	325.15
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	299
a, b, c (Å)	6.9573 (6), 23.465 (2), 8.3435 (7)
β (°)	100.79 (1)
$V(Å^3)$	1338.0 (2)
Ζ	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	3.08
Crystal size (mm)	$0.44 \times 0.20 \times 0.16$
Data collection	
Diffractometer	Oxford Diffraction Xcalibur Sapphire CCD detector
Absorption correction	Multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2009)
T_{\min}, T_{\max}	0.344, 0.639
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	4521, 2392, 2063
R _{int}	0.022
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.602
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.063, 0.202, 1.12
No. of reflections	2392
No. of parameters	175
No. of restraints	1
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	1.25, -1.02

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 and SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

tuents at the C3 and C4 atoms; many of which are natural products.

5. Synthesis and crystallization

The compound seselin was isolated as a colourless crystalline solid from the methanol extract of *T. stictocarpum* (in local dialect known as Aajmod) by means of column chromatography over SiO₂ gel, by gradient elution with a mixture of a binary solvent system of hexane and ethyl acetate. It was purified by reverse-phase high-pressure liquid chromatography followed by crystallization to yield a colourless solid. This compound was then brominated using NBS in aqueous tetrahydrofuran (THF) in a 1:1 ratio at room temperature with continuous mechanical stirring over a period of 12 h. The reaction was quenched with ice-cold water and extracted with

diethyl ether to yield the crude product. This was then purified by column chromatography over SiO_2 with gradient solvent elution to yield the title compound. Colourless rod-like crystals were obtained after recrystallization three times from ethyl acetate:hexane (1:4) solution at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydroxyl H atom was located in a difference Fourier map and refined with $U_{iso}(H) =$ $1.2U_{eq}(O)$. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.98 Å with $U_{iso}(H) = 1.2U_{eq}(C)$.

Acknowledgements

The authors thank Professor Dr. Hartmut, FG Strukturforschung, Material-und Geowissenschaften, Technische Universät Darmstadt, for his kind cooperation with the data collection, and for providing diffractometer time.

References

- Appendino, G., Bianchi, F., Bader, A., Campagnuolo, C., Fattorusso, E., Taglialatela-Scafati, O., Blanco-Molina, M., Macho, A., Fiebich, B. L., Bremner, P., Heinrich, M., Ballero, M. & Muñoz, E. (2004). J. Nat. Prod. 67, 532–536.
- Banerjee, S., Ghosh, B. K., Bauri, A. K. & Bhattacharya, S. (2014). J Spectrosc. Dyn. 4, 29–34.
- Bauri, A. K., Foro, S., Lindner, H.-J. & Nayak, S. K. (2006). Acta Cryst. E62, 01340–01341.
- Chen, Y., Fan, G., Zhang, Q., Wu, H. & Wu, Y. (2007). J. Pharm. Biomed. Anal. 43, 926–936.
- Chen, D., Wang, J., Jiang, Y., Zhou, T., Fan, G. & Wu, Y. (2009). J. Pharm. Biomed. Anal. 50, 695–702.
- Conconi, M. T., Montesi, F. & Parnigotto, P. P. (1998). Basic Clin. Pharmacol. Toxicol. 82, 193–198.
- Conforti, F., Marrelli, M., Menichini, F., Bonesi, M., Statti, G., Provenzano, E. & Menichini, F. (2009). *Curr. Drug Ther.* **4**, 38–58.
- Ghosh, B. K., Bauri, A. K., Bhattacharya, S. & Banerjee, S. (2014). Spectrochim. Acta Part A, 125, 90–98.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Kato, K. (1970). Acta Cryst. B26, 2022-2029.
- March, K. L., Patton, B. L., Wilensky, R. L. & Hathaway, D. R. (1993). *Circulation*, 87, 184–191.
- Oxford Diffraction (2009). CrysAlis CCD & CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2017). E73, 453-455 [https://doi.org/10.1107/S2056989017002808]

Crystal structure of a photobiologically active brominated angular pyranocoumarin: bromo-hydroxy-seselin

A. K. Bauri, Sabine Foro and A. F. M. Mustafizur Rahman

Computing details

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED* (Oxford Diffraction, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

rac-(9S,10R)-9-Bromo-10-hydroxy-8,8-dimethyl-9,10-dihydro-2H,8H-pyrano[2,3-f]chromen-2-one

Crystal data

C₁₄H₁₃BrO₄ $M_r = 325.15$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 6.9573 (6) Å b = 23.465 (2) Å c = 8.3435 (7) Å $\beta = 100.79$ (1)° V = 1338.0 (2) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur Sapphire CCD detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Rotation method data acquisition using ω scans. Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) $T_{\min} = 0.344, T_{\max} = 0.639$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.063$ $wR(F^2) = 0.202$ S = 1.122392 reflections 175 parameters 1 restraint F(000) = 656 $D_x = 1.614 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3332 reflections $\theta = 2.5-27.4^{\circ}$ $\mu = 3.08 \text{ mm}^{-1}$ T = 299 KRod, colourless $0.44 \times 0.20 \times 0.16 \text{ mm}$

4521 measured reflections 2392 independent reflections 2063 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 25.4^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -8 \rightarrow 8$ $k = -20 \rightarrow 28$ $l = -10 \rightarrow 6$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0969P)^{2} + 6.1833P] \qquad \Delta \rho_{\max} = 1.25 \text{ e } \text{\AA}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{\min} = -1.02 \text{ e } \text{\AA}^{-3}$ $(\Delta/\sigma)_{\max} = 0.005$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of F^2 > 2sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.2945 (9)	0.1326 (3)	0.9293 (8)	0.0385 (14)	
C2	0.2080 (10)	0.2030 (3)	0.7183 (8)	0.0439 (15)	
C3	0.2309 (9)	0.1564 (3)	0.5932 (8)	0.0370 (14)	
H3	0.1538	0.1673	0.4870	0.044*	
C4	0.1631 (8)	0.0972 (3)	0.6392 (7)	0.0337 (13)	
H4	0.2193	0.0678	0.5787	0.040*	
C5	0.2295 (8)	0.0878 (3)	0.8222 (7)	0.0323 (13)	
C6	0.2285 (8)	0.0340 (3)	0.8890 (8)	0.0327 (13)	
C7	0.1645 (9)	-0.0657 (3)	0.8329 (8)	0.0392 (15)	
C8	0.2141 (10)	-0.0764 (3)	1.0051 (9)	0.0450 (16)	
H8	0.2076	-0.1135	1.0430	0.054*	
C9	0.2692 (10)	-0.0345 (3)	1.1120 (8)	0.0415 (15)	
H9	0.3007	-0.0427	1.2229	0.050*	
C10	0.2804 (9)	0.0233 (3)	1.0572 (8)	0.0367 (14)	
C11	0.3418 (10)	0.0693 (3)	1.1591 (8)	0.0425 (15)	
H11	0.3787	0.0635	1.2709	0.051*	
C12	0.3486 (11)	0.1233 (3)	1.0959 (8)	0.0462 (16)	
H12	0.3897	0.1537	1.1653	0.055*	
C13	-0.0073 (12)	0.2122 (3)	0.7295 (10)	0.0554 (19)	
H13A	-0.0167	0.2418	0.8069	0.066*	
H13B	-0.0602	0.1775	0.7641	0.066*	
H13C	-0.0797	0.2230	0.6244	0.066*	
C14	0.2986 (14)	0.2596 (3)	0.6815 (11)	0.062 (2)	
H14A	0.4356	0.2543	0.6823	0.075*	
H14B	0.2819	0.2871	0.7629	0.075*	
H14C	0.2353	0.2730	0.5760	0.075*	
01	0.3137 (7)	0.18705 (19)	0.8778 (6)	0.0473 (12)	
O2	0.1716 (6)	-0.01003 (17)	0.7824 (5)	0.0366 (10)	
O3	-0.0446 (7)	0.0926 (2)	0.6070 (6)	0.0455 (11)	
H3O	-0.078 (11)	0.089 (4)	0.510 (3)	0.055*	
O4	0.1163 (8)	-0.1010 (2)	0.7257 (6)	0.0562 (14)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

Br1	0.50492	2 (10)	0.14733 (3)	0.57070 (9)	0.0528 (3)	
Atomic displacement parameters $(Å^2)$						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.038 (3)	0.034 (3)	0.041 (4)	-0.001 (3)	0.000 (3)	-0.002 (3)
C2	0.057 (4)	0.031 (3)	0.041 (4)	-0.001 (3)	0.000 (3)	0.003 (3)
C3	0.039 (3)	0.038 (3)	0.028 (3)	-0.005 (2)	-0.009 (2)	0.008 (3)
C4	0.033 (3)	0.032 (3)	0.034 (3)	-0.005(2)	0.000 (2)	0.003 (3)
C5	0.030 (3)	0.034 (3)	0.030 (3)	0.001 (2)	-0.001 (2)	0.006 (3)
C6	0.028 (3)	0.032 (3)	0.036 (3)	0.002 (2)	-0.001 (2)	0.001 (3)
C7	0.038 (3)	0.035 (3)	0.043 (4)	-0.001 (3)	0.004 (3)	0.011 (3)
C8	0.044 (4)	0.044 (4)	0.047 (4)	0.002 (3)	0.008 (3)	0.015 (3)
C9	0.044 (4)	0.045 (4)	0.034 (3)	0.004 (3)	0.004 (3)	0.012 (3)
C10	0.034 (3)	0.043 (4)	0.032 (3)	0.003 (3)	0.003 (2)	0.007 (3)
C11	0.048 (4)	0.053 (4)	0.024 (3)	0.006 (3)	0.000 (3)	0.001 (3)
C12	0.055 (4)	0.045 (4)	0.034 (4)	-0.001 (3)	-0.003 (3)	-0.010 (3)
C13	0.068 (5)	0.046 (4)	0.051 (4)	0.013 (4)	0.007 (4)	0.000 (3)
C14	0.087 (6)	0.041 (4)	0.056 (5)	-0.013 (4)	0.006 (4)	0.008 (4)
01	0.063 (3)	0.033 (2)	0.041 (3)	-0.003 (2)	-0.005 (2)	0.000 (2)
O2	0.043 (2)	0.031 (2)	0.032 (2)	-0.0022 (18)	-0.0017 (18)	0.0054 (18)
O3	0.040 (2)	0.052 (3)	0.040 (3)	-0.008 (2)	-0.005 (2)	0.006 (2)
O4	0.079 (4)	0.033 (2)	0.048 (3)	-0.008(2)	-0.011 (3)	0.000 (2)
Br1	0.0432 (4)	0.0606 (5)	0.0542 (5)	-0.0072 (3)	0.0085 (3)	0.0069 (4)

Geometric parameters (Å, °)

C1—01	1.362 (8)	C7—O2	1.376 (7)
C1—C12	1.388 (10)	C7—C8	1.435 (10)
C1—C5	1.399 (9)	C8—C9	1.336 (10)
C2—O1	1.444 (8)	C8—H8	0.9300
C2C14	1.526 (9)	C9—C10	1.438 (9)
C2-C13	1.533 (11)	С9—Н9	0.9300
C2—C3	1.540 (9)	C10—C11	1.391 (9)
C3—C4	1.538 (8)	C11—C12	1.375 (10)
C3—Br1	1.962 (7)	C11—H11	0.9300
С3—Н3	0.9800	C12—H12	0.9300
C4—O3	1.424 (7)	C13—H13A	0.9600
C4—C5	1.526 (8)	C13—H13B	0.9600
C4—H4	0.9800	C13—H13C	0.9600
C5—C6	1.381 (8)	C14—H14A	0.9600
C6—O2	1.372 (7)	C14—H14B	0.9600
C6—C10	1.404 (9)	C14—H14C	0.9600
C7—O4	1.220 (8)	O3—H3O	0.81 (2)
O1—C1—C12	116.1 (6)	C9—C8—C7	121.6 (6)
01—C1—C5	122.9 (6)	С9—С8—Н8	119.2
C12—C1—C5	121.0 (6)	С7—С8—Н8	119.2

O1—C2—C14	104.7 (6)	C8—C9—C10	120.6 (6)
O1—C2—C13	108.3 (6)	С8—С9—Н9	119.7
C14—C2—C13	109.6 (6)	С10—С9—Н9	119.7
O1—C2—C3	109.9 (5)	C11—C10—C6	117.7 (6)
C14—C2—C3	112.5 (6)	C11—C10—C9	124.5 (6)
C13—C2—C3	111.5 (6)	C6—C10—C9	117.8 (6)
C4—C3—C2	113.3 (5)	C12—C11—C10	120.5 (6)
C4—C3—Br1	105.9 (4)	C12—C11—H11	119.7
C2—C3—Br1	111.6 (4)	C10—C11—H11	119.7
C4—C3—H3	108.6	C11—C12—C1	120.5 (6)
$C^2 - C^3 - H^3$	108.6	C11-C12-H12	119.7
Br1—C3—H3	108.6	C1-C12-H12	119.7
03-C4-C5	106.5 (5)	C_{2} C_{13} H_{13}	109.5
03 - C4 - C3	100.3(5)	C2-C13-H13R	109.5
$C_5 C_4 C_3$	100 4 (5)	$H_{13A} = C_{13} = H_{13B}$	109.5
$C_3 = C_4 = C_3$	109.4 (3)	$C_{13} = C_{13} = C_{13} = C_{13}$	109.5
$C_{5} = C_{4} = H_{4}$	109.7	$\begin{array}{c} \text{H}_{12} \\ \{H}_{12} \\ \text{H}_{12} \\ \{H}_{12} \\$	109.5
$C_3 = C_4 = H_4$	109.7	H13A - C13 - H13C	109.5
C3-C4-H4	109.7	HI3B - CI3 - HI3C	109.5
C6C1	11/.1 (5)	C_2 — C_14 — H_14A	109.5
C6-C5-C4	120.9 (5)	C2—C14—H14B	109.5
CI_C5_C4	122.0 (5)	HI4A—CI4—HI4B	109.5
02	116.7 (5)	C2—C14—H14C	109.5
O2—C6—C10	120.2 (5)	H14A—C14—H14C	109.5
C5—C6—C10	123.1 (6)	H14B—C14—H14C	109.5
O4—C7—O2	116.1 (6)	C1—O1—C2	118.1 (5)
O4—C7—C8	126.6 (6)	C6—O2—C7	122.5 (5)
O2—C7—C8	117.3 (6)	C4—O3—H3O	107 (6)
O1—C2—C3—C4	56.8 (7)	O2—C7—C8—C9	-1.5 (10)
C14—C2—C3—C4	173.0 (6)	C7—C8—C9—C10	0.1 (10)
C13—C2—C3—C4	-63.4 (7)	O2—C6—C10—C11	178.3 (5)
O1—C2—C3—Br1	-62.7 (6)	C5-C6-C10-C11	-2.3 (9)
C14—C2—C3—Br1	53.5 (7)	O2—C6—C10—C9	-0.7 (9)
C13—C2—C3—Br1	177.1 (5)	C5—C6—C10—C9	178.6 (6)
C2—C3—C4—O3	76.8 (6)	C8—C9—C10—C11	-178.0(7)
Br1—C3—C4—O3	-160.5 (4)	C8—C9—C10—C6	1.0 (9)
C2—C3—C4—C5	-40.8(7)	C6—C10—C11—C12	0.8 (10)
Br1—C3—C4—C5	81.9 (5)	C9-C10-C11-C12	179.8 (7)
01 - C1 - C5 - C6	176.0 (6)	C10-C11-C12-C1	-0.1(11)
$C_{12} - C_{1} - C_{5} - C_{6}$	-2.3(9)	01-C1-C12-C11	-1774(6)
01-C1-C5-C4	-3.7(9)	C_{5} C_{1} C_{12} C_{11}	0.9(11)
$C_{12}^{12} - C_{1}^{12} - C_{5}^{5} - C_{4}^{4}$	1781(6)	C_{12} C	-161.8(6)
03-C4-C5-C6	744(7)	$C_{1}^{-1} = C_{1}^{-1} = C_{2}^{-1}$	10 0 (0)
C_{3} C_{4} C_{5} C_{6}	-164.7(5)	C_{14}	-166.3(6)
$C_{3} = C_{4} = C_{3} = C_{0}$	-105.0(6)	$C_{14} = C_{2} = C_{1} = C_{1}$	760.3(0)
$C_3 = C_4 = C_5 = C_1$	103.7 (0)	$C_{13} = C_{2} = C_{1} = C_{1}$	-452(8)
$C_{1} = C_{1} = C_{1} = C_{1}$	14.7(0) -1776(5)	$C_{5} - C_{2} - C_{1} - C_{1}$	+3.2(0)
$C_1 = C_2 = C_0 = O_2$	-1/1.0(3)	$C_{2} = C_{2} = C_{2}$	1/9.9 (3)
U4 - U3 - U6 - 02	2.1 (8)	U10-U0-02-U/	-0.7(8)

supporting information

C1C5C6C10	3.1 (9)	O4—C7—O2—C6	-178.2 (6)
C4—C5—C6—C10	-177.3 (6)	C8—C7—O2—C6	1.8 (8)
O4—C7—C8—C9	178.5 (7)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O3—H3 <i>O</i> ···O4 ⁱ	0.81 (2)	1.95 (3)	2.734 (7)	162 (8)

Symmetry code: (i) -x, -y, -z+1.